JPH082993A - Production of silicon single crystal of reduced crystal defects - Google Patents

Production of silicon single crystal of reduced crystal defects

Info

Publication number
JPH082993A
JPH082993A JP13427494A JP13427494A JPH082993A JP H082993 A JPH082993 A JP H082993A JP 13427494 A JP13427494 A JP 13427494A JP 13427494 A JP13427494 A JP 13427494A JP H082993 A JPH082993 A JP H082993A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal
silicon
cop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13427494A
Other languages
Japanese (ja)
Other versions
JP2822887B2 (en
Inventor
Eiichi Iino
栄一 飯野
Kiyotaka Takano
清隆 高野
Izumi Fusegawa
泉 布施川
Hirotoshi Yamagishi
浩利 山岸
Masahiro Sakurada
昌弘 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP13427494A priority Critical patent/JP2822887B2/en
Publication of JPH082993A publication Critical patent/JPH082993A/en
Application granted granted Critical
Publication of JP2822887B2 publication Critical patent/JP2822887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce silicon single crystal of high pressure resistance to the oxide layer through the Czochralsky process. CONSTITUTION:In the production of silicon single crystal by the Czochralsky process, the time when a silicon single crystal to be grown passes through the temperature range from the melting point to 1,200 deg.C is set longer than 200 minutes, while from the 1,200 deg.C to 1,000 deg.C less than 150 minutes, when the crystal grows.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化膜耐圧を改善した
チョクラルスキー法(引き上げ法)によるシリコン単結
晶を、高生産性で製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon single crystal with a high productivity by the Czochralski method (pulling method) with an improved oxide film withstand voltage.

【0002】[0002]

【従来の技術】近年は、半導体回路の高集積化に伴う素
子の微細化により、MOS−LSIのゲート電極部の絶
縁酸化膜はより薄膜化されており、このような薄い絶縁
酸化膜においてもデバイス素子動作時に絶縁耐圧が高い
こと、リーク電流が小さいことすなわち、酸化膜の信頼
性が高いことが要求されている。
2. Description of the Related Art In recent years, due to the miniaturization of elements accompanying the high integration of semiconductor circuits, the insulating oxide film in the gate electrode portion of a MOS-LSI has been made thinner, and even such a thin insulating oxide film is used. It is required that the dielectric strength is high and the leak current is small when the device element is operating, that is, the reliability of the oxide film is high.

【0003】この点、チョクラルスキー法によるシリコ
ン単結晶より製造されたシリコンウェーハの酸化膜耐圧
は、浮遊帯溶融法(FZ法)によるシリコン単結晶より
製造されたウェーハや、チョクラルスキー法によるウェ
ーハ上にシリコン単結晶薄膜を成長させたエピタキシャ
ルウェーハの酸化膜耐圧に比べて著しく低いことが知ら
れている(「サブミクロンデバイスII、3ゲート酸化
膜の信頼性」、小柳光正、丸善(株)、 P70)。
In this respect, the oxide film breakdown voltage of the silicon wafer manufactured from the silicon single crystal by the Czochralski method is measured by the wafer manufactured from the silicon single crystal by the floating zone melting method (FZ method) or the Czochralski method. It is known that the withstand voltage of the oxide film is significantly lower than that of an epitaxial wafer in which a silicon single crystal thin film is grown on the wafer (“Submicron device II, reliability of 3 gate oxide film”, Mitsumasa Koyanagi, Maruzen (shares). ), P70).

【0004】このチョクラルスキー法において酸化膜耐
圧を劣化させる主な原因は、シリコン単結晶育成時に導
入される結晶欠陥によることが判明しており、結晶成長
速度を極端に低下(例えば 0.4mm/min以下)させること
で、チョクラルスキー法によるシリコン単結晶の酸化膜
耐圧を著しく改善できることも知られている(例えば、
特開平2-267195号公報参照)。しかし、酸化膜耐圧を改
善するために、単に結晶成長速度を従来の1mm/min以上
から、 0.4mm/min以下に低下させたのでは、酸化膜耐圧
は改善できるものの、単結晶の生産性が半分以下とな
り、著しいコストの上昇をもたらしてしまう。
In the Czochralski method, it is known that the main cause of deterioration of the oxide film breakdown voltage is a crystal defect introduced during the growth of a silicon single crystal, and the crystal growth rate is extremely lowered (for example, 0.4 mm / It is also known that the breakdown voltage of an oxide film of a silicon single crystal by the Czochralski method can be significantly improved by (min or less) (for example,
(See JP-A-2-267195). However, in order to improve the oxide film breakdown voltage, if the crystal growth rate is simply reduced from 1 mm / min or more to 0.4 mm / min or less, the oxide film breakdown voltage can be improved, but the single crystal productivity is improved. It will be less than half, resulting in a significant cost increase.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
問題点に鑑みなされたもので、酸化膜耐圧を改善したチ
ョクラルスキー法によるシリコン単結晶を、高生産性で
得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and an object thereof is to obtain a silicon single crystal by the Czochralski method with improved oxide film withstand voltage with high productivity. To do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、チョクラ
ルスキー法によって、シリコン単結晶成長時にその成長
単結晶が受けた熱履歴と、導入された結晶欠陥との関係
を種々、調査、検討した結果本発明を完成させたもの
で、その要旨はチョクラルスキー法によってシリコン単
結晶を製造する場合において、育成されるシリコン単結
晶が結晶成長時にシリコンの融点から 1,200℃までの高
温域を通過する時間が 200分以上となるようにし、 1,2
00℃から 1,000℃までの低温域を通過する時間が 150分
以下となるようにすることを特徴とするシリコン単結晶
の製造方法、というものである。
Means for Solving the Problems The present inventors have conducted various investigations on the relationship between the thermal history received by a grown single crystal during the growth of a silicon single crystal and the introduced crystal defects by the Czochralski method. As a result of the examination, the present invention has been completed, and the gist thereof is that when a silicon single crystal is manufactured by the Czochralski method, the grown silicon single crystal has a high temperature range from the melting point of silicon to 1,200 ° C. during crystal growth. Make sure the transit time is at least 200 minutes, 1,2
It is a method for producing a silicon single crystal, which is characterized in that the time for passing through a low temperature region from 00 ° C to 1,000 ° C is 150 minutes or less.

【0007】以下、本発明を詳細に説明するが、説明に
先立ち各用語につき予め解説しておく。 1) SC−1洗浄とは、アンモニアと過酸化水素の混合
液(NH4OH:H2O2:H2O=1:1:5)で有機物とパーティクルを除
去する洗浄のことをいう。特にパーティクルの除去能力
が高い。 2) COP[Crystal Originated Particle] とは、研磨
後のシリコンウェーハ表面を洗浄する際にSC−1洗浄
を行うと、ウェーハ表面にピットが形成され、ウェーハ
をパーティクルカウンタ−でパーティクル測定すると、
このピットも本来のパーティクルとともにパーティクル
として検出される。この様なピットを本来のパーティク
ルと区別するためにCOPと呼称する。COPが増加す
ると酸化膜耐圧が劣化する。(「半導体メ−カ−のウェ
ーハ洗浄仕様と問題点」 ULSI生産技術緊急レポー
ト編集委員会編、 P58〜70、1993年12月20日第1版第1
刷発行) このような現象があるため、従来法によるCZシリコン
ウェーハは、デバイス工程等で使用されるパーティクル
モニター用のウェーハ(真のパーティクル数を知るため
のウェーハ)としては、用いることができなかった。 3) FPD[Flow Pattern Defect] とは、成長後のシリ
コン単結晶からウェーハを切り出し、表面の歪層を沸酸
と硝酸の混合液でエッチングして取り除いた後、K2Cr2O
7 と沸酸と水の混合液で表面をエッチングすることによ
りピットおよびさざ波模様が生じる。このさざ波模様を
FPDと称し、ウェーハ面内のFPD密度が高いほど酸
化膜耐圧の不良が増える。(特開平4-192345参照) COPとFPDは図5に示したように、略1:1の関係
がある。従って、チョクラルスキー法によるシリコン単
結晶の酸化膜耐圧を改善させるためには、このCOP、
FPDを減少させる必要がある。
The present invention will be described in detail below, but prior to the explanation, each term will be explained in advance. 1) The SC-1 cleaning, a mixed solution of ammonia and hydrogen peroxide (NH 4 OH: H 2 O 2: H 2 O = 1: 1: 5) refers to a washing to remove the organic matter and particles in. Especially, the ability to remove particles is high. 2) COP [Crystal Originated Particles] means that when SC-1 cleaning is performed when cleaning the surface of a silicon wafer after polishing, pits are formed on the wafer surface, and when particles are measured on the wafer with a particle counter,
These pits are also detected as particles together with the original particles. Such a pit is called a COP in order to distinguish it from original particles. When the COP increases, the oxide film breakdown voltage deteriorates. ("Semiconductor manufacturer's wafer cleaning specifications and problems" ULSI Production Technology Emergency Report Editing Committee, P58-70, December 20, 1993, 1st edition, 1st edition, 1st edition
Imprinting) Due to such a phenomenon, the CZ silicon wafer according to the conventional method cannot be used as a wafer for a particle monitor (wafer for knowing the true number of particles) used in a device process or the like. It was 3) FPD [Flow Pattern Defect] means that a wafer is cut out from a grown silicon single crystal, the strained layer on the surface is removed by etching with a mixed solution of hydrofluoric acid and nitric acid, and then K 2 Cr 2 O is added.
Pits and ripples are created by etching the surface with a mixture of 7 with hydrofluoric acid and water. This ripple pattern is referred to as FPD. The higher the FPD density in the wafer surface, the more defective the oxide film withstand voltage. (See Japanese Patent Laid-Open No. 4-192345) COP and FPD have a relationship of approximately 1: 1 as shown in FIG. Therefore, in order to improve the oxide film breakdown voltage of the silicon single crystal by the Czochralski method, this COP,
There is a need to reduce FPD.

【0008】本発明者らは、低速成長させると何故、C
OP、FPDが減少し酸化膜耐圧が良くなるのかを解明
すべく、結晶成長時に成長速度を高速から低速に急変さ
せてみたところ、FPDは成長速度変化点からではな
く、その約8cm上部(既成長部)から密度低下している
ことが判った。このことは、結晶欠陥消滅過程として、
シリコンの融点から約 1,200℃までの高温域が影響して
いることを示唆する。
[0008] The inventors of the present invention, why C
In order to clarify whether OP and FPD decrease and the oxide film withstand voltage improves, the growth rate was suddenly changed from high speed to low speed during crystal growth. It was found from the growth part) that the density had decreased. This is the process of eliminating crystal defects.
It is suggested that the high temperature range from the melting point of silicon to about 1,200 ℃ influences.

【0009】そこで、シリコン単結晶が結晶成長時に、
このシリコンの融点から 1,200℃までの高温域を通過す
るのに要する時間とFPDとの相関を、各種温度分布を
持った引き上げ炉ごとに調査したところ、図1のような
結果となった。図1から判るように、この高温域通過時
間が 200分未満だとFPDが急激に増加する。従って、
FPDを減少させ、酸化膜耐圧の良好なチョクラルスキ
ー法によるシリコン単結晶を得るには、結晶成長時にシ
リコンの融点から 1,200℃までの高温域を通過する時間
が 200分以上となるようにする必要があることが判っ
た。
Therefore, during the crystal growth of the silicon single crystal,
The correlation between the FPD and the time required to pass through the high temperature range from the melting point of silicon to 1,200 ° C. was investigated for each pulling furnace having various temperature distributions, and the results shown in FIG. 1 were obtained. As can be seen from Fig. 1, when the transit time in this high temperature region is less than 200 minutes, the FPD rapidly increases. Therefore,
In order to reduce the FPD and obtain a silicon single crystal by the Czochralski method with a good oxide film breakdown voltage, the time for passing through the high temperature region from the melting point of silicon to 1,200 ° C during crystal growth should be 200 minutes or more. I found it necessary.

【0010】結晶成長時にこの高温域を通過する時間を
200分以上とするには、結晶成長速度を極低速(0.4mm/
min 以下)とすればよいが、それでは前記のように、生
産性が著しく低下し、本発明の目的を達し得ない。そこ
で、炉内構造を例えば図2(b)のように断熱材を上部
に伸ばし上部保温型とし、シリコンの融点から 1,200℃
までの高温域を上部に拡張することによって、成長シリ
コン単結晶がこれを通過する時間を 200分以上となるよ
うにした。
The time for passing through this high temperature region during crystal growth is
The crystal growth rate is extremely low (0.4 mm /
min or less), but as described above, the productivity is remarkably reduced and the object of the present invention cannot be achieved. Therefore, for example, as shown in Fig. 2 (b), the structure inside the furnace is expanded to the upper part with a heat insulating material to make it an upper heat-insulating type, and the melting point of silicon is 1,200 ℃
By extending the high temperature region up to, the time for the grown silicon single crystal to pass through was increased to 200 minutes or more.

【0011】しかし、このような上部保温型の炉から引
き上げられたシリコン単結晶は0.16μm以下の微小サイ
ズのCOPは、従来法に比べ半分に減少させることが出
来たものの低速成長させた時ほど減少せず、その上0.16
μm以上の大きいサイズのCOPは従来法より増加する
傾向が見られた(図4参照)。この現象を解析する為、
実際に結晶が成長した際の結晶温度を調査したところ、
上部保温型(以下、徐冷品という)でも図3曲線(III)
のように、シリコンの融点から 1,200℃までの高温域を
通過する時間は、企図した通り低速品と同様 200分以上
となっているにもかかわらず、上記結果となっているこ
とが判った。従って、COPを低速品並に減少させ酸化
膜耐圧を向上させるためには、高温域の制御のみでは不
可能であることが判明した。
However, the silicon single crystal pulled up from such an upper heat-retention type furnace has a COP of a small size of 0.16 μm or less, which can be reduced to half as compared with the conventional method, but is as slow as when grown at a low speed. Not diminishing, plus 0.16
It was observed that COPs with a large size of μm or more tended to increase as compared with the conventional method (see FIG. 4). To analyze this phenomenon,
When the crystal temperature when the crystal actually grew was investigated,
Fig. 3 curve (III) even in the upper heat insulation type (hereinafter referred to as slow cooling product)
As described above, it was found that the time required to pass through the high temperature range from the melting point of silicon to 1,200 ° C was 200 minutes or longer as intended, as in the case of the low speed product, but the above result was obtained. Therefore, it has been found that it is not possible to control the high temperature region alone in order to reduce the COP as much as a low speed product and improve the breakdown voltage of the oxide film.

【0012】そこで、低温域に着目して図3の結晶冷却
曲線をみると、徐冷品は 1,200℃から 1,000℃程度まで
の低温域の通過時間は、従来品(急冷品:曲線I)より
長い時間を経ているが、COP密度が極端に少ない低速
品(曲線II)は、更に長い時間を経て、低温域を通過し
ていることが判る。
Then, looking at the crystal cooling curve of FIG. 3 focusing on the low temperature region, the slow cooling product has a longer transit time in the low temperature region from 1,200 ° C. to 1,000 ° C. than the conventional product (quenched product: curve I). However, it is understood that the low speed product (curve II) having an extremely low COP density passes through the low temperature region after a longer time.

【0013】これらのことから、低速品でCOP密度が
極端に低い理由は、 1,200℃以上の高温域を長く通過し
た為に、COPの核となる点欠陥そのものが消滅作用を
受け、次に 1,000℃程度までの低温域を長い時間通過し
た為に、酸素等と反応し、成長・凝集して密度低下した
のではないかと推察された。実際、FPDの先端には、
一般に2〜5μmサイズのピットが300 〜 700ケ/cm2
度観察されるのに対し、低速品はFPDの先端に20μm
程度の巨大なピットが観察される。しかし、その密度は
100ケ/cm2以下と非常に少なく、酸化膜耐圧自体の低下
はもたらさないものと考えられる。したがって、FP
D、COPといった結晶欠陥は、およそ 1,200℃以上の
高温域では点欠陥の状態にあり、最近学会等で報告され
ている坂道拡散、あるいは点欠陥同士の過飽和度に応じ
て生じる対消滅反応により消滅過程を経た後、 1,200℃
から 1,000℃程度の低温域で、酸素等の不純物と絡んだ
欠陥成長により巨大な欠陥を形成するものと考えられ
る。(Jpn. J. Appl. Phys. Vol.32(1993) P1740〜175
8, J. Eectorochem. Soc. Vol.140 No.11 November 199
3 P3306〜3316)すなわち、低速品のCOPが極端に少
ないのは、パーティクルカウンターでCOPとして検出
される 0.2μm以下のサイズのピットが少ないと言うだ
けであって、それらが凝集・成長してより大きなピット
を形成しているのである。
From these facts, the reason why the COP density is extremely low in the low speed product is that the point defect which is the core of COP itself is extinguished because it has passed through a high temperature region of 1,200 ° C. or higher for a long time. It was speculated that the material might have reacted with oxygen, etc., grown, aggregated, and decreased in density because it passed through a low-temperature region up to about ℃ for a long time. In fact, at the tip of the FPD,
Generally, pits of 2 to 5 μm size are observed at 300 to 700 pcs / cm 2 , whereas low speed products have 20 μm at the tip of FPD.
A huge pit is observed. But its density is
It is extremely low at 100 cells / cm 2 or less, and it is considered that the breakdown voltage of the oxide film itself does not decrease. Therefore, FP
Crystal defects such as D and COP are in the state of point defects in a high temperature range of about 1,200 ° C. or higher, and disappear due to paired annihilation reaction that occurs depending on the degree of supersaturation between slopes and slope diffusion, which have recently been reported at academic conferences. After going through the process, 1,200 ℃
It is considered that a huge defect is formed by the defect growth entangled with impurities such as oxygen in the low temperature range of about 1,000 ° C. (Jpn. J. Appl. Phys. Vol.32 (1993) P1740〜175
8, J. Eectorochem. Soc. Vol.140 No.11 November 199
That is, COP of low-speed products is extremely small only because there are few pits of 0.2 μm or less size detected as COP by particle counter, and they are more aggregated and grown. It forms a large pit.

【0014】そこで、本発明者らは、シリコンの融点か
ら 1,200℃までの高温域の通過時間は低速品と同様 200
分以上とすることによって、COPの核となる点欠陥そ
のものの消滅作用を行い(この点は徐冷品も同様)、そ
の後 1,200℃から 1,000℃までの低温域の通過時間を 1
50分以下として、従来品と同様急冷却すれば、酸素等と
絡んだ欠陥成長が起こらず、COPおよび先端に巨大な
ピットを持ったFPDの両方がない結晶を成長させるこ
とが出来ることを見出し本発明を完成させた。本発明に
おける結晶の冷却過程は、図3曲線IVのごときであり、
その結晶成長速度は従来品に対し、同じか約1割の低下
があるのみである。従って、従来品に対しほとんど生産
性の低下をきたすことなく、酸化膜耐圧を改善すること
が出来る。チョクラルスキー法によってシリコン単結晶
を製造する場合においては、結晶温度はシリコンの融点
である 1,412℃から室温に至るまで徐々に冷却される。
この温度分布は炉内に設置されたカーボンを主体とする
構造物の形状・位置により変更可能である為、本発明
は、例えば図2(c)のように炉内構造を変更すること
で実施可能である。炉内構造の変更方法は、種々の態様
が考えられ、図2(c)の態様に限られず、種々置換が
可能である。要するに結晶冷却過程が図3曲線IVのごと
きになっていればよい。
Therefore, the present inventors have found that the passage time in the high temperature range from the melting point of silicon to 1,200 ° C. is 200
By making it more than a minute, the point defect which is the core of COP itself disappears (this point is also the case with slow-cooled products), and then the passage time in the low temperature range from 1,200 ° C to 1,000 ° C is 1
It was found that if the cooling time is 50 minutes or less, rapid cooling similar to the conventional product does not cause defect growth entangled with oxygen and the like, and a crystal without both the COP and the FPD having a huge pit at the tip can be grown. The present invention has been completed. The crystal cooling process in the present invention is as shown by the curve IV in FIG.
The crystal growth rate is the same as that of the conventional product or only about 10% lower. Therefore, the breakdown voltage of the oxide film can be improved with almost no decrease in productivity as compared with the conventional product. When a silicon single crystal is manufactured by the Czochralski method, the crystal temperature is gradually cooled from the melting point of silicon, 1,412 ° C, to room temperature.
Since this temperature distribution can be changed depending on the shape and position of the structure mainly composed of carbon installed in the furnace, the present invention is implemented by changing the structure inside the furnace as shown in FIG. 2C, for example. It is possible. Various methods can be considered for the method of changing the internal structure of the furnace, and the method is not limited to the method shown in FIG. In short, the crystal cooling process should be as shown by the curve IV in FIG.

【0015】[0015]

【作用】本発明により、シリコンの融点から 1,200℃ま
での高温域は、従来法に比べ約1.5倍通過時間が長くな
る為、点欠陥密度は消滅過程を受け絶対的な結晶欠陥核
の密度を減少させることが可能であり、更に 1,200℃か
ら 1,000℃までの低温域の通過時間を 150分以下と短く
することで、欠陥成長あるいは凝集過程を阻止させるこ
とが可能となる。
According to the present invention, since the passing time in the high temperature region from the melting point of silicon to 1,200 ° C. is about 1.5 times longer than that of the conventional method, the point defect density undergoes an annihilation process and the absolute density of crystal defect nuclei is increased. In addition, it is possible to prevent the defect growth or aggregation process by shortening the transit time in the low temperature range from 1,200 ℃ to 1,000 ℃ to 150 minutes or less.

【0016】[0016]

【実施例】チョクラルスキー法で18”φ石英ルツボに、
原料多結晶シリコン50kgをチャージし、6”φ,方位
〈100〉の結晶を、4つの態様で引き上げた。これら
の炉内構造、結晶冷却過程の関係は表1に示した通りで
あり、(I)従来法による急冷品(比較例1)、(II)
急冷品と同じ炉内構造による低速品、成長速度 0.4mm/m
in(比較例2)、(III) シリコンの融点から 1,000℃ま
で徐冷された徐冷品(比較例3)、(IV)シリコンの融
点から 1,200℃までは徐冷、 1,200℃から 1,000℃まで
は急冷とした本発明(実施例)である。
[Example] 18 "φ quartz crucible by Czochralski method,
50 kg of polycrystalline silicon as a raw material was charged, and crystals of 6 ″ φ, orientation <100> were pulled in four modes. The relationship between these in-furnace structures and the crystal cooling process is as shown in Table 1. I) Quenched product by the conventional method (Comparative Example 1), (II)
Low-speed product with the same furnace structure as the quenched product, growth rate 0.4 mm / m
in (Comparative Example 2), (III) Slowly cooled product from the melting point of silicon to 1,000 ° C (Comparative Example 3), (IV) Slow cooling from the melting point of silicon to 1,200 ° C, rapid cooling from 1,200 ° C to 1,000 ° C This is the present invention (Example).

【0017】[0017]

【表1】 [Table 1]

【0018】結晶成長後、PW加工(鏡面研磨)を施し
た後、液組成がNH4OH:H2O2:H2O=1:1:5なるSC−1洗浄
液にて、液温度を77℃に保ちながら洗浄を行った。その
後、パーティクル測定器LS−6030にてパーティクル数
をカウントした。尚、外因性のパーティクルと区別する
為、SC−1洗浄及びパーティクル測定は5回繰り返し
て行った。結果を図4にSC−1洗浄を5回繰り返し行
った後のCOPサイズ分布ごとに示した。(I)は、
1,200℃以上の高温域は急冷である為、欠陥核密度は高
いが、 1,200℃以下でも急冷である為、成長過程を経
ず、0.10から0.16μmの小さいサイズのCOPのみ多い
結果となっている。(II)は、 1,200℃以上の高温域は
徐冷型である為、欠陥核密度は低いと考えられるが、
1,200℃以下の低温域で極端に徐冷型である為、極端に
欠陥が成長・凝集し巨大化しているため、COPとして
カウントされなくなっていると考えられる。(III) は、
(II)と同様、 1,200℃以上の高温域は徐冷型である
為、欠陥核密度は低いと考えられる。 1,200℃以下の低
温域は低速品程ではないが、徐冷型となっている為、C
OPサイズ分布に見られるような急冷品(I)に対しサ
イズアップ傾向が生じたものと考えられる。(IV)で
は、 1,200℃以上の高温域による点欠陥消滅過程を経て
おり、尚かつ、1,200℃から 1,000℃程度までの低温域
での欠陥成長過程を経ていない為に、低速品以上のCO
P低減を可能としたものと考えられる。尚、(IV)の成
長速度は(I)に比べ約1割程度低下しているのみであ
った。
After crystal growth, PW processing (mirror polishing) was performed, and then the liquid temperature was adjusted with a SC-1 cleaning liquid having a liquid composition of NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5. Washing was performed while maintaining the temperature at 77 ° C. After that, the number of particles was counted by a particle measuring instrument LS-6030. Note that SC-1 cleaning and particle measurement were repeated 5 times in order to distinguish them from exogenous particles. The results are shown in FIG. 4 for each COP size distribution after SC-1 washing was repeated 5 times. (I) is
The defect nucleus density is high because it is rapidly cooled in the high temperature range of 1,200 ° C or higher, but it is also rapidly cooled even at 1,200 ° C or lower, so there is only a large amount of COPs with a small size of 0.10 to 0.16 μm without going through the growth process. . In (II), it is considered that the defect nucleus density is low because the high temperature region of 1,200 ° C or higher is of the slow cooling type.
Since it is an extremely slow cooling type in the low temperature range of 1,200 ° C or less, defects are extremely grown and aggregated and become huge, so it is considered that COP is not counted. (III) is
As in (II), the high temperature region above 1,200 ° C is a slow cooling type, so the defect nucleus density is considered to be low. The low temperature range below 1,200 ° C is not as slow as low-speed products, but since it is a slow cooling type, C
It is considered that a size-up tendency occurred in the quenched product (I) as seen in the OP size distribution. In (IV), the point defect disappearance process is performed in the high temperature range of 1,200 ° C or higher, and the defect growth process in the low temperature range of 1,200 ° C to 1,000 ° C is not performed.
It is considered that P can be reduced. The growth rate of (IV) was only about 10% lower than that of (I).

【0019】[0019]

【発明の効果】本発明によって、チョクラルスキー法に
よって製造されるシリコン単結晶のCOP、FPDを減
少させ、酸化膜耐圧を改善することを、結晶成長速度を
低下させることなく、従って生産性を著しく下げること
なく行うことができる。しかも、得られるシリコン単結
晶には、結晶成長速度を低下させたもののごとき巨大な
ピットを持つFPDも含まれていない。また、COPが
少ないため、従来チョクラルスキー法では作製困難であ
った、パーティクルモニター用のシリコンウェーハも、
本発明によって供給が可能となる。よって、従来コスト
並で良質のチョクラルスキー法によるシリコン単結晶を
提供することができ、産業界でのその利用価値はすこぶ
る高い。
According to the present invention, it is possible to reduce COP and FPD of a silicon single crystal produced by the Czochralski method and improve the withstand voltage of an oxide film without lowering the crystal growth rate and thus improving the productivity. It can be done without significantly lowering. Moreover, the obtained silicon single crystal does not include FPDs having huge pits such as those having a reduced crystal growth rate. Moreover, since the COP is small, the silicon wafer for particle monitor, which has been difficult to manufacture by the conventional Czochralski method,
The present invention enables supply. Therefore, it is possible to provide a silicon single crystal by the Czochralski method which is as good as the conventional cost and is high in quality, and its utility value in the industrial field is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温域通過時間とFPDの関係を示した図であ
る。
FIG. 1 is a diagram showing a relationship between a high temperature passage time and FPD.

【図2】(a)従来法による急冷品の炉内構造を示した
概略図である。 (b)上部保温型による徐冷品の炉内構造を示した概略
図である。 (c)本発明を実施する場合の炉内構造の一例を示した
概略図である。
FIG. 2 (a) is a schematic view showing a furnace internal structure of a quenched product according to a conventional method. (B) It is the schematic which showed the furnace internal structure of the slow cooling product by an upper heat retention type. (C) It is the schematic which showed an example of the furnace internal structure at the time of implementing this invention.

【図3】各炉内構造に対する結晶冷却過程を示した図で
ある。
FIG. 3 is a diagram showing a crystal cooling process for each in-furnace structure.

【図4】各結晶冷却過程に対する、COPの結果を示し
た図である。
FIG. 4 is a diagram showing the results of COP for each crystal cooling process.

【図5】COPとFPDの関係を示した図である。FIG. 5 is a diagram showing a relationship between COP and FPD.

【符号の説明】[Explanation of symbols]

1…チャンバー 2…シリコン単結晶 3…ルツボ 4…カーボンヒーター 5…断熱材 6…上部伸長断熱材 7…本発明用断熱材 DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Silicon single crystal 3 ... Crucible 4 ... Carbon heater 5 ... Thermal insulation material 6 ... Upper extension thermal insulation material 7 ... Thermal insulation material for this invention

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岸 浩利 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内 (72)発明者 桜田 昌弘 福島県西白河郡西郷村大字小田倉字太平 150番地信越半導体株式会社白河工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hirotoshi Yamagishi, inventor Hirotoshi Yamagishi, 2-13-1, Isobe, Annaka-shi, Gunma, Shin-Etsu Semiconductor Co., Ltd., Semiconductor Isobe Research Laboratory (72) Masahiro Sakurada Odakura, Nishigomura, Nishishirakawa-gun, Fukushima Prefecture No. 150 Taihei, Shin-Etsu Semiconductor Co., Ltd. Shirakawa factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法によってシリコン単
結晶を製造する場合において、育成されるシリコン単結
晶が結晶成長時にシリコンの融点から 1,200℃までの高
温域を通過する時間が 200分以上となるようにし、 1,2
00℃から 1,000℃までの低温域を通過する時間が 150分
以下となるようにすることを特徴とする、シリコン単結
晶の製造方法。
1. When manufacturing a silicon single crystal by the Czochralski method, the time during which the grown silicon single crystal passes through a high temperature range from the melting point of silicon to 1,200 ° C. during crystal growth is 200 minutes or more. And then 1,2
A method for producing a silicon single crystal, wherein the time for passing through a low temperature range from 00 ° C to 1,000 ° C is 150 minutes or less.
JP13427494A 1994-06-16 1994-06-16 Method for producing silicon single crystal with few crystal defects Expired - Lifetime JP2822887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13427494A JP2822887B2 (en) 1994-06-16 1994-06-16 Method for producing silicon single crystal with few crystal defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13427494A JP2822887B2 (en) 1994-06-16 1994-06-16 Method for producing silicon single crystal with few crystal defects

Publications (2)

Publication Number Publication Date
JPH082993A true JPH082993A (en) 1996-01-09
JP2822887B2 JP2822887B2 (en) 1998-11-11

Family

ID=15124456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13427494A Expired - Lifetime JP2822887B2 (en) 1994-06-16 1994-06-16 Method for producing silicon single crystal with few crystal defects

Country Status (1)

Country Link
JP (1) JP2822887B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030195A1 (en) * 1996-02-14 1997-08-21 Shin-Etsu Handotai Co., Ltd. Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
DE10154527A1 (en) * 2000-02-08 2003-05-15 Sumitomo Mitsubishi Silicon High-quality silicon single crystal production device has a cooling member surrounding a single crystal to be pulled up and having an inner peripheral surface coaxial with a pulling-up shaft
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density
JP2009035481A (en) * 2008-09-24 2009-02-19 Shin Etsu Handotai Co Ltd Silicon single crystal wafer
WO2013136666A1 (en) * 2012-03-16 2013-09-19 信越半導体株式会社 Method for producing silicon single crystal wafer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030195A1 (en) * 1996-02-14 1997-08-21 Shin-Etsu Handotai Co., Ltd. Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
US6071337A (en) * 1996-02-14 2000-06-06 Shin-Etsu Handotai Co., Ltd Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density
JP2011042576A (en) * 1996-09-12 2011-03-03 Siltronic Ag Method of manufacturing silicon semiconductor wafer having low defect density
DE10154527A1 (en) * 2000-02-08 2003-05-15 Sumitomo Mitsubishi Silicon High-quality silicon single crystal production device has a cooling member surrounding a single crystal to be pulled up and having an inner peripheral surface coaxial with a pulling-up shaft
US6702892B2 (en) 2000-02-08 2004-03-09 Sumitomo Mitsubishi Silicon Corporation Production device for high-quality silicon single crystals
JP2009035481A (en) * 2008-09-24 2009-02-19 Shin Etsu Handotai Co Ltd Silicon single crystal wafer
WO2013136666A1 (en) * 2012-03-16 2013-09-19 信越半導体株式会社 Method for producing silicon single crystal wafer
JP2013193897A (en) * 2012-03-16 2013-09-30 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal wafer
KR20140135981A (en) * 2012-03-16 2014-11-27 신에쯔 한도타이 가부시키가이샤 Method for producing silicon single crystal wafer
US9650725B2 (en) 2012-03-16 2017-05-16 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a defect-controlled low-oxygen concentration silicon single crystal wafer
DE112013001054B4 (en) 2012-03-16 2022-12-15 Shin-Etsu Handotai Co., Ltd. Method of manufacturing a silicon single crystal wafer

Also Published As

Publication number Publication date
JP2822887B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP3285111B2 (en) Method for producing silicon single crystal with few crystal defects
JP3994602B2 (en) Silicon single crystal wafer, manufacturing method thereof, and SOI wafer
TWI471940B (en) Silicon substrate manufacturing method and silicon substrate
JP4853027B2 (en) Method for producing silicon single crystal wafer
JP3919308B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal and silicon wafer produced by this method
JPH08337490A (en) Silicon single crystal almost free from crystal defect and its production
US6139625A (en) Method for producing a silicon single crystal wafer and a silicon single crystal wafer
JP4020987B2 (en) Silicon single crystal having no crystal defects around the wafer and its manufacturing method
JP2000001391A (en) Silicon single crystal wafer and its production
JPWO2010119614A1 (en) Annealed wafer, method for manufacturing annealed wafer, and method for manufacturing device
JP2007194232A (en) Process for producing silicon single crystal wafer
JP2004134439A (en) Annealing wafer and its manufacturing method
KR100932742B1 (en) Silicon single crystal wafer, epitaxial wafer and silicon single crystal manufacturing method
TWI534310B (en) Silicon substrate manufacturing method and silicon substrate
JP2001278692A (en) Manufacturing method of silicon wafer and single crystal silicon
JPH0393700A (en) Heat treating method and device of silicon single crystal and production device thereof
JP3614019B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JP4196602B2 (en) Epitaxial growth silicon wafer, epitaxial wafer, and manufacturing method thereof
JP2004083346A (en) Silicon single crystal wafer for particle monitor, and its manufacture method
JP2822887B2 (en) Method for producing silicon single crystal with few crystal defects
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
JP2003243404A (en) Method of manufacturing annealed wafer and annealed wafer
JPH11322491A (en) Production of silicon single crystal wafer and silicon single crystal wafer
JPH08208374A (en) Silicon single crystal and its production
JP4715402B2 (en) Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080904

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term