JPH08303923A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH08303923A
JPH08303923A JP11434595A JP11434595A JPH08303923A JP H08303923 A JPH08303923 A JP H08303923A JP 11434595 A JP11434595 A JP 11434595A JP 11434595 A JP11434595 A JP 11434595A JP H08303923 A JPH08303923 A JP H08303923A
Authority
JP
Japan
Prior art keywords
compartment
refrigerating
cold air
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11434595A
Other languages
Japanese (ja)
Inventor
Minoru Tenmyo
稔 天明
Yasuzo Ishine
靖三 石根
Kosaku Adachi
幸作 足立
Hiroko Hongo
裕子 本郷
Atsushi Kusunoki
敦 楠
Keimei Asakura
啓明 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP11434595A priority Critical patent/JPH08303923A/en
Publication of JPH08303923A publication Critical patent/JPH08303923A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PURPOSE: To save power by efficiently cooling a refrigerator chamber alone when the cooling of the refrigerator chamber is required, and improve a temperature distribution in the refrigerator chamber, and at the same time, reduce a frosting on an evaporator. CONSTITUTION: A refrigerator is equipped with a refrigerator chamber cool air circulating means 8 which circulates cool air being cooled by an evaporator 5 to a refrigerator chamber 1 when the cooling of the refrigerator chamber 1 is required, and a freezer chamber cool air circulating means 9 which circulates cool air to a freezer chamber 2 when the cooling of the freezer chamber 2 is required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫に関し、特に冷
気循環方式の冷蔵庫における冷蔵室、冷凍室への冷気流
れの制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to control of a flow of cold air to a refrigerating room and a freezing room in a refrigerator of a cold air circulating system.

【0002】[0002]

【従来の技術】冷気循環方式の従来の冷蔵庫としては、
例えば図12の(a),(b)に示すようなものがあ
る。図の冷蔵庫はミッドフリーザタイプで大きく分けて
4室に仕切られており、上から冷蔵室1、第1冷凍室2
a、第2冷凍室2b、野菜室3で構成されている。P/
Cはパーシャルチルド室であり、冷蔵室1の一部を構成
している。以下、第1冷凍室2a、第2冷凍室2bを含
めて冷凍室2と云う。4,5は冷凍サイクルにおけるコ
ンプレッサ(圧縮機)とエバポレータ(蒸発器)、6は
エバポレータ5で冷やされた冷気を庫内に循環させるフ
ァン、7は冷蔵室1、野菜室3への冷気の流れを制御す
るモータダンパである。冷蔵室1へはダクトで冷気を分
配し、冷蔵室温度センサ検出値によりダクト中のモータ
ダンパ7の開閉を制御することで冷気の流れを制御する
ようになっている。冷凍室の温度センサの検出温度が上
限設定値に達すると冷凍サイクルが働き、冷気を庫内に
循環させるファン6も連動して回転する。冷蔵室1の冷
却も必要な場合はモータダンパ7が開き、冷蔵室1へも
冷気が分配、導入される。冷凍室2の温度センサの検出
温度が下限設定値に達すると冷凍サイクル及びファン6
も停止する。冷蔵室1への冷気の流れを制御するモータ
ダンパ7は冷凍サイクルが停止するか、冷蔵室温度セン
サの検出温度が下限設定値に達すると閉じる。この時、
冷蔵室温度センサの検出温度が下限設定値に達していな
くても冷凍サイクルは停止する。冷蔵室1への冷気の流
れは、冷凍室2への冷気の流れに従属するため、冷蔵室
1の冷却は冷凍室2の冷却よりも短時間で冷却が終るよ
うに設定されている。
2. Description of the Related Art As a conventional refrigerator of a cold air circulation system,
For example, there is one as shown in FIGS. The refrigerator shown in the figure is a mid-freezer type and is roughly divided into four compartments. From the top, a refrigerator compartment 1 and a first freezer compartment 2 are provided.
a, the second freezer compartment 2b, and the vegetable compartment 3. P /
C is a partial chilled chamber and constitutes a part of the refrigerator compartment 1. Hereinafter, the first freezing room 2a and the second freezing room 2b are collectively referred to as the freezing room 2. 4, 5 are compressors (compressors) and evaporators (evaporators) in the refrigeration cycle, 6 is a fan for circulating the cold air cooled by the evaporator 5, and 7 is the flow of cold air to the refrigerator compartment 1 and the vegetable compartment 3. Is a motor damper for controlling the. Cold air is distributed to the refrigerating compartment 1 by a duct, and the flow of the cool air is controlled by controlling the opening / closing of the motor damper 7 in the duct according to the detected value of the refrigerating compartment temperature sensor. When the temperature detected by the temperature sensor in the freezer reaches the upper limit set value, the refrigeration cycle operates and the fan 6 that circulates the cool air inside the refrigerator also rotates in conjunction with it. When cooling of the refrigerating compartment 1 is also required, the motor damper 7 is opened, and cold air is distributed and introduced into the refrigerating compartment 1. When the temperature detected by the temperature sensor in the freezer compartment 2 reaches the lower limit set value, the refrigeration cycle and the fan 6
Also stop. The motor damper 7 that controls the flow of cold air to the refrigerating compartment 1 closes when the refrigeration cycle stops or when the temperature detected by the refrigerating compartment temperature sensor reaches the lower limit set value. This time,
The refrigeration cycle is stopped even if the temperature detected by the refrigerator compartment temperature sensor has not reached the lower limit set value. Since the flow of cold air to the refrigerating compartment 1 depends on the flow of cold air to the freezing compartment 2, the cooling of the refrigerating compartment 1 is set to be completed in a shorter time than the cooling of the freezing compartment 2.

【0003】しかし、冷凍室2よりも冷蔵室1の負荷が
大きい場合、例えば、冷凍室2の温度設定が高い、冷蔵
室1の扉の開閉が多い、食品を入れた等の場合、冷蔵室
1が冷却しきらない前に冷凍サイクルが止まる可能性が
ある。また、冷凍室2冷却用の冷気を冷蔵室1に分配し
ている関係上、冷蔵室1の温度に対し低い温度の冷気が
冷蔵室1へ吹き出される。そのため、冷蔵室1吹き出し
口付近の食品は凍結するおそれがあり、低温の冷気を少
量吹き出すため、冷蔵室1内の温度分布が悪くなる傾向
があった。エバポレータ5では冷蔵室1冷却に必要以上
の低温の冷気を作るために、エバポレータ5での冷媒蒸
発温度、圧力は低くなり冷凍サイクルの効率が悪い点で
運転する必要があった。さらに、冷蔵室1からエバポレ
ータ5に戻る湿度の高い空気を低い温度にエバポレータ
5で冷やすため、エバポレータ5に霜が多量につき、除
霜を定期的にする必要があった。
However, when the load of the refrigerating compartment 1 is larger than that of the refrigerating compartment 2, for example, when the temperature setting of the refrigerating compartment 2 is high, the doors of the refrigerating compartment 1 are opened / closed frequently, food is put in, etc. There is a possibility that the refrigeration cycle will stop before 1 has not cooled completely. Further, since the cool air for cooling the freezing compartment 2 is distributed to the refrigerating compartment 1, cold air having a temperature lower than the temperature of the refrigerating compartment 1 is blown to the refrigerating compartment 1. Therefore, the food near the outlet of the refrigerating compartment 1 may be frozen, and a small amount of low-temperature cold air is blown out, which tends to deteriorate the temperature distribution in the refrigerating compartment 1. In the evaporator 5, in order to produce cold air at a temperature lower than necessary for cooling the refrigerating chamber 1, the refrigerant evaporation temperature and pressure in the evaporator 5 are low, and it is necessary to operate the refrigeration cycle at a point in which the efficiency is low. Further, since the humidified air returning from the refrigerating compartment 1 to the evaporator 5 is cooled to a low temperature by the evaporator 5, a large amount of frost is formed on the evaporator 5, and it is necessary to regularly perform defrosting.

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
の冷蔵庫にあっては、以下のような問題点があった。
冷蔵室の温度が高くなっても冷凍室の温度が上昇しない
と冷凍サイクルが動作しないため、温度の変動が大き
い。冷蔵室の冷却用として冷凍室を冷やす低い温度の
冷気を分配して用いているため、冷蔵室を冷却するため
には冷凍サイクルの運転効率が低い点で運転を行ってい
る。冷蔵室冷却用の冷気の温度が低いため吹き出し口
の近くでは食品が凍結する。少量の低い温度の冷気で
冷蔵室を冷却するため、冷蔵室内の温度分布が悪い。
SUMMARY OF THE INVENTION As described above, the conventional refrigerator has the following problems.
Even if the temperature of the refrigerating room rises, the refrigerating cycle does not operate unless the temperature of the freezing room rises, so the temperature fluctuates greatly. Since low-temperature cold air that cools the freezing compartment is used for cooling the refrigerating compartment, the refrigerating cycle is operated at a low operating efficiency in order to cool the refrigerating compartment. Since the temperature of the cold air for cooling the refrigerating room is low, the food freezes near the outlet. Since the refrigerating compartment is cooled with a small amount of cold air having a low temperature, the temperature distribution in the refrigerating compartment is poor.

【0005】本発明は、上記に鑑みてなされたもので、
冷蔵室の冷却必要時に冷蔵室のみを適切な蒸発温度、冷
凍能力で効率よく冷却して省電力を図ることができ、ま
た冷蔵室内の温度分布を改善することができるとともに
蒸発器への着霜を減少させることのできる冷蔵庫を提供
することを目的とする。
The present invention has been made in view of the above,
When it is necessary to cool the refrigerating compartment, only the refrigerating compartment can be efficiently cooled with an appropriate evaporation temperature and refrigerating capacity to save power, and the temperature distribution in the refrigerating compartment can be improved and frost can be formed on the evaporator. It is an object of the present invention to provide a refrigerator that can reduce

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、冷凍サイクルにおける蒸発
器で冷やされた冷気を冷蔵室と冷凍室に循環させてそれ
ぞれ冷却する冷蔵庫において、前記冷蔵室の冷却必要時
に前記冷気を当該冷蔵室へ循環させる冷蔵室冷気循環手
段と、前記冷凍室の冷却必要時に前記冷気を当該冷凍室
へ循環させる冷凍室冷気循環手段とを有することを要旨
とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is a refrigerator in which cold air cooled by an evaporator in a refrigerating cycle is circulated in a refrigerating room and a freezing room for cooling. A refrigerating compartment cold air circulating means for circulating the cold air to the refrigerating compartment when cooling of the refrigerating compartment and a freezing compartment cold air circulating means for circulating the cold air to the freezing compartment when cooling of the freezing compartment is required. Use as a summary.

【0007】請求項2記載の発明は、上記請求項1記載
の冷蔵庫において、前記冷蔵室冷気循環手段又は冷凍室
冷気循環手段の何れか一方の運転により前記冷蔵室又は
冷凍室の何れか一方の室の冷却時に、何れか他方の室温
が所定の設定温度以上になったときは、前記冷蔵室冷気
循環手段又は冷凍室冷気循環手段を何れか他方の運転の
みに切り替える制御手段を有することを要旨とする。
According to a second aspect of the present invention, in the refrigerator according to the first aspect, one of the refrigerating compartment and the freezing compartment is operated by operating one of the refrigerating compartment cold air circulating means and the freezing compartment cold air circulating means. At the time of cooling the room, when the room temperature of the other one becomes equal to or higher than a predetermined set temperature, it has a control means for switching the refrigerating room cold air circulating means or the freezing room cold air circulating means to only the other operation. And

【0008】請求項3記載の発明は、上記請求項1記載
の冷蔵庫において、前記冷蔵室冷気循環手段又は冷凍室
冷気循環手段の何れか一方の運転により前記冷蔵室又は
冷凍室の何れか一方の室の冷却時に、何れか他方の室温
が所定の設定温度以上になったときは、前記冷蔵室冷気
循環手段又は冷凍室冷気循環手段の何れか他方も運転さ
せる制御手段を有することを要旨とする。
According to a third aspect of the present invention, in the refrigerator according to the first aspect, either the refrigerating compartment cold air circulating means or the freezing compartment cold air circulating means is operated to operate either the refrigerating compartment or the freezing compartment. When cooling the room, when the room temperature of the other one becomes equal to or higher than a predetermined set temperature, it is a gist to have a control means for operating either the refrigerating room cold air circulating means or the freezing room cold air circulating means. .

【0009】請求項4記載の発明は、上記請求項1記載
の冷蔵庫において、前記冷蔵室冷気循環手段又は冷凍室
冷気循環手段の何れか一方の運転を停止させて前記冷蔵
室又は冷凍室の何れか一方の室の冷却を停止させた時
に、何れか他方の室温が上限設定温度以下でも下限設定
温度以上の所定の中間設定温度以上のときは、前記冷凍
サイクルの運転を止めずに前記冷蔵室冷気循環手段又は
冷凍室冷気循環手段の何れか他方の運転に切り替える制
御手段を有することを要旨とする。
According to a fourth aspect of the present invention, in the refrigerator according to the first aspect, either the refrigerating room or the freezing room is stopped by stopping the operation of either the refrigerating room cold air circulating means or the freezing room cold air circulating means. When the cooling of one of the chambers is stopped and the room temperature of the other one is equal to or lower than the upper limit set temperature but equal to or higher than a predetermined intermediate set temperature of the lower limit set temperature or higher, the refrigerating chamber is not stopped without stopping the operation of the refrigeration cycle. The gist of the present invention is to have a control means for switching to either operation of the cold air circulation means or the freezing room cold air circulation means.

【0010】請求項5記載の発明は、上記請求項1記載
の冷蔵庫において、前記冷蔵室冷気循環手段の運転によ
り前記冷蔵室の冷却時には、必要冷却量に応じて前記冷
凍サイクルの冷凍能力を可変にする制御手段を有するこ
とを要旨とする。
According to a fifth aspect of the present invention, in the refrigerator according to the first aspect, the refrigerating capacity of the refrigerating cycle is varied according to a required cooling amount when the refrigerating room is cooled by operating the refrigerating room cold air circulation means. The gist is to have a control means for

【0011】請求項6記載の発明は、上記請求項1記載
の冷蔵庫において、前記冷凍室の冷却停止後に、前記冷
凍サイクルの停止状態において前記冷蔵室冷気循環手段
を運転させる制御手段を有することを要旨とする。
According to a sixth aspect of the present invention, in the refrigerator according to the first aspect, there is provided control means for operating the refrigerating compartment cold air circulating means in a stopped state of the refrigerating cycle after stopping the cooling of the freezing compartment. Use as a summary.

【0012】[0012]

【作用】請求項1記載の発明において、冷蔵室の冷却必
要時には、冷凍室冷気循環手段を非運転として冷蔵室冷
気循環手段を運転することにより、冷蔵室のみを適切な
蒸発温度、冷凍能力で効率よく冷却することが可能とな
る。即ち、冷蔵室温度(約3〜5℃)は冷凍室温度(−
18〜−20℃)に比べて高いため、冷蔵室冷却時は蒸
発器での冷媒蒸発温度を(−5〜+1℃)程度の温度範
囲で高く運転することが可能となる。蒸発温度が高くな
ることによりサイクルの効率が改善される。一般的に高
蒸発温度で冷凍サイクルを運転する場合、冷媒循環量が
多くなり、冷凍能力が増大する。そのため冷凍サイクル
の冷凍能力を減少させることが可能となる。冷凍能力を
減少させる手段としては、圧縮機モータの回転数を低下
させる等の方法がとられる。したがって、省電力、冷蔵
室内の温度分布の改善、蒸発器への着霜の減少が可能と
なる。
According to the present invention, when cooling of the refrigerating compartment is required, the refrigerating compartment cold air circulating means is not operated and the refrigerating compartment cold air circulating means is operated so that only the refrigerating compartment has an appropriate evaporation temperature and refrigerating capacity. It becomes possible to cool efficiently. That is, the refrigerating room temperature (about 3 to 5 ° C) is equal to the freezing room temperature (-
Since it is higher than 18 to -20 ° C), it is possible to operate the refrigerant evaporation temperature in the evaporator at a high temperature range of (-5 to + 1 ° C) when the refrigerating chamber is cooled. The higher evaporation temperature improves the efficiency of the cycle. Generally, when the refrigeration cycle is operated at a high evaporation temperature, the refrigerant circulation amount increases and the refrigerating capacity increases. Therefore, the refrigeration capacity of the refrigeration cycle can be reduced. As a means for reducing the refrigerating capacity, there is a method such as reducing the rotation speed of the compressor motor. Therefore, it is possible to save power, improve the temperature distribution in the refrigerator compartment, and reduce frost formation on the evaporator.

【0013】請求項2記載の発明において、冷蔵室又は
冷凍室の何れか一方の室の冷却時に、何れか他方の室温
が所定の設定温度以上になったときは、冷気流れを切り
替えて当該他方の室のみを冷却することにより、冷蔵室
内及び冷凍室内の温度上昇を最小限に止めながら、各室
を専用運転により効率よく冷却して省電力を図ることが
可能となる。
In the invention according to claim 2, when the room temperature of one of the refrigerating room and the freezing room becomes higher than a predetermined set temperature during cooling of the other room, the cold air flow is switched to the other one. By cooling only the chamber of (1), it is possible to efficiently cool each chamber by a dedicated operation and save electric power while minimizing the temperature rise in the refrigerating chamber and the freezing chamber.

【0014】請求項3記載の発明において、運転開始時
等には冷蔵室、冷凍室とも温度が高く、多くの場合両室
とも所定の設定温度を超えて運転モードが安定しない。
このような場合、冷蔵室又は冷凍室の何れか一方の室の
冷却時に、何れか他方の室温が所定の設定温度以上にな
ったときは、当該他方の室にも冷気を循環させて冷却す
る。この場合、冷蔵室への冷気は冷蔵室の専用冷却時よ
りも温度が低くなるため、冷蔵室への冷気流量は適宜に
減少させるような制御法がとられる。これにより、冷蔵
室内及び冷凍室内の温度上昇を最小限に止めながら両室
内の温度をそれぞれ所要の温度に安定させることが可能
となる。両室内の温度が安定した後は、各室専用運転モ
ードに移行させる。
According to the third aspect of the present invention, the temperature of both the refrigerating room and the freezing room is high at the time of starting the operation, and in many cases, the operating mode is not stable because the temperature exceeds a predetermined set temperature in both rooms.
In such a case, when cooling either one of the refrigerating room and the freezing room, if the room temperature of the other one reaches a predetermined set temperature or higher, cool air is also circulated in the other room to cool it. . In this case, since the temperature of the cold air to the refrigerating compartment becomes lower than that during the exclusive cooling of the refrigerating compartment, a control method is adopted to appropriately reduce the flow rate of the cool air to the refrigerating compartment. As a result, it is possible to stabilize the temperature inside both the refrigerating chamber and the freezing chamber while keeping the temperature inside the refrigerating chamber and the freezing chamber to a minimum. After the temperatures in both rooms have stabilized, the operation mode is switched to the exclusive operation mode for each room.

【0015】請求項4記載の発明において、冷蔵室又は
冷凍室の何れか一方の室の冷却停止時に、何れか他方の
室温が上限設定温度以下の場合でも所定の中間設定温度
以上のときは、冷凍サイクルを止めずに引き続き当該他
方の室の冷却モードに移行させることにより、冷凍サイ
クルの再起動に伴う大きな電力ロスを防止することが可
能となる。
In the invention according to claim 4, when the cooling of one of the refrigerating room and the freezing room is stopped, even if the room temperature of the other room is below the upper limit set temperature, but above the predetermined intermediate set temperature, By continuing to shift to the cooling mode of the other chamber without stopping the refrigeration cycle, it is possible to prevent a large power loss due to restart of the refrigeration cycle.

【0016】請求項5記載の発明において、冷蔵室の冷
却時には、必要冷却量に応じて圧縮機の冷凍能力を低下
させる等の制御を行うことにより、省電力運転が可能と
なる。
In the fifth aspect of the invention, at the time of cooling the refrigerating chamber, power saving operation can be performed by performing control such as reducing the refrigerating capacity of the compressor according to the required cooling amount.

【0017】請求項6記載の発明において、冷凍室の冷
却停止後に、冷凍サイクルの停止状態のまま蒸発器の余
冷を用いて冷蔵室を冷却することにより、冷蔵室から蒸
発器に戻る空気はプラス温度になることから蒸発器の除
霜を行うことが可能となる。
In the invention of claim 6, after the cooling of the freezing compartment is stopped, the refrigerating compartment is cooled using the remaining cooling of the evaporator while the refrigeration cycle is stopped, so that the air returning from the refrigerating compartment to the evaporator is Since the temperature becomes positive, it is possible to defrost the evaporator.

【0018】[0018]

【実施例】【Example】

第1の実施例 図1乃至図6に基づいて第1の実施例を説明する。な
お、冷蔵庫の構成及び冷気の流れを説明するための図1
乃至図3において前記図12における機器及び部位等と
同一ないし均等のものは、前記と同一符号を以って示
し、重複した説明を省略する。まず図1、図2を用いて
冷蔵庫の構成を説明すると、本実施例ではエバポレータ
5で冷やされた冷気を冷蔵室1へ循環させる冷蔵室冷気
循環手段としての冷蔵室冷却用ファン(以下、Rファン
とも云う)8と、冷気を冷凍室2へ循環させる冷凍室冷
気循環手段としての冷凍室冷却用ファン(以下、Fファ
ンとも云う)9が各別に設けられている。図3に示すよ
うに、冷蔵室冷気循環手段としては共通のファン11と
Rダンパ12とで構成し、冷凍室冷気循環手段としては
共通のファン11とFダンパ13とで構成することもで
きる。以下、冷蔵室冷気循環手段としてはRファン8を
使用し、冷凍室冷気循環手段としてはFファン9を使用
した場合について説明を進める。図4は制御系の構成を
示しており、冷蔵室1の温度を測定する冷蔵室温度セン
サ14及び冷凍室2の温度を測定する冷凍室温度センサ
15の各検知情報を基に制御手段としての制御部10で
コンプレッサ4、Rファン8及びFファン9の運転を制
御するようになっている。
First Embodiment A first embodiment will be described based on FIGS. 1 to 6. In addition, FIG. 1 for explaining the configuration of the refrigerator and the flow of cold air.
In FIG. 3, parts that are the same as or equivalent to the devices, parts, and the like in FIG. 12 are designated by the same reference numerals, and duplicate explanations are omitted. First, the configuration of the refrigerator will be described with reference to FIGS. 1 and 2. In the present embodiment, a cooling chamber cooling fan (hereinafter, R as a cooling chamber cooling air circulation unit for circulating the cold air cooled by the evaporator 5 to the cooling chamber 1). A fan) 8 and a freezing room cooling fan (hereinafter also referred to as an F fan) 9 as a freezing room cold air circulation means for circulating cold air to the freezing room 2 are separately provided. As shown in FIG. 3, a common fan 11 and an R damper 12 may be used as the refrigerating compartment cold air circulating means, and a common fan 11 and F damper 13 may be used as the freezing compartment cold air circulating means. Hereinafter, the case where the R fan 8 is used as the refrigerating compartment cold air circulating means and the F fan 9 is used as the freezing compartment cold air circulating means will be described. FIG. 4 shows the configuration of the control system, which serves as control means based on the respective detection information of the refrigerating compartment temperature sensor 14 for measuring the temperature of the refrigerating compartment 1 and the freezing compartment temperature sensor 15 for measuring the temperature of the freezing compartment 2. The controller 10 controls the operation of the compressor 4, the R fan 8 and the F fan 9.

【0019】次に、図5の制御フローチャートを用いて
作用を説明する。電源をオンして運転開始後、冷凍室2
が上限基準温度(上限設定温度)TFH以上の場合(ステ
ップ101のYES)、コンプレッサ4を起動し、Fフ
ァン9を運転する(ステップ102)。冷凍室2が冷却
され下限基準温度(下限設定温度)TFL以下になるまで
Fファン9を運転し、下限基準温度TFL以下になった時
(ステップ103)、Fファン9を停止する(ステップ
104)。この時冷蔵室1が上限基準温度TRH以上であ
る場合(ステップ105)、Rファン8を運転する(ス
テップ106)。コンプレッサ4は引き続き運転する。
冷蔵室1が冷却され下限基準温度TRL以下になるまでR
ファンを運転し、下限基準温度TRL以下になった時(ス
テップ107)、Rファン8を停止し(ステップ10
8)、最初に戻る。冷凍室2が上限基準温度TFH以下の
場合は(ステップ101のNO)、冷蔵室1の温度を測
定する。冷蔵室1が上限基準温度TRH以上の場合(ステ
ップ109のYES)、コンプレッサ4を起動し、Rフ
ァン8を運転する(ステップ110)。冷蔵室1が冷却
され下限基準温度TRL以下になるまでRファンを運転、
下限基準温度TRL以下になった時(ステップ111)、
Rファン8を停止する(ステップ112)。この時冷凍
室2が上限基準温度TFH以上である場合(ステップ11
3)、Fファン9を運転する(ステップ114)。コン
プレッサ4は引き続き運転する。冷凍室2が冷却され下
限基準温度TFL以下になるまでFファンを運転し、下限
基準温度TFL以下になった時(ステップ115)、Fフ
ァン9を停止し(ステップ116)、最初に戻る。冷凍
室2、冷蔵室1ともに、上限基準温度以下であれば(ス
テップ101,109のNO)、コンプレッサ4を停止
する(ステップ117)。
Next, the operation will be described with reference to the control flowchart of FIG. After turning on the power and starting operation, the freezer compartment 2
Is above the upper limit reference temperature (upper limit set temperature) T FH (YES in step 101), the compressor 4 is started and the F fan 9 is operated (step 102). The F fan 9 is operated until the freezer compartment 2 is cooled and becomes lower than the lower limit reference temperature (lower limit set temperature) T FL, and when it becomes lower than the lower limit reference temperature T FL (step 103), the F fan 9 is stopped (step 104). At this time, when the refrigerating chamber 1 is at the upper limit reference temperature T RH or higher (step 105), the R fan 8 is operated (step 106). The compressor 4 continues to operate.
R until the refrigerating compartment 1 is cooled to below the lower limit reference temperature T RL
The fan is operated, and when the temperature becomes lower than the lower limit reference temperature T RL (step 107), the R fan 8 is stopped (step 10).
8) Return to the beginning. When the freezing compartment 2 is below the upper limit reference temperature T FH (NO in step 101), the temperature of the refrigerating compartment 1 is measured. If the refrigerator compartment 1 is at or above the upper limit reference temperature T RH (YES in step 109), the compressor 4 is started and the R fan 8 is operated (step 110). The R fan is operated until the refrigerating compartment 1 is cooled and becomes lower than the lower limit reference temperature T RL ,
When the temperature becomes lower than the lower limit reference temperature T RL (step 111),
The R fan 8 is stopped (step 112). At this time, if the freezer compartment 2 is at or above the upper limit reference temperature T FH (step 11
3), the F fan 9 is operated (step 114). The compressor 4 continues to operate. The F fan is operated until the freezer compartment 2 is cooled and becomes lower than the lower limit reference temperature T FL, and when it becomes lower than the lower limit reference temperature T FL (step 115), the F fan 9 is stopped (step 116) and the process returns to the beginning. . If both the freezing compartment 2 and the refrigerating compartment 1 are at or below the upper limit reference temperature (NO in steps 101 and 109), the compressor 4 is stopped (step 117).

【0020】上述したように、本実施例では冷蔵室1の
みを冷却する場合、冷蔵室1からエバポレータ5に戻る
冷気の温度はプラス温度であり、エバポレータ5と温度
差が大きく、熱交換量が大きいためエバポレータ5での
蒸発温度はキャピラリの自動調整範囲内で高くなる。例
えば、従来の冷凍室も同時に冷やす場合の蒸発温度−2
5℃から−10℃に蒸発温度が高くなった場合を比較す
る。図6に冷凍サイクルの動作をモリエルチャートに示
す。−10℃程度になると−25℃で冷却する場合(図
6(b))に比べ、圧縮機の圧縮比が低下するため(図
6(a))、冷凍サイクルのCOP、コンプレッサ4の
運転効率が向上し、省電力が可能となる。また、低い温
度まで冷却しないため、エバポレータ出口の絶対湿度が
高くなり、エバポレータ5への着霜が減少する。
As described above, in the present embodiment, when only the refrigerating compartment 1 is cooled, the temperature of the cool air returning from the refrigerating compartment 1 to the evaporator 5 is a positive temperature, the temperature difference with the evaporator 5 is large, and the amount of heat exchange is large. Since it is large, the evaporation temperature in the evaporator 5 becomes high within the automatic adjustment range of the capillary. For example, the evaporation temperature when the conventional freezer compartment is also cooled -2
The case where the evaporation temperature increases from 5 ° C to -10 ° C will be compared. FIG. 6 shows the operation of the refrigeration cycle on the Mollier chart. At about -10 ° C, the compression ratio of the compressor decreases (Fig. 6 (a)) as compared with the case of cooling at -25 ° C (Fig. 6 (b)), so the COP of the refrigeration cycle and the operating efficiency of the compressor 4 Is improved and power can be saved. In addition, since the evaporator is not cooled to a low temperature, the absolute humidity at the evaporator outlet increases, and the frost formation on the evaporator 5 decreases.

【0021】第2の実施例 図7の制御フローチャートを用いて第2の実施例を説明
する。冷蔵庫及び制御系の構成は、前記図1、図2、図
4のものが用いられる。
Second Embodiment A second embodiment will be described with reference to the control flowchart of FIG. The configurations of the refrigerator and the control system are those shown in FIGS. 1, 2 and 4.

【0022】図7は、冷凍室冷却時に冷蔵室が上限警告
温度TRWより高くなった場合の制御のフローチャートを
示している。運転開始後、冷凍室が上限基準温度TFH
上の場合(ステップ201のYES)、コンプレッサを
起動し、Fファンを運転して冷凍室を冷却する(ステッ
プ202)。この冷凍室の冷却時、冷蔵室の温度が上限
警告温度TRWに達した場合(ステップ203のYE
S)、冷却運転モードは冷蔵室冷却モードに切り替わり
(ステップ204,205)、冷蔵室温度が上限基準温
度TRHになるまで冷蔵室の冷却を続ける(ステップ20
6)。冷蔵室温度が下限基準温度になるまで、冷蔵室を
冷却する制御でもよい。ただし、冷蔵室冷却モードに切
り替わった場合、逆に冷凍室の温度が上限警告温度にな
らないか監視する必要があり、上限警告温度を超した場
合は、元の冷凍室冷却モードに戻る。冷蔵室冷却中に冷
凍室の温度が上限警告温度より高くなった場合も同様の
制御を用いる。モードを切り替える温度の設定は温度上
昇許容範囲により変更する。図7のフローチャートの説
明に戻り、冷蔵室温度が上限基準温度TRH以下になった
時(ステップ206のYES)、Rファンを停止し(ス
テップ207)、Fファンを運転する(ステップ20
8)。冷凍室が冷却され下限基準温度TFL以下になるま
でFファンを運転し、下限基準温度TFL以下になった時
(ステップ209)、Fファンを停止する(ステップ2
10)。この時冷蔵室が上限基準温度TRH以上である場
合(ステップ211)、Rファンを運転する(ステップ
212)。ステップ212以降は、前記図5におけるス
テップ107,108の制御と同様の制御が行われる
が、図7の制御フローチャートでは図示省略してある。
冷凍室が上限基準温度TFH以下の場合(ステップ201
のNO)も、前記図5におけるステップ109〜117
の制御とほぼ同様の制御が行われるが、図7の制御フロ
ーチャートでは図示省略してある。
FIG. 7 shows a flow chart of the control when the refrigerating compartment becomes higher than the upper limit warning temperature T RW during cooling of the freezing compartment. After the start of operation, if the freezing compartment is at or above the upper limit reference temperature T FH (YES in step 201), the compressor is started and the F fan is operated to cool the freezing compartment (step 202). When the temperature of the refrigerating compartment reaches the upper limit warning temperature T RW during cooling of the freezing compartment (YE in step 203)
S), the cooling operation mode is switched to the refrigerating compartment cooling mode (steps 204 and 205), and the refrigerating compartment is continuously cooled until the refrigerating compartment temperature reaches the upper limit reference temperature T RH (step 20).
6). The control may be such that the refrigerating compartment is cooled until the refrigerating compartment temperature reaches the lower limit reference temperature. However, when switching to the refrigerating compartment cooling mode, it is necessary to monitor whether the temperature of the freezing compartment does not reach the upper limit warning temperature, and when the upper limit warning temperature is exceeded, the original freezing compartment cooling mode is returned to. The same control is used when the temperature of the freezing compartment becomes higher than the upper limit warning temperature during cooling of the refrigerating compartment. The temperature setting for switching the mode should be changed according to the allowable temperature rise range. Returning to the explanation of the flowchart in FIG. 7, when the refrigerating compartment temperature becomes equal to or lower than the upper limit reference temperature T RH (YES in step 206), the R fan is stopped (step 207) and the F fan is operated (step 20).
8). Until freezer compartment is below the cooled lower reference temperature T FL operating the F fan, when it is below the lower reference temperature T FL (step 209), stops the F fan (Step 2
10). At this time, if the refrigerating room is at or above the upper limit reference temperature T RH (step 211), the R fan is operated (step 212). After step 212, the same control as the control of steps 107 and 108 in FIG. 5 is performed, but it is omitted in the control flowchart of FIG. 7.
When the freezer compartment is below the upper limit reference temperature T FH (step 201
No.) also in steps 109 to 117 in FIG.
The control is almost the same as the control described above, but it is omitted in the control flowchart of FIG.

【0023】上述の制御において、冷却スタート時、冷
蔵室も冷凍室も温度が高く、両者とも上限警告温度を超
すため、運転モードが安定しない。安定するまでは、次
の実施例の制御を用いるか、一定時間はモードが切り替
わらないようにする必要がある。
In the above-mentioned control, at the start of cooling, both the refrigerating room and the freezing room have high temperatures, and both exceed the upper limit warning temperature, so that the operation mode is not stable. Until it stabilizes, it is necessary to use the control of the next embodiment or prevent the mode from switching for a certain period of time.

【0024】上述したように、本実施例によれば、冷蔵
室、冷凍室の温度上昇を最小限に止めながら、各室専用
運転をすることにより省電力化することができる。
As described above, according to the present embodiment, it is possible to save power by performing the dedicated operation for each room while suppressing the temperature rise in the refrigerating room and the freezing room to a minimum.

【0025】第3の実施例 図8の制御フローチャートを用いて第3の実施例を説明
する。冷蔵庫及び制御系の構成は、前記図1、図2、図
4のものが用いられる。
Third Embodiment A third embodiment will be described with reference to the control flowchart of FIG. The configurations of the refrigerator and the control system are those shown in FIGS. 1, 2 and 4.

【0026】図8は冷凍室冷却時に冷蔵室が上限警告温
度TRWより高くなった場合の他の制御例のフローチャー
トを示している。運転開始後、冷凍室が上限基準温度T
FH以上の場合(ステップ301のYES)、コンプレッ
サを起動し、Fファンを運転して冷凍室を冷却する(ス
テップ302)。この冷凍室の冷却時、冷蔵室の温度が
上限警告温度TRWに達した場合(ステップ303のYE
S)、Rファンも回し(ステップ304)、冷蔵室温度
が上限基準温度TRHになるまで冷蔵室の冷却をも続ける
(ステップ305)。冷蔵室冷却中に冷凍室の温度が上
限警告温度より高くなった場合も同様の制御を用いる。
冷蔵室への冷気は冷蔵室のみを冷却する場合より温度が
低いため、冷蔵室への風量は冷蔵室のみを冷却する場合
より、減少させる方が望ましい。冷蔵室温度が上限基準
温度TRH以下になった時(ステップ305のYES)、
Rファンを停止し(ステップ306)、冷凍室のみの冷
却に戻す。ステップ307の冷凍室内の温度が下限基準
温度TFL以下になった時以降の制御は、前記図7(第2
の実施例)におけるステップ209以降の制御と同様で
ある。また冷凍室が上限基準温度TFH以下の場合(ステ
ップ301のNO)も、前記図7のステップ201のN
O以降の制御と同様である。
FIG. 8 shows a flowchart of another control example in the case where the refrigerating compartment becomes higher than the upper limit warning temperature T RW during cooling of the freezing compartment. After the start of operation, the freezing room has an upper reference temperature T
If it is equal to or higher than FH (YES in step 301), the compressor is started and the F fan is operated to cool the freezer compartment (step 302). When the temperature of the refrigerating room reaches the upper limit warning temperature T RW during cooling of the freezing room (YE in step 303)
S), the R fan is also rotated (step 304), and cooling of the refrigerating compartment is also continued until the refrigerating compartment temperature reaches the upper limit reference temperature T RH (step 305). The same control is used when the temperature of the freezing compartment becomes higher than the upper limit warning temperature during cooling of the refrigerating compartment.
Since the temperature of the cold air to the refrigerating compartment is lower than that in the case of cooling only the refrigerating compartment, it is preferable to reduce the air volume to the refrigerating compartment than to cool only the refrigerating compartment. When the refrigerating room temperature becomes lower than the upper limit reference temperature T RH (YES in step 305),
The R fan is stopped (step 306) to return to cooling only the freezer compartment. The control after the temperature in the freezer compartment in step 307 becomes equal to or lower than the lower limit reference temperature T FL is as shown in FIG.
The embodiment is similar to the control after step 209. Even when the freezer compartment is below the upper limit reference temperature T FH (NO in step 301), N in step 201 in FIG.
This is similar to the control after O.

【0027】上述したように、本実施例によれば、冷蔵
室、冷凍室の温度上昇を最小限に止めながら両室内の温
度をそれぞれ所要の温度に安定させることが可能とな
る。温度安定後は前記第2の実施例におけるような各室
専用運転モードに移行させることもできる。
As described above, according to the present embodiment, it is possible to stabilize the temperature inside both the refrigerating chamber and the freezing chamber to the required temperature while suppressing the temperature rise in the both chambers to the minimum. After the temperature is stabilized, it is possible to shift to the operation mode dedicated to each room as in the second embodiment.

【0028】本実施例では冷蔵室の冷却と冷凍室の冷却
を同時に行う可能性があり、前実施例より効率が悪い。
そのため省電力効果を得るため温度安定後は前実施例の
各室専用運転モードの制御方法を用いる。温度の変動を
小さくしたい場合は本実施例の制御方法を用いる。
In this embodiment, the refrigerating compartment and the freezing compartment may be cooled at the same time, which is less efficient than the previous embodiment.
Therefore, in order to obtain the power saving effect, the control method of the operation mode dedicated to each room in the previous embodiment is used after the temperature is stabilized. When it is desired to reduce the temperature fluctuation, the control method of this embodiment is used.

【0029】第4の実施例 図9の制御フローチャートを用いて第4の実施例を説明
する。冷蔵庫及び制御系の構成は、前記図1、図2、図
4のものが用いられる。
Fourth Embodiment A fourth embodiment will be described with reference to the control flowchart of FIG. The configurations of the refrigerator and the control system are those shown in FIGS. 1, 2 and 4.

【0030】図9の制御フローチャートにおいて、冷凍
室の冷却時に下限基準温度TFL以下になった時(ステッ
プ403)、Fファンを停止して冷凍室冷却終了後(ス
テップ404)、冷蔵室温度が上限基準温度TRH以下で
も中間温度TRMより高ければ(ステップ405)、Rフ
ァンを運転して冷蔵室冷却モードに入る(ステップ40
6)。同様に冷蔵室冷却終了後、冷凍室の温度が上限基
準温度TFH以下でも中間温度TFMより高ければ、冷凍室
冷却モードに入る。その他の制御は、前記図5(第1の
実施例)とほぼ同様である。
In the control flow chart of FIG. 9, when the lower limit reference temperature T FL becomes lower than the lower limit temperature T FL during cooling of the freezing room (step 403), the F fan is stopped to end the cooling of the freezing room (step 404). If the temperature is lower than the upper limit reference temperature T RH but higher than the intermediate temperature T RM (step 405), the R fan is operated to enter the refrigerating compartment cooling mode (step 40).
6). Similarly, after the cooling of the refrigerating compartment is finished, if the temperature of the freezing compartment is higher than the intermediate reference temperature T FM even if it is lower than the upper limit reference temperature T FH , the freezing compartment cooling mode is entered. Other controls are almost the same as those in FIG. 5 (first embodiment).

【0031】例えば、冷蔵室の冷却が終了し、冷凍サイ
クル、Rファンを停止後、短時間で冷凍室の温度が上限
基準値に達し、冷却の要求により、冷凍サイクル、Fフ
ァンが再び運転を開始する場合が考えられる。冷凍サイ
クルの起動には大きな電力ロスが伴う。そのため短時間
の後に冷凍サイクルの再起動が想定される場合には、引
き続き冷凍サイクルの運転を継続する方が望ましい。そ
のため、本実施例では上限基準温度以下の値でも中間温
度以上であれば冷却モードに入る。冷凍室のみ冷却、冷
蔵室のみ冷却の後、無条件に他室の冷却を行うことでも
上記と同様の効果がある。
For example, after the cooling of the refrigerating chamber is completed and the refrigerating cycle and the R fan are stopped, the temperature of the refrigerating chamber reaches the upper limit reference value in a short time, and the refrigerating cycle and the F fan are restarted by the demand of cooling. It may start. A large power loss is involved in starting the refrigeration cycle. Therefore, when it is expected that the refrigeration cycle will be restarted after a short time, it is desirable to continue the operation of the refrigeration cycle. Therefore, in this embodiment, if the temperature is equal to or lower than the upper limit reference temperature but equal to or higher than the intermediate temperature, the cooling mode is entered. Even if only the freezing compartment is cooled and only the refrigerating compartment is cooled, the other compartments are unconditionally cooled, the same effect as described above can be obtained.

【0032】第5の実施例 図10の制御系の構成及び図11の制御フローチャート
を用いて第5の実施例を説明する。冷蔵庫の構成は前記
図1、図2のものが用いられる。
Fifth Embodiment A fifth embodiment will be described with reference to the configuration of the control system of FIG. 10 and the control flowchart of FIG. The refrigerator has the structure shown in FIGS. 1 and 2.

【0033】図10の制御系の構成において、本実施例
では、コンプレッサ4の冷凍能力を制御する制御部(イ
ンバータ)16が設けられている。
In the configuration of the control system of FIG. 10, a control unit (inverter) 16 for controlling the refrigerating capacity of the compressor 4 is provided in this embodiment.

【0034】図11は、この制御部(インバータ)16
によりコンプレッサ4の制御を行う制御フローチャート
を示している。主制御部10からの信号が(ステップ5
01)、冷凍室運転モードの場合は(ステップ502の
YES)、冷凍能力大(ステップ503)、冷蔵室運転
モードの場合は(ステップ502のNO)、冷凍能力小
で(ステップ504)、コンプレッサを運転する。
FIG. 11 shows this control unit (inverter) 16
3 shows a control flowchart for controlling the compressor 4 by. The signal from the main controller 10 (step 5
01), in the freezer compartment operation mode (YES in step 502), the refrigerating capacity is large (step 503), in the refrigerating compartment operation mode (NO in step 502), the refrigerating capacity is small (step 504). drive.

【0035】上述の制御により、冷蔵室のみを冷却する
場合、エバポレータの蒸発温度を高くすることができ
る。キャピラリの制御能力では限界がある。冷蔵室のみ
冷却時、コンプレッサの冷凍能力を低下させて蒸発温度
を高くする。コンプレッサの冷凍能力を低下させるに
は、インバータによる可変周波数運転、コンプレッサに
吸い込まれる冷媒の量を少なくする等が考えられる。膨
張弁を用い、絞りを変えることにより併せて蒸発温度を
変化させる方法もある。
By the above control, when only the refrigerating chamber is cooled, the evaporation temperature of the evaporator can be raised. There is a limit to the controllability of capillaries. When cooling only the refrigerating compartment, the refrigerating capacity of the compressor is reduced to raise the evaporation temperature. In order to reduce the refrigerating capacity of the compressor, it is conceivable to perform variable frequency operation with an inverter and reduce the amount of refrigerant sucked into the compressor. There is also a method of changing the evaporation temperature by using an expansion valve and changing the throttle.

【0036】第6の実施例 本実施例では、冷却終了後、冷凍サイクルを停止し、そ
の後Rファンを運転し、冷蔵室へ空気を流す。冷凍サイ
クル停止後、エバポレータの温度が冷蔵室の温度に比べ
十分低い場合、冷蔵室冷却用ファンを運転し、冷蔵室へ
空気を流す。(具体的な数値としては5〜10℃以上低
い場合)このRファンのみの運転でエバポレータの余冷
を用い冷蔵室を冷却することができる。冷蔵室から戻る
空気はプラス温度であり、この空気によりエバポレータ
の除霜を行うことができ、着霜量を減少させることがで
きる。冷蔵室の冷却、着霜量の減少により、消費電力量
の低減ができる。
Sixth Embodiment In this embodiment, after the cooling is completed, the refrigeration cycle is stopped, then the R fan is operated, and air is supplied to the refrigerating compartment. After the refrigeration cycle is stopped, if the temperature of the evaporator is sufficiently lower than the temperature of the refrigerating compartment, the refrigerating compartment cooling fan is operated to flow air into the refrigerating compartment. (When the specific numerical value is 5 to 10 ° C. or lower) The refrigerating chamber can be cooled by operating the R fan only and using the remaining cooling of the evaporator. The air returning from the refrigerating compartment has a positive temperature, and this air can defrost the evaporator and reduce the amount of frost formation. The power consumption can be reduced by cooling the refrigerating room and reducing the amount of frost.

【0037】[0037]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、冷蔵室の冷却必要時に蒸発器で冷やされた
冷気を当該冷蔵室へ循環させる冷蔵室冷気循環手段と、
冷凍室の冷却必要時に前記冷気を当該冷凍室へ循環させ
る冷凍室冷気循環手段とを具備させたため、冷蔵室の冷
却必要時に冷蔵室のみを適切な蒸発温度、冷凍能力で効
率よく冷却して省電力を図ることができる。また冷蔵室
内の温度分布を改善することができるとともに蒸発温度
が高くなることから蒸発器への着霜を減少させることが
できる。
As described above, according to the invention described in claim 1, refrigerating compartment cold air circulating means for circulating the cold air cooled by the evaporator to the refrigerating compartment when it is necessary to cool the refrigerating compartment,
Since a freezing room cold air circulating means for circulating the cold air to the freezing room when the freezing room needs to be cooled is provided, when the cooling room needs to be cooled, only the refrigerating room is efficiently cooled with an appropriate evaporation temperature and freezing capacity to save energy. Power can be obtained. Further, it is possible to improve the temperature distribution in the refrigerating chamber and increase the evaporation temperature, so that it is possible to reduce frost formation on the evaporator.

【0038】請求項2記載の発明によれば、前記冷蔵室
冷気循環手段又は冷凍室冷気循環手段の何れか一方の運
転により前記冷蔵室又は冷凍室の何れか一方の室の冷却
時に、何れか他方の室温が所定の設定温度以上になった
ときは、前記冷蔵室冷気循環手段又は冷凍室冷気循環手
段を何れか他方の運転のみに切り替える制御手段を具備
させたため、冷蔵室及び冷凍室の温度上昇を最小限に止
めながら、各室専用運転により運転効率が向上して省電
力を図ることができる。
According to the second aspect of the invention, either one of the refrigerating compartment cold air circulating means and the freezing compartment cold air circulating means is operated to cool one of the refrigerating compartment and the freezing compartment. When the room temperature of the other becomes equal to or higher than a predetermined set temperature, the temperature of the refrigerating room and the freezing room is controlled because the refrigerating room cold air circulating means or the freezing room cold air circulating means is provided with a control means for switching to only the other operation. While keeping the rise to a minimum, operating efficiency can be improved and power saving can be achieved by dedicated operation in each room.

【0039】請求項3記載の発明によれば、前記冷蔵室
冷気循環手段又は冷凍室冷気循環手段の何れか一方の運
転により前記冷蔵室又は冷凍室の何れか一方の室の冷却
時に、何れか他方の室温が所定の設定温度以上になった
ときは、前記冷蔵室冷気循環手段又は冷凍室冷気循環手
段の何れか他方も運転させる制御手段を具備させたた
め、運転開始時等に冷蔵室、冷凍室とも温度が高い場合
において両室の温度上昇を最小限に止めながら両室内の
温度を所要の温度まで冷却して安定させることができ
る。両室内の温度が安定した後に各室専用運転モード等
に移行させることにより省電力を図ることが可能とな
る。
According to the third aspect of the present invention, any one of the refrigerating compartment cold air circulating means and the freezing compartment cold air circulating means is operated to cool one of the refrigerating compartment and the freezing compartment. When the other room temperature becomes equal to or higher than a predetermined set temperature, a control means for operating either the refrigerating compartment cold air circulating means or the freezing compartment cold air circulating means is provided. When the temperature in both chambers is high, the temperature in both chambers can be cooled to a required temperature and stabilized while minimizing the temperature rise in both chambers. It is possible to save power by shifting to a dedicated operation mode for each room after the temperatures in both rooms have stabilized.

【0040】請求項4記載の発明によれば、前記冷蔵室
冷気循環手段又は冷凍室冷気循環手段の何れか一方の運
転を停止させて前記冷蔵室又は冷凍室の何れか一方の室
の冷却を停止させた時に、何れか他方の室温が上限設定
温度以下でも下限設定温度以上の所定の中間設定温度以
上のときは、前記冷凍サイクルの運転を止めずに前記冷
蔵室冷気循環手段又は冷凍室冷気循環手段の何れか他方
の運転に切り替える制御手段を具備させたため、冷凍サ
イクルの再起動に伴う大きな電力ロスを防止することが
できる。
According to the fourth aspect of the present invention, the operation of either the refrigerating compartment cold air circulating means or the freezing compartment cold air circulating means is stopped to cool either the refrigerating compartment or the freezing compartment. When stopped, if the other room temperature is equal to or lower than the upper limit set temperature but equal to or higher than a predetermined intermediate set temperature equal to or higher than the lower limit set temperature, the refrigerating compartment cold air circulation means or the freezing compartment cold air is not stopped without stopping the operation of the refrigeration cycle. Since the control means for switching to the other operation of the circulation means is provided, it is possible to prevent a large power loss due to the restart of the refrigeration cycle.

【0041】請求項5記載の発明によれば、前記冷蔵室
冷気循環手段の運転により前記冷蔵室の冷却時には、必
要冷却量に応じて前記冷凍サイクルの冷凍能力を可変に
する制御手段を具備させたため、省電力運転をすること
ができる。
According to the fifth aspect of the present invention, when the refrigerating compartment cool air circulating means is operated to cool the refrigerating compartment, a control means for varying the refrigerating capacity of the refrigerating cycle according to the required cooling amount is provided. Therefore, power saving operation can be performed.

【0042】請求項6記載の発明によれば、前記冷凍室
の冷却停止後に、前記冷凍サイクルの停止状態において
前記冷蔵室冷気循環手段を運転させる制御手段を具備さ
せたため、蒸発器の余冷を用いて冷蔵室を冷却すること
により蒸発器に戻る空気はプラス温度になることから蒸
発器の除霜を行うことができる。この余冷を用いた冷蔵
室の冷却及び除霜により消費電力を低減することができ
る。
According to the sixth aspect of the present invention, after the cooling of the freezer compartment is stopped, the control means for operating the refrigerating compartment cold air circulating means in the stopped state of the refrigerating cycle is provided. By cooling the refrigerating chamber using the air, the temperature of the air returning to the evaporator becomes a positive temperature, so that the evaporator can be defrosted. Power consumption can be reduced by cooling and defrosting the refrigerating compartment using this residual cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る冷蔵庫の第1の実施例の内部構成
を示す断面図である。
FIG. 1 is a cross-sectional view showing an internal configuration of a first embodiment of a refrigerator according to the present invention.

【図2】上記第1の実施例の冷気の流れを説明するため
の図である。
FIG. 2 is a diagram for explaining the flow of cold air in the first embodiment.

【図3】上記第2の変形例を示す図である。FIG. 3 is a diagram showing the second modification.

【図4】上記第1の実施例における制御系の構成を示す
ブロック図である。
FIG. 4 is a block diagram showing a configuration of a control system in the first embodiment.

【図5】上記第1の実施例の作用を説明するための制御
フローチャートである。
FIG. 5 is a control flow chart for explaining the operation of the first embodiment.

【図6】上記第1の実施例における冷凍サイクルの動作
を比較例とともに説明するためのモリエルチャートであ
る。
FIG. 6 is a Mollier chart for explaining the operation of the refrigeration cycle in the first embodiment together with a comparative example.

【図7】本発明の第2の実施例の作用を説明するための
制御フローチャートである。
FIG. 7 is a control flowchart for explaining the operation of the second embodiment of the present invention.

【図8】本発明の第3の実施例の作用を説明するための
制御フローチャートである。
FIG. 8 is a control flow chart for explaining the operation of the third embodiment of the present invention.

【図9】本発明の第4の実施例の作用を説明するための
制御フローチャートである。
FIG. 9 is a control flowchart for explaining the operation of the fourth embodiment of the present invention.

【図10】本発明の第5の実施例における制御系の構成
を示すブロック図である。
FIG. 10 is a block diagram showing a configuration of a control system in a fifth embodiment of the present invention.

【図11】上記第5の実施例の作用を説明するための制
御フローチャートである。
FIG. 11 is a control flow chart for explaining the operation of the fifth embodiment.

【図12】従来の冷蔵庫の断面図及び冷気の流れを説明
するための図である。
FIG. 12 is a cross-sectional view of a conventional refrigerator and a diagram for explaining a flow of cold air.

【符号の説明】[Explanation of symbols]

1 冷蔵室 2 冷凍室 4 圧縮機 5 蒸発器 8 冷蔵室冷却用ファン(冷蔵室冷気循環手段) 9 冷凍室冷却用ファン(冷凍室冷気循環手段) 10 制御部(制御手段) 1 Refrigerator 2 Refrigerator 4 Compressor 5 Evaporator 8 Refrigerator cooling fan (refrigerator cold air circulation means) 9 Refrigerator cooling fan (refrigerator cold air circulation means) 10 Control unit (control means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 幸作 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 本郷 裕子 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 楠 敦 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 朝倉 啓明 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kosaku Adachi 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Kanagawa Prefecture, Ltd. Inside the Institute for Living Space Systems Technology (72) Inventor Yuko Hongo 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Address Incorporated company Toshiba Living Space Systems Engineering Laboratory (72) Inventor Atsushi Kusunoki 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Incorporated Toshiba Living Space Systems Engineering Laboratory (72) Incorporator Hiroaki Asakura Shimbashi, Minato-ku, Tokyo 3-3-9 Toshiba Abu E Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルにおける蒸発器で冷やされ
た冷気を冷蔵室と冷凍室に循環させてそれぞれ冷却する
冷蔵庫において、前記冷蔵室の冷却必要時に前記冷気を
当該冷蔵室へ循環させる冷蔵室冷気循環手段と、前記冷
凍室の冷却必要時に前記冷気を当該冷凍室へ循環させる
冷凍室冷気循環手段とを有することを特徴とする冷蔵
庫。
1. A refrigerator in which cold air cooled by an evaporator in a refrigeration cycle is circulated in a refrigerating compartment and a freezing compartment to cool the refrigerating compartment, and the cold air is circulated to the refrigerating compartment when cooling of the refrigerating compartment is required. A refrigerator comprising: a circulation means; and a freezer compartment cold air circulation means for circulating the cold air to the freezer compartment when cooling of the freezer compartment is required.
【請求項2】 前記冷蔵室冷気循環手段又は冷凍室冷気
循環手段の何れか一方の運転により前記冷蔵室又は冷凍
室の何れか一方の室の冷却時に、何れか他方の室温が所
定の設定温度以上になったときは、前記冷蔵室冷気循環
手段又は冷凍室冷気循環手段を何れか他方の運転のみに
切り替える制御手段を有することを特徴とする請求項1
記載の冷蔵庫。
2. When one of the refrigerating compartment cold air circulating means and the freezing compartment cold air circulating means operates to cool either one of the refrigerating compartment and the freezing compartment, the other room temperature is set to a predetermined set temperature. When it becomes the above, it has the control means which switches the said refrigerating room cold air circulation means or the freezing room cold air circulation means only to the other operation | movement.
Refrigerator described.
【請求項3】 前記冷蔵室冷気循環手段又は冷凍室冷気
循環手段の何れか一方の運転により前記冷蔵室又は冷凍
室の何れか一方の室の冷却時に、何れか他方の室温が所
定の設定温度以上になったときは、前記冷蔵室冷気循環
手段又は冷凍室冷気循環手段の何れか他方も運転させる
制御手段を有することを特徴とする請求項1記載の冷蔵
庫。
3. When cooling either one of the refrigerating compartment and the freezing compartment by operating one of the refrigerating compartment cold air circulating means and the freezing compartment cold air circulating means, the other room temperature is set to a predetermined set temperature. The refrigerator according to claim 1, further comprising control means for operating either the refrigerating compartment cold air circulating means or the freezing compartment cold air circulating means when the other becomes the above.
【請求項4】 前記冷蔵室冷気循環手段又は冷凍室冷気
循環手段の何れか一方の運転を停止させて前記冷蔵室又
は冷凍室の何れか一方の室の冷却を停止させた時に、何
れか他方の室温が上限設定温度以下でも下限設定温度以
上の所定の中間設定温度以上のときは、前記冷凍サイク
ルの運転を止めずに前記冷蔵室冷気循環手段又は冷凍室
冷気循環手段の何れか他方の運転に切り替える制御手段
を有することを特徴とする請求項1記載の冷蔵庫。
4. When the operation of either the refrigerating compartment cold air circulating means or the freezing compartment cold air circulating means is stopped to stop the cooling of either the refrigerating compartment or the freezing compartment, the other one is stopped. When the room temperature of the above is higher than a predetermined intermediate set temperature above the lower limit set temperature even below the upper limit set temperature, the other operation of either the refrigerating compartment cold air circulating means or the freezing compartment cold air circulating means without stopping the operation of the refrigeration cycle. The refrigerator according to claim 1, further comprising control means for switching to.
【請求項5】 前記冷蔵室冷気循環手段の運転により前
記冷蔵室の冷却時には、必要冷却量に応じて前記冷凍サ
イクルの冷凍能力を可変にする制御手段を有することを
特徴とする請求項1記載の冷蔵庫。
5. The control means for varying the refrigerating capacity of the refrigerating cycle in accordance with a required cooling amount when the refrigerating compartment is cooled by operating the refrigerating compartment cold air circulating means. Refrigerator.
【請求項6】 前記冷凍室の冷却停止後に、前記冷凍サ
イクルの停止状態において前記冷蔵室冷気循環手段を運
転させる制御手段を有することを特徴とする請求項1記
載の冷蔵庫。
6. The refrigerator according to claim 1, further comprising control means for operating the refrigerating compartment cold air circulation means in a stopped state of the refrigerating cycle after the cooling of the freezing compartment is stopped.
JP11434595A 1995-05-12 1995-05-12 Refrigerator Pending JPH08303923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11434595A JPH08303923A (en) 1995-05-12 1995-05-12 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11434595A JPH08303923A (en) 1995-05-12 1995-05-12 Refrigerator

Publications (1)

Publication Number Publication Date
JPH08303923A true JPH08303923A (en) 1996-11-22

Family

ID=14635445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11434595A Pending JPH08303923A (en) 1995-05-12 1995-05-12 Refrigerator

Country Status (1)

Country Link
JP (1) JPH08303923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202176A (en) * 2002-01-07 2003-07-18 Hitachi Ltd Refrigerator
JP2014202446A (en) * 2013-04-08 2014-10-27 株式会社東芝 Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202176A (en) * 2002-01-07 2003-07-18 Hitachi Ltd Refrigerator
JP2014202446A (en) * 2013-04-08 2014-10-27 株式会社東芝 Refrigerator

Similar Documents

Publication Publication Date Title
RU2137064C1 (en) Refrigerator with highly-effective refrigeration cycle with several evaporators (continuous evaporating cycle) and method of control of this refrigerator
KR0160439B1 (en) Refrigerator and control method of having high efficient cooling cycle
JP3538021B2 (en) Refrigerator cooling operation control device
KR101620430B1 (en) Refrigerator and control method of the same
US5220806A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5056328A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
JP2001082850A (en) Refrigerator
US5150583A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
JP4178646B2 (en) refrigerator
KR100189100B1 (en) Refirgerator manufacturing method having high efficient multi evaporator cycle
JPH11148761A (en) Refrigerator
JPH11304328A (en) Cooling operation controller of refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
JPH11257822A (en) Refrigerator
JPH08303923A (en) Refrigerator
JPH1163775A (en) Multi-refrigerator
JP2001133112A (en) Refrigerator
KR100425114B1 (en) defrosting method in the refrigerator with 2 evaporators
JP2003287331A (en) Refrigerator
KR100459173B1 (en) Methode for controlling working of refrigerator
JP2002195726A5 (en)
JP3710353B2 (en) refrigerator
JPH0989435A (en) Refrigerator
JP2002286347A (en) Cooling storage box
KR20030000172A (en) Fan Control Method of Air Conditioner