JPH08298030A - Superconducting wire - Google Patents

Superconducting wire

Info

Publication number
JPH08298030A
JPH08298030A JP7102044A JP10204495A JPH08298030A JP H08298030 A JPH08298030 A JP H08298030A JP 7102044 A JP7102044 A JP 7102044A JP 10204495 A JP10204495 A JP 10204495A JP H08298030 A JPH08298030 A JP H08298030A
Authority
JP
Japan
Prior art keywords
filament
resistance layer
superconducting
superconducting wire
stabilizing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7102044A
Other languages
Japanese (ja)
Inventor
Tatsuo Shimada
達夫 島田
Katsunori Wada
克則 和田
Masaru Ikeda
▲まさる▼ 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP7102044A priority Critical patent/JPH08298030A/en
Publication of JPH08298030A publication Critical patent/JPH08298030A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To provide a superconducting wire in which a superconducting filament is hardly damaged at drawing work even if a stabilizing member on the outer circumference of a filament composite part is divided by a resistance layer. CONSTITUTION: A stabilizing material part 5 consisting of oxygen free copper is provided on the peripheral part of a filament composite part including a Nb-Ti filament 1 and steady conductive matrixes 2, 3, and the stabilizing material part 5 is divided by a resistance layer 6. In the resistance layer 6, the route extending from the inner end in section to the outer end is inclined to the radial direction. Thus, the resistance layer 6 never locally compresses the Nb-Ti filament 11 at drawing work, and a superconducting wire of high quality minimized in damage of a superconducting filament can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パルス電流や交流電流
を流すのに使用される超電導線に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire used for passing a pulse current or an alternating current.

【0002】[0002]

【従来技術】超電導線は、多数の超電導フィラメントを
常電導マトリクス中に埋め込んだ構造を有している。超
電導フィラメントとしては実用レベルではNb−Tiフ
ィラメントが多用されている。常電導マトリクスとして
は一般に無酸素銅が用いられ、特に高抵抗を必要とする
部分には銅合金が用いられている。
2. Description of the Related Art A superconducting wire has a structure in which a large number of superconducting filaments are embedded in a normal conducting matrix. As a superconducting filament, Nb-Ti filament is often used at a practical level. Oxygen-free copper is generally used as the normal-conducting matrix, and a copper alloy is used particularly in a portion requiring high resistance.

【0003】超電導線にパルス電流や交流電流を流す
と、変動磁界に基づく交流損失が発生する。交流損失
は、ヒステリシス損失と、結合損失と、渦電流損失とに
分けられる。超電導線の交流損失を低減するためには、
その各々について低減対策をとる必要がある。
When a pulse current or an alternating current is passed through the superconducting wire, an alternating loss due to the fluctuating magnetic field occurs. AC loss is divided into hysteresis loss, coupling loss, and eddy current loss. To reduce the AC loss of the superconducting wire,
It is necessary to take reduction measures for each of them.

【0004】このうち結合損失の低減対策としては、N
b−Tiフィラメントを1本毎または複数本毎に抵抗層
で包囲することが有効である。この対策は、フィラメン
トを包囲する抵抗層によってフィラメント間に流れる結
合電流を小さくし、結合電流による損失を低減しようと
するものである。
Of these, as a measure for reducing the coupling loss, N
It is effective to surround the b-Ti filaments one by one or a plurality of each with a resistance layer. This measure is intended to reduce the coupling current flowing between the filaments by the resistance layer surrounding the filaments and to reduce the loss due to the coupling current.

【0005】また渦電流損失の低減対策としては、超電
導フィラメントと常電導マトリクスとを含むフィラメン
ト複合部の外周に設けられた安定化材部を、複数の抵抗
層により周方向に複数に区分することが有効である(特
開昭59−79905号公報、特開昭63−37515
号公報等)。この対策は、フィラメント複合部の外周に
設けられた安定化材部に流れる渦電流を抵抗層で分断し
て、渦電流のパスを短くし、渦電流による損失を低減し
ようとするものである。
As a measure for reducing the eddy current loss, the stabilizing material portion provided on the outer periphery of the filament composite portion including the superconducting filament and the normal conducting matrix is divided into a plurality of portions in the circumferential direction by a plurality of resistance layers. Are effective (JP-A-59-79905 and JP-A-63-37515).
No. The countermeasure is to divide the eddy current flowing in the stabilizing material portion provided on the outer periphery of the filament composite portion by the resistance layer to shorten the eddy current path and reduce the loss due to the eddy current.

【0006】このような結合損失および渦電流損失の低
減対策を施した従来の超電導線の断面を図5に示す。図
において、1はNb−Tiフィラメント、2は無酸素銅
層、3はフィラメント1を包囲する抵抗層、4は抵抗バ
リア、5は無酸素銅からなる安定化材部、6は安定化材
部5に放射状に埋め込まれた抵抗層である。従来、抵抗
層3、抵抗バリア4および抵抗層6としては、無酸素銅
より十分比抵抗の高いCu−Ni合金が使用されてい
た。その組成は一般にCu−10wt%Niである。
FIG. 5 shows a cross section of a conventional superconducting wire in which measures for reducing such coupling loss and eddy current loss are taken. In the figure, 1 is a Nb-Ti filament, 2 is an oxygen-free copper layer, 3 is a resistance layer surrounding the filament 1, 4 is a resistance barrier, 5 is a stabilizer made of oxygen-free copper, and 6 is a stabilizer. 5 is a resistance layer that is radially embedded. Conventionally, a Cu—Ni alloy having a sufficiently higher specific resistance than oxygen-free copper has been used for the resistance layer 3, the resistance barrier 4, and the resistance layer 6. Its composition is generally Cu-10 wt% Ni.

【0007】[0007]

【発明が解決しようとする課題】上記のように構成され
た従来の超電導線は、伸線加工を行う際に次のような問
題のあることが判明した。すなわち、最外層の安定化材
部に埋め込まれている抵抗層は銅合金であるため、無酸
素銅より高強度である。このような高強度の抵抗層が最
外層部に放射状(径方向に)に埋め込まれていると、伸
線加工の際に、抵抗層が加工応力に対する突っ張り部材
として作用し、抵抗層の部分が加工され難い。このため
抵抗層の部分に加工応力が集中して、内部のNb−Ti
フィラメントを局所圧縮するようになり、Nb−Tiフ
ィラメントの変形、損傷、破断が発生しやすい。
It has been found that the conventional superconducting wire constructed as described above has the following problems when it is subjected to wire drawing. That is, since the resistance layer embedded in the stabilizing material portion of the outermost layer is a copper alloy, it has higher strength than oxygen-free copper. When such a high-strength resistance layer is radially (radially) embedded in the outermost layer portion, the resistance layer acts as a tension member against processing stress during wire drawing, and the resistance layer portion is Hard to process. Therefore, the processing stress concentrates on the resistance layer portion, and the Nb-Ti inside
As the filament is locally compressed, the Nb-Ti filament is likely to be deformed, damaged or broken.

【0008】本発明の目的は、以上のような問題点に鑑
み、フィラメント複合部の外周の安定化材部が抵抗層に
より区分されていても、伸線加工の際に超電導フィラメ
ントの損傷等が発生し難い超電導線を提供することにあ
る。
In view of the above problems, an object of the present invention is to prevent damage to the superconducting filament during wire drawing even if the stabilizing material portion on the outer periphery of the filament composite portion is divided by the resistance layer. It is to provide a superconducting wire that is hard to generate.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
本発明は超電導線を次のように構成したものである。す
なわち、超電導フィラメントと常電導マトリクスとを含
むフィラメント複合部の外周部に安定化材部を有し、前
記安定化材部は複数の抵抗層により周方向に複数に区分
されており、前記抵抗層は、断面における内端から外端
に至る経路が、径方向に対し傾いているか、屈曲してい
る、構成としたものである。
In order to achieve this object, the present invention comprises a superconducting wire as follows. That is, a stabilizing material portion is provided on an outer peripheral portion of a filament composite portion including a superconducting filament and a normal conducting matrix, and the stabilizing material portion is divided into a plurality of circumferential portions by a plurality of resistance layers. Is configured such that the path from the inner end to the outer end in the cross section is inclined or bent with respect to the radial direction.

【0010】[0010]

【作用】このようにすると、伸線加工の際に線材外周面
にほぼ垂直に加わる加工応力は、安定化材部内の抵抗層
を傾けたり、曲げたりする方向の力として加わり、抵抗
層が加工応力に対する突っ張り部材として作用すること
がなくなる。このため抵抗層が放射方向(径方向)に配
置されている場合より、内部の超電導フィラメントを局
所圧縮する力を大幅に軽減できる。
By doing so, the processing stress applied almost perpendicularly to the wire rod outer peripheral surface during wire drawing is applied as a force in the direction of tilting or bending the resistance layer in the stabilizing material portion, and the resistance layer is processed. It does not act as a tension member against stress. Therefore, the force for locally compressing the internal superconducting filament can be significantly reduced as compared with the case where the resistance layer is arranged in the radial direction (radial direction).

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1は本発明の一実施例を示す。この超電
導線が図5に示した従来の超電導線と異なる点は、無酸
素銅からなる安定化材部5内に抵抗層6が径方向に対し
傾いた状態で(すなわち抵抗層6の断面における内端か
ら外端に至る経路が、径方向に対し傾いた状態で)埋め
込まれていることである。それ以外は図5と同じである
ので、同一部分には同一符号を付してある。上記のよう
に埋め込まれた抵抗層6は、伸線加工の際に無酸素銅安
定化材部5に挟まれて圧縮されるような加工応力を受け
ることになり、内部のNb−Tiフィラメント1を局所
圧縮することが大幅に少なくなる。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention. This superconducting wire differs from the conventional superconducting wire shown in FIG. 5 in that the resistance layer 6 is inclined in the radial direction in the stabilizing material part 5 made of oxygen-free copper (that is, in the cross section of the resistance layer 6). The path from the inner end to the outer end is embedded (inclined with respect to the radial direction). Since the other parts are the same as those in FIG. 5, the same parts are designated by the same reference numerals. The resistance layer 6 embedded as described above receives a processing stress such that the resistance layer 6 is sandwiched between the oxygen-free copper stabilizing material portions 5 and compressed during wire drawing, and the internal Nb-Ti filaments 1 are Local compression is significantly reduced.

【0012】次に図1の超電導線の試作例を説明する。
Cu−10wt%Ni/無酸素銅/Nb−Ti=0.35
/0.30/1の面積比の一次六角素線8860本と、
同じサイズの無酸素銅六角素線(安定化材用)およびC
u−10wt%Ni六角素線(抵抗層およびバリア用)を
用い、図1のような断面になるように総本数18000
本の完全六角組立てを行い、その外周を無酸素銅管で包
んだ後、両端面に無酸素銅蓋をはめ、真空中で電子ビー
ム溶接により封着を行って、複合ビレットを製造した。
Next, a prototype of the superconducting wire shown in FIG. 1 will be described.
Cu-10 wt% Ni / oxygen-free copper / Nb-Ti = 0.35
8860 primary hexagonal wires with an area ratio of /0.30/1,
Oxygen-free copper hexagonal wire of the same size (for stabilizing material) and C
Using u-10 wt% Ni hexagonal wire (for resistance layer and barrier), the total number of wires is 18,000 so that the cross section is as shown in FIG.
A complete hexagonal assembly of the book was performed, the outer circumference was wrapped with an oxygen-free copper tube, oxygen-free copper lids were attached to both end faces, and sealing was performed by electron beam welding in vacuum to manufacture a composite billet.

【0013】この複合ビレットを熱間押出した後、途中
で中間熱処理を施しつつ、冷間伸線加工および皮剥き加
工を行って、超電導線を製造した。皮剥き加工では前記
無酸素銅管の部分を除去した。得られた超電導線の外径
は0.59mmφ、Nb−Tiフィラメント径は3.5
μmである。この超電導線を実施例品という。
After this composite billet was hot extruded, cold drawing and stripping were performed while intermediate heat treatment was performed to manufacture a superconducting wire. In the peeling process, the oxygen-free copper tube portion was removed. The obtained superconducting wire has an outer diameter of 0.59 mm and a Nb-Ti filament diameter of 3.5.
μm. This superconducting wire is called an example product.

【0014】また比較のため、同じ条件で図5の断面の
超電導線を製造した。この超電導線を従来品という。両
超電導線の臨界電流密度およびヒステリシス損失(5T
バイアス±1T)の測定結果を表1に示す。実施例品の
臨界電流密度は従来品に比べ6%向上している。また実
施例品のヒステリシス損失は従来品に比べ5%低下して
いる。これは安定化材部の抵抗層付近でフィラメントの
異常変形が従来品より少ないためである。
For comparison, a superconducting wire having a cross section of FIG. 5 was manufactured under the same conditions. This superconducting wire is called a conventional product. Critical current density and hysteresis loss of both superconducting wires (5T
Table 1 shows the measurement results of bias ± 1T. The critical current density of the example product is improved by 6% as compared with the conventional product. In addition, the hysteresis loss of the example product is 5% lower than that of the conventional product. This is because there is less abnormal deformation of the filament in the vicinity of the resistance layer of the stabilizing member than in the conventional product.

【0015】また両超電導線に厚さ5μmの有機絶縁物
を被覆したものをそれぞれ7本撚りし、さらにその7本
撚線を11本撚り合わせて偏平に圧縮成形して圧縮成形
撚線を製造した。このときフィラメントが損傷を受けな
い限界のボイド率をもって、超電導線の加工性を評価し
た。その結果を表1に示す。なおボイド率Fは次のよう
に定義される。
Further, each of the superconducting wires coated with an organic insulator having a thickness of 5 μm is twisted into 7 pieces, and 11 pieces of the 7 pieces of twisted wires are twisted together and flatly compression molded to produce a compression molded twisted wire. did. At this time, the workability of the superconducting wire was evaluated with a void ratio of the limit at which the filament was not damaged. Table 1 shows the results. The void ratio F is defined as follows.

【0016】[0016]

【数1】F=[1−{(π/4)×d0 2 ×m×n}/
(t×w)]×100% ただし d0 :超電導線の直径 m :1次撚り本数(=7本) n :2次撚り本数(=11本) t :圧縮成形撚線の厚さ w :圧縮成形撚線の幅
## EQU1 ## F = [1-{(π / 4) × d 0 2 × m × n} /
(T × w)] × 100% where d 0 : diameter of superconducting wire m: number of primary twists (= 7) n: number of secondary twists (= 11) t: thickness of compression molded twisted wire w: Width of compression molded stranded wire

【0017】[0017]

【表1】 [Table 1]

【0018】このように本発明の超電導線を使用する
と、ボイド率が低下し、剛性の高い超電導撚線が得られ
る。この結果、ワイヤームーブメントによるクエンチが
起こりにくい超電導撚線が得られる。
As described above, when the superconducting wire of the present invention is used, the void ratio is lowered and a superconducting stranded wire having high rigidity can be obtained. As a result, it is possible to obtain a superconducting stranded wire which is unlikely to be quenched by the wire movement.

【0019】図2は本発明の他の実施例を示す。この超
電導線は、無酸素銅の安定化材部5内に抵抗層6がクラ
ンク形に屈曲された状態で(すなわち抵抗層6の断面に
おける内端から外端に至る経路がクランク形に屈曲され
た状態で)埋め込まれているものである。それ以外は図
1の実施例と同様である。このような構造でも図1の実
施例と同様の効果が得られる。
FIG. 2 shows another embodiment of the present invention. This superconducting wire is in a state in which the resistance layer 6 is bent in a crank shape in the stabilizing material portion 5 of oxygen-free copper (that is, the path from the inner end to the outer end in the cross section of the resistance layer 6 is bent in a crank shape. It is embedded. Other than that is the same as the embodiment of FIG. With such a structure, the same effect as that of the embodiment of FIG. 1 can be obtained.

【0020】図3は本発明のさらに他の実施例を示す。
この超電導線は、無酸素銅の安定化材部5内に抵抗層6
がほぼ「く」字形に折り曲げられた状態で(すなわち抵
抗層6の断面における内端から外端に至る経路がほぼ
「く」字形に屈曲された状態で)埋め込まれているもの
である。それ以外は図1の実施例と同様である。このよ
うな構造でも図1の実施例と同様の効果が得られる。
FIG. 3 shows still another embodiment of the present invention.
This superconducting wire has a resistance layer 6 in the stabilizing member 5 made of oxygen-free copper.
Are embedded in a state of being bent into a substantially "V" shape (that is, in a state where the path from the inner end to the outer end in the cross section of the resistance layer 6 is bent into a substantially "C" shape). Other than that is the same as the embodiment of FIG. With such a structure, the same effect as that of the embodiment of FIG. 1 can be obtained.

【0021】図4は本発明のさらに他の実施例を示す。
この超電導線は、無酸素銅の安定化材部5に抵抗層6
が、内端部を径方向に向け、それより外端側を径方向に
対し傾けた状態で(すなわち抵抗層6の断面における内
端から外端に至る経路がほぼ「へ」字形に屈曲された状
態で)埋め込まれているものである。それ以外は図1の
実施例と同様である。このような構造でも図1の実施例
と同様の効果が得られる。
FIG. 4 shows still another embodiment of the present invention.
This superconducting wire has a resistance layer 6 on the stabilizing material part 5 of oxygen-free copper.
However, in a state where the inner end portion is oriented in the radial direction and the outer end side is inclined with respect to the radial direction (that is, the path from the inner end to the outer end in the cross section of the resistance layer 6 is bent into a substantially “V” shape. It is embedded. Other than that is the same as the embodiment of FIG. With such a structure, the same effect as that of the embodiment of FIG. 1 can be obtained.

【0022】なお上記各実施例において、抵抗層6の断
面における内端部からの他の部分の周方向への最大変位
量は、図示のように抵抗層6の厚さより大きくしておく
ことが望ましい。このようにすれば、より確実にフィラ
メントの変形、損傷、破断を防止できる。また抵抗層6
としては、Cu−Ni合金以外の銅合金を使用すること
もできる。
In each of the above embodiments, the maximum displacement in the circumferential direction of the other portion from the inner end portion in the cross section of the resistance layer 6 should be larger than the thickness of the resistance layer 6 as shown in the figure. desirable. By doing so, it is possible to more reliably prevent the filament from being deformed, damaged, or broken. In addition, the resistance layer 6
As the copper alloy, a copper alloy other than the Cu-Ni alloy can be used.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、フ
ィラメント複合部の外周の安定化材部を区分する抵抗層
が、伸線加工の際に、超電導フィラメントを局所圧縮す
ることが少なくなり、超電導フィラメントの損傷等が少
ない高品質の超電導線を得ることができる。
As described above, according to the present invention, the resistance layer for partitioning the stabilizing material portion on the outer periphery of the filament composite portion is less likely to locally compress the superconducting filament during wire drawing. A high-quality superconducting wire with less damage to the superconducting filament can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による超電導線の一実施例を示す断面
図。
FIG. 1 is a sectional view showing an embodiment of a superconducting wire according to the present invention.

【図2】 本発明による超電導線の他の実施例を示す断
面図。
FIG. 2 is a sectional view showing another embodiment of the superconducting wire according to the present invention.

【図3】 本発明による超電導線のさらに他の実施例を
示す断面図。
FIG. 3 is a sectional view showing still another embodiment of the superconducting wire according to the present invention.

【図4】 本発明による超電導線のさらに他の実施例を
示す断面図。
FIG. 4 is a sectional view showing still another embodiment of the superconducting wire according to the present invention.

【図5】 従来の超電導線を示す断面図。FIG. 5 is a sectional view showing a conventional superconducting wire.

【符号の説明】[Explanation of symbols]

1:Nb−Tiフィラメント 2:無酸素銅層 3:抵抗層 4:抵抗バリア 5:安定化材部 6:抵抗層 1: Nb-Ti filament 2: Oxygen-free copper layer 3: Resistive layer 4: Resistive barrier 5: Stabilizing material part 6: Resistive layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超電導フィラメントと常電導マトリクスと
を含むフィラメント複合部の外周部に安定化材部を有
し、 前記安定化材部は複数の抵抗層により周方向に複数に区
分されており、 前記抵抗層は、断面における内端から外端に至る経路
が、径方向に対し傾いているか、屈曲している、超電導
線。
1. A stabilizing material portion is provided on an outer peripheral portion of a filament composite portion including a superconducting filament and a normal conducting matrix, and the stabilizing material portion is divided into a plurality of portions in the circumferential direction by a plurality of resistance layers, The resistance layer is a superconducting wire in which a path from an inner end to an outer end in a cross section is inclined or bent with respect to a radial direction.
JP7102044A 1995-04-26 1995-04-26 Superconducting wire Pending JPH08298030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102044A JPH08298030A (en) 1995-04-26 1995-04-26 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102044A JPH08298030A (en) 1995-04-26 1995-04-26 Superconducting wire

Publications (1)

Publication Number Publication Date
JPH08298030A true JPH08298030A (en) 1996-11-12

Family

ID=14316782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102044A Pending JPH08298030A (en) 1995-04-26 1995-04-26 Superconducting wire

Country Status (1)

Country Link
JP (1) JPH08298030A (en)

Similar Documents

Publication Publication Date Title
US12073958B2 (en) Diffusion barriers for metallic superconducting wires
CN107850745A (en) The manufacture of the superconductivity wire of reinforcing
GB1576416A (en) Stabilised super-conductor
JPH08298030A (en) Superconducting wire
JP2011124575A (en) Superconductor with improved mechanical strength
JP3670888B2 (en) Superconducting wire for alternating current and its manufacturing method
GB1569983A (en) Super conductor
JPH11238418A (en) Compound superconductive wire
JP3018663B2 (en) Nb-Ti alloy superconducting wire
JP2876667B2 (en) Aluminum stabilized superconducting wire
US20220051833A1 (en) Diffusion barriers for metallic superconducting wires
JPH065130A (en) Composite multi-core nbti superconductive wire
JPH09245539A (en) Superconductive wire
JPH0589726A (en) Nbyi superconductive wire
JPH0982149A (en) Nb3sn superconducting wire excellent in strength and workability
JP3104329B2 (en) Manufacturing method of aluminum stabilizer for superconducting conductor
JP2000348547A (en) Superconductor and manufacture thereof
JPH05804B2 (en)
JP2004152677A (en) High-strength superconducting wire rod
JP3608232B2 (en) Nb3Sn superconducting wire
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH08227622A (en) Superconducting wire
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof
JPH06295626A (en) Nbti superconducting material for pulse