JPH08293321A - Manufacture of beta-alumina tube - Google Patents

Manufacture of beta-alumina tube

Info

Publication number
JPH08293321A
JPH08293321A JP7124205A JP12420595A JPH08293321A JP H08293321 A JPH08293321 A JP H08293321A JP 7124205 A JP7124205 A JP 7124205A JP 12420595 A JP12420595 A JP 12420595A JP H08293321 A JPH08293321 A JP H08293321A
Authority
JP
Japan
Prior art keywords
cylindrical
alumina
straightness
refractory container
roundness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7124205A
Other languages
Japanese (ja)
Inventor
Kozo Soga
曽我幸三
Koji Funaki
舟木浩二
Kenji Murakami
村上健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP7124205A priority Critical patent/JPH08293321A/en
Publication of JPH08293321A publication Critical patent/JPH08293321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To uniform the scattering of Na2 O from a β-alumina compact at baking and improve the dimensional precision by putting the bottomed cylindrical β-alumina compact in a specified cylindrical fire resisting vessel with the opening end side down followed by baking. CONSTITUTION: A pelleted powder obtained by adding a binder, as occasion demands, to an electromelting MgO powder having a MgO purity of 99.5wt.% or more and a maximum particle size 100μm or less followed by wet mixing, and atomizing and drying the resulting mixture is press molded followed by baking to provide a cylindrical fire resisting vessel 21 having a roundness of inner wall surface <=1.03 and a straightness <=0.2%. A bottomed cylindrical β-alumina compact 25 is set in the space formed of the vessel 21, and an upper lid 22 and a lower lid 23 of the same material with the opening end side down, and baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Na−S電池用の固体
電解質管として使用されるβ−アルミナ管を、高い寸法
精度で焼成することができるβ−アルミナ管の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a β-alumina tube capable of firing a β-alumina tube used as a solid electrolyte tube for a Na-S battery with high dimensional accuracy. .

【0002】[0002]

【従来の技術】有底円筒状β−アルミナ管の焼成方法と
して、焼成中のβ−アルミナ成形体に含まれるNa2
の飛散によるβ−アルミナ管のイオン伝導性の低下、お
よびその機械的強度の低下を防止するため以下のような
焼成法が提案されている。例えば白金系金属製容器、
白金系金属を内壁面に被覆した耐火性容器、MgO
系耐火性容器などにβ−アルミナ成形体を収容してNa
2Oの飛散を防止し、大気中で加熱焼成する方法であ
る。は容器が高価であり、はその欠点を解消するも
のであるが、白金系金属と耐火性容器の熱膨張差等によ
る白金系金属の被覆の剥離等の発生のため必ずしも満足
できるものではなかった。のMgO系耐火性容器はこ
れらの欠点がなく、さらにNa2Oの飛散に伴う上記不
具合を防ぐβ−アルミナ管の焼成容器として注目されて
いる。
2. Description of the Related Art As a firing method for a bottomed cylindrical β-alumina tube, Na 2 O contained in a β-alumina compact being fired is used.
The following firing methods have been proposed in order to prevent the decrease in ionic conductivity of the β-alumina tube due to the scattering of carbon dioxide and the decrease in its mechanical strength. For example, a platinum metal container,
Refractory container with platinum-based metal coated on the inner wall, MgO
The β-alumina molded body is stored in a refractory container such as Na
It is a method of preventing 2 O from scattering and heating and firing in the air. Is an expensive container, and eliminates its drawbacks, but it is not always satisfactory because the platinum-based metal and the refractory container cause peeling of the platinum-based metal coating due to the difference in thermal expansion, etc. . The MgO-based refractory container described above does not have these drawbacks, and is attracting attention as a firing container for β-alumina tubes that prevents the above-mentioned problems caused by the scattering of Na 2 O.

【0003】ところで、有底円筒状β−アルミナ管がN
a−S電池に用いられる場合には高い寸法精度が要求さ
れる。要求に対応すべく、成形体作製の際に旋盤等で切
削加工を施して成形体自体の寸法精度を上げる手段がと
られている。一方、β−アルミナ成形体をMgO系耐火
性容器内に収容する場合であっても、容器の内壁面と成
形体との間隔にばらつきがあると、焼成時にβ−アルミ
ナ成形体からのNa2Oの飛散量に部分的なばらつきが
起こり、β−アルミナ粒子の成長が部分的に不均質とな
り、β−アルミナ管の変形が発生する可能性がある。ま
た同時にβ−アルミナ管の均一なイオン伝導性、均一な
機械的強度が損なわれる可能性がある。そこで容器の内
壁面と成形体との間隔が一定に保たれるように、位置決
め用の構造をMgO系耐火性容器に設けたり(特開平3
−88278号公報)、倒立して設置するβ−アルミナ
成形体のセッタ−として成形体と同じ焼成割掛率の材料
を用いた生セッタ−を用いる(特開平5−58511号
公報)などの提案がある。しかし、これらの方法を採っ
たとしても、円筒状耐火性容器自体の寸法精度が低けれ
ば、容器の内壁面と成形体との間隔が一定に保たれな
い。
By the way, the bottomed cylindrical β-alumina tube is
When used in an aS battery, high dimensional accuracy is required. In order to meet the demand, a means has been taken to increase the dimensional accuracy of the molded body itself by performing cutting processing with a lathe or the like when manufacturing the molded body. On the other hand, even when the β-alumina molded body is housed in the MgO-based refractory container, if there is a variation in the distance between the inner wall surface of the container and the molded body, Na 2 from the β-alumina molded body during firing is changed. There is a possibility that the amount of scattered O will partially vary, the growth of β-alumina particles will be partially heterogeneous, and the β-alumina tube will be deformed. At the same time, the uniform ionic conductivity and uniform mechanical strength of the β-alumina tube may be impaired. Therefore, a structure for positioning is provided in the MgO-based refractory container so that the space between the inner wall surface of the container and the molded body is kept constant (Japanese Patent Application Laid-Open No. Hei 3 (1999) -312058).
-88278), and a raw setter using a material having the same firing cracking ratio as that of the formed body as a setter of the β-alumina formed body installed upside down (JP-A-5-58511). There is. However, even if these methods are adopted, if the dimensional accuracy of the cylindrical refractory container itself is low, the interval between the inner wall surface of the container and the molded body cannot be kept constant.

【0004】[0004]

【発明が解決しようとする課題】本発明は、有底円筒状
β−アルミナ成形体を円筒状耐火性容器内に開口端側を
下にし倒立させて焼成するにあたり、円筒状耐火性容器
の内壁面と有底円筒状β−アルミナ成形体との間隔のば
らつきを低減することにより、焼成時にβ−アルミナ成
形体からのNa2Oの飛散量が均一化され、真円度、真
直度などで表される寸法精度に優れたβ−アルミナ管を
製造する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, when a bottomed cylindrical β-alumina molded body is fired by inverting the open end side in a cylindrical refractory container and inverting it, By reducing the variation in the distance between the wall surface and the bottomed cylindrical β-alumina formed body, the amount of Na 2 O scattered from the β-alumina formed body is made uniform during firing, and the roundness and straightness can be improved. It is an object of the present invention to provide a method for producing a β-alumina tube having excellent dimensional accuracy.

【0005】[0005]

【問題を解決するための手段】上記目的を達成するため
の本発明は、有底円筒状β−アルミナ成形体を円筒状耐
火性容器内に開口端側を下にし倒立させて焼成するにあ
たり、該円筒状耐火性容器の内壁面が真円度≦1.0
3、真直度≦0.2%であることを特徴とするβ−アル
ミナ管の製造方法を要旨とする。
Means for Solving the Problems The present invention for achieving the above-mentioned object is to bake a bottomed cylindrical β-alumina formed body in a cylindrical refractory container with its open end side facing down and inverted. The inner wall surface of the cylindrical refractory container has a circularity of ≦ 1.0.
3. The method of manufacturing a β-alumina tube is characterized in that the straightness is ≦ 0.2%.

【0006】もちろん円筒状耐火性容器内にβ−アルミ
ナ成形体を開口端側を下にし倒立させて焼成する際に、
焼成雰囲気を保持するために円筒状耐火性容器の上下を
密閉する必要がある。このため円筒状耐火性容器と同材
質からなる上蓋と下蓋を用意し、それらと円筒状耐火性
容器によって密閉空間を形成させる。また上蓋の内壁面
となる面とβ−アルミナ成形体底部との間隔も、円筒状
耐火性容器の内壁面とβ−アルミナ成形体との間隔に近
づけるのが好ましい。なお円筒状耐火性容器や上蓋、下
蓋の材質としてはMgO系またはMgO−Al23系か
らなる緻密質セラミック体を用いることが好ましい。
Of course, when firing the β-alumina molded body in a cylindrical refractory container with the open end side facing down,
In order to maintain the firing atmosphere, it is necessary to seal the top and bottom of the cylindrical refractory container. Therefore, an upper lid and a lower lid made of the same material as the cylindrical refractory container are prepared, and these and the cylindrical refractory container form a closed space. Further, the distance between the inner wall surface of the upper lid and the bottom of the β-alumina molded body is preferably close to the distance between the inner wall surface of the cylindrical refractory container and the β-alumina molded body. As a material for the cylindrical refractory container, the upper lid and the lower lid, it is preferable to use a dense ceramic body made of MgO or MgO-Al 2 O 3 .

【0007】ここで言う真円度とは、円筒形状体の中心
軸に垂直な断面での内壁面の(最大径/最小径)で表さ
れる値である。また真直度とは、円筒形状体の一端面を
基準面とする場合の円筒形状体の中心軸と、実際の内壁
面の中心軸との歪みの大きさを表すものである。しかし
ここでは簡略に評価するため円筒形状体の一端面を基準
面上におき、円筒形状体の長さ方向における任意の位置
の内壁断面を全長にわたって前記基準面上に垂直に投影
してできる写像と、前記一端面における内壁面との最大
のずれの大きさをdとし、また円筒形状体の全長をLと
して、d/Lの百分率で表すことする。
The circularity referred to here is a value represented by (maximum diameter / minimum diameter) of the inner wall surface in a cross section perpendicular to the central axis of the cylindrical body. The straightness represents the magnitude of distortion between the central axis of the cylindrical body and the actual central axis of the inner wall surface when the one end surface of the cylindrical body is used as the reference surface. However, here, for simple evaluation, one end face of the cylindrical body is placed on the reference plane, and a mapping is made by projecting the inner wall cross section at any position in the longitudinal direction of the cylindrical body vertically on the reference plane over the entire length. And the maximum deviation of the one end face from the inner wall surface is d, and the total length of the cylindrical body is L, which is expressed as a percentage of d / L.

【0008】[0008]

【作用】有底円筒状β−アルミナ成形体を円筒状耐火性
容器内に開口端側を下にし倒立させて焼成するにあた
り、該円筒状耐火性容器の内壁面が真円度≦1.03、
真直度≦0.2%であるものとすることにより、円筒状
耐火性容器の内壁面と有底円筒状β−アルミナ成形体と
の間隔のばらつきを低減でき、成形体全体の焼成雰囲
気、Na2O飛散量のばらつきに起因する焼結体特性の
不均質性をなくすことができる。
When the bottomed cylindrical β-alumina molded article is fired in a cylindrical refractory container with its open end facing down, the inner wall surface of the cylindrical refractory container has a circularity of ≦ 1.03. ,
By setting the straightness ≦ 0.2%, it is possible to reduce the variation in the interval between the inner wall surface of the cylindrical refractory container and the bottomed cylindrical β-alumina molded body, and to reduce the firing atmosphere of the entire molded body and Na. It is possible to eliminate the non-uniformity of the characteristics of the sintered body due to the variation in the amount of 2 O scattered.

【0009】[0009]

【実施例】以下に、本発明の範囲の実施例および本発明
の範囲外のものについても比較例として記載する。円筒
状耐火性容器の材質としては、MgO純度が99.5重
量%以上のものを用いる。これは最大粒径100μm以
下の電融MgO粉末に、必要に応じバインダ−を加えて
湿式混合し、噴霧乾燥により造粒粉とし、所望の大きさ
の円筒状成形体にプレス成形し、これを焼成することに
より得ることができる。本例では全長505mm×外径
70mmφ×内径60mmφとなるように作製した。得
られたMgO系の円筒状体耐火性容器の内壁面の真円
度、真直度を次のように評価し、表1のように真円度と
真直度により分類した。
EXAMPLES Examples within the scope of the present invention and those outside the scope of the present invention will be described below as comparative examples. As the material of the cylindrical refractory container, one having a MgO purity of 99.5% by weight or more is used. This is an electro-fused MgO powder having a maximum particle size of 100 μm or less, a binder is added if necessary, wet-mixed, and spray-dried to form a granulated powder, which is press-molded into a cylindrical compact of a desired size. It can be obtained by firing. In this example, the total length was 505 mm × outside diameter 70 mmφ × inside diameter 60 mmφ. The roundness and straightness of the inner wall surface of the obtained MgO-based cylindrical fireproof container were evaluated as follows, and as shown in Table 1, they were classified according to the roundness and straightness.

【0010】[0010]

【表1】 [Table 1]

【0011】真円度は、円筒状耐火性容器の上端、上端
より100mm、200mm、300mm、400mm
及び下端での内径のばらつきを内径測定用マイクロメ−
タ−で測定し、それぞれの位置における最大径と最小径
とから真円度を計算し、その最大値をその容器の真円度
とした。
The roundness is 100 mm, 200 mm, 300 mm, 400 mm from the upper end of the cylindrical refractory container.
And the inner diameter variation at the lower end for measuring inner diameter
Roundness was calculated from the maximum diameter and the minimum diameter at each position, and the maximum value was defined as the roundness of the container.

【0012】真直度は、図1に示すように円筒状耐火性
容器(11)を水平面Aに立て、円筒状耐火性容器(1
1)の外壁面の少なくとも1点に接し、かつ前記水平面
Aに垂直な平面Bと外壁面とのなす最大間隙(S)を測
定する。次にその最大間隙をなすところの円筒状耐火性
容器(11)の肉厚(TX)及び平面Bに接する点にお
ける肉厚(TY)を測定し、肉厚に対する補正を行う。
内壁断面のずれの大きさ(d)は、前記最大間隙(S)
と肉厚(TX、TY)とを用いて、d=S+TX−TYによ
り求め、これを円筒状耐火性容器の全長(L)で除した
値(d/L)を真直度とした。
As for straightness, as shown in FIG. 1, the cylindrical refractory container (11) is set on a horizontal plane A and the cylindrical refractory container (1
The maximum gap (S) formed between the outer wall surface and the plane B which is in contact with at least one point on the outer wall surface of 1) and is perpendicular to the horizontal plane A is measured. Next, the wall thickness (T X ) of the cylindrical refractory container (11) where the maximum gap is formed and the wall thickness (T Y ) at the point of contact with the plane B are measured, and the wall thickness is corrected.
The deviation (d) of the inner wall cross section is determined by the maximum gap (S).
And the wall thickness (T X , T Y ) are used to obtain d = S + T X −T Y , and the value (d / L) obtained by dividing this by the total length (L) of the cylindrical refractory container is the straightness. did.

【0013】一方、焼成するβ−アルミナ成形体は以下
のように作製した。仕込み重量組成がAl23、Na2
O、Li2O換算でそれぞれ90.25%、9.0%、
0.75%となるようにαアルミナ、炭酸ナトリウム、
リチウムアルミネート化合物を秤量し、バインダを加え
湿式混合しスラリ−とした。スラリ−を噴霧乾燥して造
粒粉とし、1.5×103Kg/cm2のCIP(冷間静
水圧プレス)成形により有底円筒状成形体とした。さら
に成形体の外側面を旋盤により切削加工することによ
り、外側面の真円度が1.0005以下、真直度が0.
05%以下であり、全長490mm×外径55mmφ×
内径47mmφの有底円筒状成形体とした。
On the other hand, a β-alumina compact to be fired was prepared as follows. Charged weight composition is Al 2 O 3 , Na 2
90.25%, 9.0% in terms of O and Li 2 O,
Α-alumina, sodium carbonate, so as to be 0.75%
A lithium aluminate compound was weighed, a binder was added, and the mixture was wet-mixed to obtain a slurry. The slurry was spray-dried to give a granulated powder, which was then molded into a bottomed cylindrical body by CIP (cold isostatic pressing) of 1.5 × 10 3 Kg / cm 2 . Further, by cutting the outer surface of the molded body with a lathe, the outer surface has a roundness of 1.0005 or less and a straightness of 0.
05% or less, total length 490 mm × outer diameter 55 mm φ ×
A bottomed cylindrical molded body having an inner diameter of 47 mmφ was prepared.

【0014】実施例1 図2に示すように円筒状耐火性容器(21)として真円
度が1.000以上、1.015以下であり、真直度が
0.1%以下であるものを用意し、円筒状耐火性容器
(21)と同材質からなる上蓋(22)と下蓋(23)
と円筒状耐火性容器(21)とからなる空間に有底円筒
状成形体(25)を開口端側を下にし倒立させ設置し
た。なお、本例ではさらに円筒状耐火性容器(21)と
同材質であり、かつ有底円筒状成形体(25)と円筒状
耐火性容器(21)との間隔が一定になるように凹部を
設けたセッタ−(24)を用意し、その凹部に有底円筒
状成形体(25)を設置した。これらを電気炉中で15
70℃、1時間保持の熱処理で焼成し、有底円筒状のβ
−アルミナ管を得た。
Example 1 As shown in FIG. 2, a cylindrical refractory container (21) having a roundness of 1.000 or more and 1.015 or less and a straightness of 0.1% or less was prepared. The upper lid (22) and the lower lid (23) made of the same material as the cylindrical refractory container (21).
The bottomed cylindrical molded body (25) was placed upside down with the open end side facing down in a space consisting of the and the cylindrical refractory container (21). In addition, in this example, the concave portion is made of the same material as that of the cylindrical refractory container (21), and the concave portion is formed so that the interval between the bottomed cylindrical molded body (25) and the cylindrical refractory container (21) becomes constant. The setter (24) provided was prepared, and the bottomed cylindrical molded body (25) was placed in the recess. 15 in an electric furnace
Calcination by heat treatment at 70 ° C for 1 hour
An alumina tube was obtained.

【0015】β−アルミナ管の寸法精度の評価は、その
外側面の真円度と真直度で評価した。真円度は開口端
部、及び開口端部より長さ方向に100mm、200m
m、300mmでの位置において測定し、その最大値を
そのβ−アルミナ管の真円度とした。真直度は、円筒状
耐火性容器の真直度と同様に最大間隙を測定し、肉厚補
正を行わない値をβ−アルミナ管の真直度とした。そし
てβ−アルミナ管の真円度については1.005未満で
あるものを合格、1.005以上のものを不合格とし
た。また真直度については0.4%未満のものを合格、
0.4%以上のものを不合格とした。そして、真円度、
真直度ともに合格であるものを総合合格とした。このよ
うな評価をβ−アルミナ管10本について行ったとこ
ろ、真円度の合格が10本、真直度の合格が9本であ
り、総合合格が9本であった。
The dimensional accuracy of the β-alumina tube was evaluated by the roundness and straightness of its outer surface. The roundness is 100 mm, 200 m in the length direction from the opening end and the opening end.
It was measured at the positions of m and 300 mm, and the maximum value was defined as the roundness of the β-alumina tube. As for the straightness, the maximum gap was measured in the same manner as the straightness of the cylindrical refractory container, and the value without thickness correction was taken as the straightness of the β-alumina tube. The roundness of the β-alumina tube was less than 1.005, and the roundness was 1.005 or more. Also, the straightness of less than 0.4% passes,
Those with 0.4% or more were rejected. And roundness,
Those that passed both straightness were regarded as comprehensive passes. When such an evaluation was performed on 10 β-alumina tubes, 10 roundness passes, 9 straight passes, and 9 total passes.

【0016】実施例2 実施例2は、円筒状耐火性容器として真円度が1.00
0以上、1.015以下であり、真直度が0.1%より
大きく0.2%以下であるものを用意し、その他は実施
例1と同様に評価を行った例である。焼成したβ−アル
ミナ管10本は、真円度の合格が9本、真直度の合格が
9本であり、総合合格が8本であった。
Example 2 Example 2 is a cylindrical refractory container having a circularity of 1.00.
In this example, 0 or more and 1.015 or less and a straightness of more than 0.1% and 0.2% or less were prepared, and the other conditions were evaluated in the same manner as in Example 1. The 10 baked β-alumina tubes had 9 roundness passes, 9 straightness passes, and 8 overall passes.

【0017】実施例3 実施例3は、円筒状耐火性容器として真円度が1.01
5より大きく、1.030以下であり、真直度が0.1
%以下であるものを用意し、その他は実施例1と同様に
評価を行った例である。焼成したβ−アルミナ管10本
は、真円度の合格が9本、真直度の合格が9本であり、
総合合格が8本であった。
Example 3 Example 3 is a cylindrical refractory container having a circularity of 1.01.
5 and 1.030 or less, and straightness is 0.1
% Is prepared, and the others are the same as in Example 1. The 10 baked β-alumina tubes had 9 roundness passes and 9 straightness passes,
The total passing was eight.

【0018】実施例4 実施例4は、円筒状耐火性容器として真円度が1.01
5より大きく、1.030以下であり、真直度が0.1
%より大きく0.2%以下であるものを用意し、その他
は実施例1と同様に評価を行った例である。焼成したβ
−アルミナ管10本は、真円度の合格が9本、真直度の
合格が8本であり、総合合格が7本であった。
Example 4 Example 4 is a cylindrical refractory container having a roundness of 1.01.
5 and 1.030 or less, and straightness is 0.1
% And 0.2% or less are prepared, and the others are the same as in Example 1. Baked β
-The ten alumina tubes had 9 roundness passes, 8 straightness passes, and 7 overall passes.

【0019】比較例1〜12 比較例1〜12は、円筒状耐火性容器の真円度、真直度
の少なくともいずれかが表1に示すように本発明の範囲
外のものであり、これらを焼成容器とする他は実施例1
と同様に評価を行った例である。焼成したβ−アルミナ
管の総合合格本数は6本以下で、寸法精度の低いもので
あった。
Comparative Examples 1 to 12 In Comparative Examples 1 to 12, at least one of the roundness and straightness of the cylindrical refractory container is outside the scope of the present invention as shown in Table 1, and these are Example 1 except that a baking container was used
This is an example of evaluation performed in the same manner as. The total number of fired β-alumina tubes was 6 or less, and the dimensional accuracy was low.

【0020】[0020]

【発明の効果】以上のように、有底円筒状β−アルミナ
成形体を円筒状耐火性容器内に開口端側を下にし倒立さ
せて焼成するにあたり、該円筒状耐火性容器の内壁面が
真円度≦1.03、真直度≦0.2%とすることによ
り、円筒状耐火性容器の内壁面と有底円筒状β−アルミ
ナ成形体との間隔のばらつきを低減でき、焼成時にβ−
アルミナ成形体からのNa2Oの飛散量が均一化され、
真円度、真直度などで表される寸法精度に優れたβ−ア
ルミナ管を製造することができる。
As described above, when the bottomed cylindrical β-alumina molded body is fired by inverting it in the cylindrical refractory container with its open end side facing down, the inner wall surface of the cylindrical refractory container is By setting the roundness ≦ 1.03 and the straightness ≦ 0.2%, it is possible to reduce the variation in the distance between the inner wall surface of the cylindrical refractory container and the cylindrical β-alumina compact with a bottom, and β at the time of firing. −
The amount of Na 2 O scattered from the alumina compact is made uniform,
It is possible to manufacture a β-alumina tube having excellent dimensional accuracy represented by roundness, straightness, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 円筒状耐火性容器の真直度の測定方法を示す
概略図。
FIG. 1 is a schematic view showing a method for measuring the straightness of a cylindrical refractory container.

【図2】 本発明の製造方法を説明する断面図。FIG. 2 is a cross-sectional view illustrating the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

11、21:円筒状耐火性容器 22:上蓋 23:下蓋 24:セッタ− 25:有底円筒状成形体 11, 21: Cylindrical refractory container 22: Upper lid 23: Lower lid 24: Setter-25: Bottomed cylindrical molded body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有底円筒状β−アルミナ成形体を円筒状
耐火性容器内に開口端側を下にし倒立させて焼成するに
あたり、該円筒状耐火性容器の内壁面が真円度≦1.0
3、真直度≦0.2%であることを特徴とするβ−アル
ミナ管の製造方法。
1. When firing a bottomed cylindrical β-alumina molded body in a cylindrical refractory container with its open end side facing down and inverting it, the inner wall surface of the cylindrical refractory container has a circularity of ≦ 1. .0
3. Straightness ≦ 0.2% A method for producing a β-alumina tube.
JP7124205A 1995-04-24 1995-04-24 Manufacture of beta-alumina tube Pending JPH08293321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124205A JPH08293321A (en) 1995-04-24 1995-04-24 Manufacture of beta-alumina tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124205A JPH08293321A (en) 1995-04-24 1995-04-24 Manufacture of beta-alumina tube

Publications (1)

Publication Number Publication Date
JPH08293321A true JPH08293321A (en) 1996-11-05

Family

ID=14879599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124205A Pending JPH08293321A (en) 1995-04-24 1995-04-24 Manufacture of beta-alumina tube

Country Status (1)

Country Link
JP (1) JPH08293321A (en)

Similar Documents

Publication Publication Date Title
KR101929733B1 (en) Refractory object including beta alumina and processes of making and using the same
US4293514A (en) Method of producing honeycomb structural bodies consisting of barium titanate series ceramics having a positive temperature coefficient of electric resistance
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP2003165767A (en) Spinel refractory and use of the same
US4263381A (en) Sintering of beta-type alumina bodies using alpha-alumina encapsulation
JP2006206338A (en) Highly corrosion-resistant refractory
JPH09100171A (en) Beta-alumina electrocast refractory
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
JPH08293321A (en) Manufacture of beta-alumina tube
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
JPH10218676A (en) Electrocast refractory based on betha-alumina
JP2001302337A (en) Ceramic-made heat treating member excellent in thermal shock resistance
JP3564648B2 (en) Method for producing β-alumina tube
JPH10212158A (en) Refractory for glass fusion furnace
JP4382896B2 (en) Firing method for bottomed cylindrical beta-alumina ceramics compact
JP3782530B2 (en) Method for producing bottomed tubular ceramic sintered body
JP3533000B2 (en) Raw material for beta-alumina sintered body, method for producing beta-alumina sintered body using the same, and beta-alumina sintered body
JPH1112027A (en) Firing of beta-alumina pipe
JPH0646984Y2 (en) Bottomed ceramic sintered tube
JP4031578B2 (en) Manufacturing method of bottomed cylindrical ceramic sintered body
JP2999134B2 (en) Magnesia chrome refractory and cement rotary kiln
JP4036538B2 (en) Bottomed cylindrical ceramic sintered body and method for producing the same
JPH02123671A (en) Baking method for beta-alumina tube for sodium-sulfur battery
JP2966604B2 (en) β ″ -alumina solid electrolyte membrane