JPH04301555A - Heat conductivity detector for gas chromatograph - Google Patents

Heat conductivity detector for gas chromatograph

Info

Publication number
JPH04301555A
JPH04301555A JP3066562A JP6656291A JPH04301555A JP H04301555 A JPH04301555 A JP H04301555A JP 3066562 A JP3066562 A JP 3066562A JP 6656291 A JP6656291 A JP 6656291A JP H04301555 A JPH04301555 A JP H04301555A
Authority
JP
Japan
Prior art keywords
cell
flow rate
filament
carrier gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066562A
Other languages
Japanese (ja)
Inventor
Kyoichi Komori
小森 亨一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3066562A priority Critical patent/JPH04301555A/en
Publication of JPH04301555A publication Critical patent/JPH04301555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable correct measurement of a flow rate to be conducted without requiring a separate flow rate measuring device by providing cells which are subjected to the same carrier gas and at a flow rate of zero in a cell block and providing a hot wire filament here. CONSTITUTION:A reference cell A and a measuring cell B as well as a third cell C are provided in a cell block 1 inside an oven 14, while filaments FA to FC with constant current supplied from a constant current power source 15 are provided in respective cells. Carrier gas flows through the cell A, a sample vaporizing chamber 12, a column 13 and the cell B to a vent by a flow controller 11. Change in electric resistance of the filaments FA, FB according to change in gas concentration records concentration on a gas concentration recorder 18. At the same time difference in electric resistance of the filament FC and the filament FA of the cell C which are connected to a purge flow path 9 wherein it is communicated with the cell A and a valve is closed during operation and whose flow rate is zero when sealed is detected and the flow rate is displayed on a flow rate display 19. Thus a detector which does not require a separate flow meter and which is electric and highly accurate can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は各種物質の分析に使用
されるガスクロマトグラフに関するもので、とくにその
分離成分ガスを検出する熱伝導度式検出器に係るもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a gas chromatograph used for analyzing various substances, and more particularly to a thermal conductivity type detector for detecting separated component gases.

【0002】0002

【従来の技術】従来ガスクロマトグラフでは、キャリヤ
ガスの流量検出器と試料ガスの検出器とはそれぞれ全く
別々に設けられていた。即ちガスクロマトグラフの流量
計は普通キャリヤガス流路の上流側にロータメータなど
を設置するのが一般的であり、熱パルス式その他電子式
のものも提案されているが、これらは何れもカラム出口
に設けられる試料ガス検出器とは無関係に全く別個にキ
ャリヤガス供給系に設置されていた。
2. Description of the Related Art In conventional gas chromatographs, a carrier gas flow rate detector and a sample gas detector have been provided completely separately. In other words, the flow meter for gas chromatographs is generally equipped with a rotameter or the like on the upstream side of the carrier gas flow path, and heat pulse type and other electronic types have also been proposed, but these all have a rotameter installed at the column outlet. It was installed in the carrier gas supply system completely independently of the sample gas detector provided.

【0003】0003

【発明が解決しようとする課題】本発明は試料成分検出
用の熱伝導度検出器を利用して、別個の流量検出器を設
置しないでもキャリヤガス供給路の流量を正確に測定検
知することを企図したものである。
[Problems to be Solved by the Invention] The present invention utilizes a thermal conductivity detector for detecting sample components to accurately measure and detect the flow rate of a carrier gas supply path without installing a separate flow rate detector. It was planned.

【0004】0004

【課題を解決するための手段および作用】熱伝導度検出
器では、ガスの濃度変化に応じて熱線フィラメントの電
気抵抗が変化することを利用してガス濃度を検知するが
、同時にこの熱線フィラメントはガスの流速によっても
抵抗値が変化する。
[Means and operations for solving the problem] A thermal conductivity detector detects gas concentration by utilizing the change in electrical resistance of a hot wire filament in accordance with changes in gas concentration. The resistance value also changes depending on the gas flow rate.

【0005】この原理を利用し従来から在る熱伝導度検
出器のセルブロック内に、同一のキャリヤガスに曝され
且つ流速が零となるような部屋(第3のセル)を設け、
ここに第3の熱線フィラメントを配置して、前記キャリ
ヤガス検出用のフィラメントとこの第3のフィラメント
との電気抵抗の変化の差を検出するようにしたもので、
これによって熱伝導度検出器自体が流量検出器としての
作用を併せ備えることになり、別個の流量検出器は不要
となる。
Utilizing this principle, a chamber (third cell) is provided in the cell block of a conventional thermal conductivity detector, which is exposed to the same carrier gas and whose flow velocity is zero.
A third hot wire filament is arranged here to detect the difference in change in electrical resistance between the carrier gas detection filament and this third filament,
As a result, the thermal conductivity detector itself also functions as a flow rate detector, eliminating the need for a separate flow rate detector.

【0006】[0006]

【実施例】図1は本発明実施例を示す構造図で(a)は
熱伝導度検出器を構成する金属製セルブロック1の断面
を上から見た図で、Aはリファレンスセル、Bは測定セ
ル、Cは本発明によってとくに設けられた第3のセルで
ある。2はセルブロックの加熱用ヒータで各セルA.B
.Cは同一ブロック1内に収容され恒温槽内に配置され
る。図(b)は図(a)のX−X′断面を展開して示し
た側断面図でFA .FB .FC はそれぞれ同一定
格の熱線フィラメントで定電流電源から一定電流が供給
される。セルAには流路3を介してキャリヤガス源から
フローコントローラを経てキャリヤガスが導入され、流
路4から試料気化室へ放出される。セルBには流路5か
らカラム出口ガスが導入され、流路6を経てベントへ放
出される。セルCは抵抗性をもつ狭い通路7を介してセ
ルAと連通され、一方流路8、開閉弁9を介してパージ
流路に接続されている。作動時にはこの弁9は閉とされ
ているのでセルC室は密封状態となっており、キャリヤ
ガスで充満さているが内部には流れはなく流速は零であ
る。 フィラメントFA とフィラメントFB の両端の電圧
差は、TA とTB の同一温度での抵抗値の差と、F
A に流れるキャリヤガスによってセル外に運ばれる熱
量によるFA の抵抗変化とによって生ずる。従って両
者の電位差を測定することにより、キャリヤガスによっ
て運び去られる熱量即ちキャリヤガス流量が検知できる
[Embodiment] Fig. 1 is a structural diagram showing an embodiment of the present invention. (a) is a top view of a cross section of a metal cell block 1 constituting a thermal conductivity detector, where A is a reference cell and B is a Measuring cell C is a third cell specifically provided according to the invention. 2 is a heater for heating the cell block, and each cell A. B
.. C is housed in the same block 1 and placed in a constant temperature bath. FA. FB. Each FC is a hot wire filament with the same rating, and a constant current is supplied from a constant current power supply. A carrier gas is introduced into the cell A from a carrier gas source through a flow path 3 via a flow controller, and is discharged from a flow path 4 into the sample vaporization chamber. Column outlet gas is introduced into cell B through channel 5 and is discharged to the vent via channel 6. Cell C communicates with cell A through a narrow resistive passage 7, and is connected to a purge passage through a flow passage 8 and an on-off valve 9. Since this valve 9 is closed during operation, the cell C chamber is in a sealed state and is filled with carrier gas, but there is no flow inside and the flow velocity is zero. The voltage difference across the filaments FA and FB is the difference in resistance between TA and TB at the same temperature, and F
This is caused by the change in resistance of FA due to the amount of heat carried out of the cell by the carrier gas flowing through A. Therefore, by measuring the potential difference between the two, the amount of heat carried away by the carrier gas, that is, the flow rate of the carrier gas can be detected.

【0007】図2はこの熱伝導度検出器をガスクロマト
グラフに搭載した場合の説明図で、10はキャリヤガス
入口流路、11はフローコントローラ、12は試料気化
室、13はカラム、14は恒温槽である。矢印で示した
流路配管でも判るようにフローコントローラ11からの
キャリヤガスはレファレンスセルAに入り、次いで試料
気化室12を経てカラム13に試料とともに導入され、
カラムで分離された試料ガスは測定セルBを経てベント
へ排出される。
FIG. 2 is an explanatory diagram when this thermal conductivity detector is mounted on a gas chromatograph, in which 10 is a carrier gas inlet channel, 11 is a flow controller, 12 is a sample vaporization chamber, 13 is a column, and 14 is a constant temperature It's a tank. As can be seen from the flow path piping indicated by the arrow, the carrier gas from the flow controller 11 enters the reference cell A, then passes through the sample vaporization chamber 12 and is introduced into the column 13 together with the sample.
The sample gas separated by the column passes through measurement cell B and is discharged to the vent.

【0008】図3は各検出セルの出力測定回路図で、各
フィラメントFA .FB .FC の抵抗変化を検出
する回路である。15は定電流電源、16はスイッチン
グトランジスタTA TB TC およびアナログゲー
トGA GB GC を順次駆動するためのゲート切換
回路、Rはバイアス抵抗、17は出力増巾器、RA C
A 、RB CB 、RC CC は各ゲートGA G
B GC の出力積分回路、18は試料ガス濃度記録計
、19はキャリヤガス流量表示器である。
FIG. 3 is a circuit diagram for measuring the output of each detection cell, and shows the output measurement circuit of each detection cell. FB. This is a circuit that detects resistance changes in FC. 15 is a constant current power supply, 16 is a gate switching circuit for sequentially driving the switching transistor TA TB TC and analog gate GA GB GC, R is a bias resistor, 17 is an output amplifier, RA C
A, RB CB, RC CC are each gate GA
18 is a sample gas concentration recorder, and 19 is a carrier gas flow rate indicator.

【0009】図において各セルのフィラメントFA .
FB .FC は定電流電源15に接続されているので
、ゲート切換回路16からのクロックパルスによってト
ランジスタTA .TB .TC 、アナログゲートG
A .GB .GC がこの順序で駆動されると、積分
回路RA CA とRB CB の出力の差がガス濃度
記録計18に、積分回路RA CA とRC CC の
出力の差が流量表示器19にそれぞれ表示される。即ち
1個の熱伝導度検出器によってガスの成分濃度検出とキ
ャリヤガス流量測定とを同時に行ない得る。  キャリ
ヤガスを例えばHeからNに変換した場合などには、パ
ージ流路の弁9を開いて第3のセルC室内のガスを追い
出し、新しいキャリヤガスで充満すればよい。
In the figure, the filament FA of each cell is shown.
FB. Since FC is connected to the constant current power supply 15, the clock pulse from the gate switching circuit 16 causes the transistors TA. TB. TC, analog gate G
A. GB. When the GCs are driven in this order, the difference between the outputs of the integrating circuits RA CA and RB CB is displayed on the gas concentration recorder 18, and the difference between the outputs of the integrating circuits RA CA and RC CC is displayed on the flow rate display 19, respectively. . That is, one thermal conductivity detector can simultaneously detect the gas component concentration and measure the carrier gas flow rate. When the carrier gas is converted from He to N, for example, the valve 9 of the purge channel may be opened to purge the gas in the third cell C chamber and fill it with new carrier gas.

【0010】実施例では第3のセル室Cをレファレンス
セルAに抵抗管を介して接続したが、フローコントロー
ラの出力側の適当なキャリヤガス流路に接続してもよく
、要はキャリヤガスを流速零の状態になるように充填す
ればよい。尚ダブルカラム方式のクロマトにも同様に適
用できるのは当然である。
In the embodiment, the third cell chamber C was connected to the reference cell A through a resistance tube, but it may also be connected to a suitable carrier gas flow path on the output side of the flow controller, in short, the third cell chamber C is connected to the reference cell A through a resistance tube. It is sufficient to fill the fluid so that the flow velocity is zero. It goes without saying that this method can also be applied to double column chromatography.

【0011】[0011]

【発明の効果】この発明は以上のように熱伝導度検出器
自体でキャリヤガス流量を成分検出と同時にしかも精密
に測定できるので、別個にロータメータなどの流量計を
設ける必要がなく、ガスクロマトグラフの構成が簡単に
なり、しかも電子式であるので精度の高い流量計測が可
能となる。
[Effects of the Invention] As described above, the present invention allows the thermal conductivity detector itself to precisely measure the carrier gas flow rate at the same time as detecting the components, so there is no need to separately install a flow meter such as a rotameter, The configuration is simple, and since it is electronic, highly accurate flow rate measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明熱伝導度検出器ブロックの構造図で(a
)は上部断面図、(b)は(a)図のX−X断面の展開
側断面図である。
FIG. 1 is a structural diagram of the thermal conductivity detector block of the present invention (a
) is a top sectional view, and (b) is a developed side sectional view taken along the line XX in FIG.

【図2】ガスクロマトグラフに本発明熱伝導度検出器を
搭載した状態を示す図である。
FIG. 2 is a diagram showing a state in which the thermal conductivity detector of the present invention is mounted on a gas chromatograph.

【図3】本発明熱伝導度検出器の出力測定回路図である
FIG. 3 is an output measurement circuit diagram of the thermal conductivity detector of the present invention.

【符号の説明】[Explanation of symbols]

1…セルブロック        A…リファレンスセ
ル        B…測定セル C…第3のセル          FA .FB .
FC …熱線フィラメント GA .GB .GC …アナログゲート      
  12…試料気化室
1...Cell block A...Reference cell B...Measurement cell C...Third cell FA. FB.
FC...Hot wire filament GA. GB. GC...Analog gate
12...Sample vaporization chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  同一の検出器ブロック内に3個の略同
一定格の熱伝導度検出用フィラメントをそれぞれ別々の
セル室内に収容配置し、第1のフィラメント室をキャリ
ヤガス流路の上流側に、第2のフィラメント室をカラム
出口ガス流路にそれぞれ接続し、第3のフィラメント室
にキャリヤガスをその流速が略零となる状態に充填し、
第1のフィラメントと第3のフィラメントの電気抵抗の
差を検出する回路を併せ備えたことを特徴とするガスク
ロマトグラフの熱伝導度検出器。
Claim 1: Three filaments for detecting thermal conductivity having substantially the same rating are housed in separate cell chambers in the same detector block, and the first filament chamber is located upstream of the carrier gas flow path. , the second filament chambers are respectively connected to the column outlet gas passages, and the third filament chamber is filled with a carrier gas such that the flow rate thereof is approximately zero;
A thermal conductivity detector for a gas chromatograph, comprising a circuit for detecting a difference in electrical resistance between a first filament and a third filament.
JP3066562A 1991-03-29 1991-03-29 Heat conductivity detector for gas chromatograph Pending JPH04301555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066562A JPH04301555A (en) 1991-03-29 1991-03-29 Heat conductivity detector for gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066562A JPH04301555A (en) 1991-03-29 1991-03-29 Heat conductivity detector for gas chromatograph

Publications (1)

Publication Number Publication Date
JPH04301555A true JPH04301555A (en) 1992-10-26

Family

ID=13319509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066562A Pending JPH04301555A (en) 1991-03-29 1991-03-29 Heat conductivity detector for gas chromatograph

Country Status (1)

Country Link
JP (1) JPH04301555A (en)

Similar Documents

Publication Publication Date Title
US6393894B1 (en) Gas sensor with phased heaters for increased sensitivity
US4254654A (en) Modulated fluid detector
CN202822862U (en) Chromatographic system
JP2003075318A (en) Fluid component concentration measuring method and device
US4650499A (en) Gas chromatographic apparatus and method
US5772321A (en) Compensation for spacial and temporal temperature variations in a thermal conductivity detector
US4359891A (en) Repetitive chromatographic apparatus
JPS6161345B2 (en)
US3949590A (en) Method and apparatus for measuring gases in a metal sample
US3435660A (en) Steam flow rate monitoring apparatus and method
EP0840116A1 (en) Calibration method for a chromatography column
US2926520A (en) Thermal conductivity cell
JPH04301555A (en) Heat conductivity detector for gas chromatograph
US6568244B2 (en) Measuring and evaluating device
Kieselbach Reduction of noise in thermal conductivity detectors for gas chromatography
Weitzel et al. Continuous Analysis of Ortho‐Parahydrogen Mixtures
JPH08304372A (en) Gas chromatographic device
US3443415A (en) Differential flame ionization chromatographic analysis
JP3632718B2 (en) Gas chromatograph analyzer
JPS5854673Y2 (en) Flowmeter
SU371508A1 (en) ALL-UNION'S; pch - ', ^' - 2ii? ^ '
US3018655A (en) Apparatus and method for analysis of fluids
US3496763A (en) Liquid stream analysis
JP2961680B2 (en) Gas chromatograph
SU371511A1 (en)