JPH0646984Y2 - Bottomed ceramic sintered tube - Google Patents

Bottomed ceramic sintered tube

Info

Publication number
JPH0646984Y2
JPH0646984Y2 JP1988091272U JP9127288U JPH0646984Y2 JP H0646984 Y2 JPH0646984 Y2 JP H0646984Y2 JP 1988091272 U JP1988091272 U JP 1988091272U JP 9127288 U JP9127288 U JP 9127288U JP H0646984 Y2 JPH0646984 Y2 JP H0646984Y2
Authority
JP
Japan
Prior art keywords
tube
ceramic sintered
bottomed
alumina
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988091272U
Other languages
Japanese (ja)
Other versions
JPH0214337U (en
Inventor
宏紀 杉浦
繁 飯島
幸三 曽我
久雄 広田
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP1988091272U priority Critical patent/JPH0646984Y2/en
Publication of JPH0214337U publication Critical patent/JPH0214337U/ja
Application granted granted Critical
Publication of JPH0646984Y2 publication Critical patent/JPH0646984Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、一端が閉じられた有底セラミック焼結管の構
造に係わり、特にナトリウム(Na)−硫黄(S)二次電
池用β−アルミナ[Na2O・χAl2O3(5≦χ≦11)]な
ど固体電解質管の焼成時の歩留まりの低減に好適な有底
セラミック焼結管の形状に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the structure of a bottomed ceramic sintered tube having one end closed, and particularly β- for sodium (Na) -sulfur (S) secondary batteries. The present invention relates to a shape of a bottomed ceramic sintered tube suitable for reducing the yield during firing of a solid electrolyte tube such as alumina [Na 2 O · χ Al 2 O 3 (5 ≦ χ ≦ 11)].

[従来の技術] 従来、一端が閉じられたβ−アルミナ系固体電解質管
(有底セラミック焼結管)は、AMTEC(Alkali Metal
Thermo−Electric Converter)と呼ばれる熱電変換装
置用NA+イオン伝導性を持つ固体電解質管、SOχセンサ
用固体電解質管、ナトリウム−硫黄の二次電池用の固体
電解質管、るつぼなどの用途に広く用いられている。
[Prior Art] Conventionally, a β-alumina-based solid electrolyte tube (ceramic bottomed ceramic tube) with one end closed is manufactured by AMTEC (Alkali Metal).
It is widely used in applications such as solid electrolyte tubes with NA + ion conductivity for thermoelectric converters called Thermo-Electric Converters, solid electrolyte tubes for SOx sensors, solid electrolyte tubes for sodium-sulfur secondary batteries, and crucibles. ing.

この有底セラミック焼結管は、第3図〜第5図に示す如
く、その底部を、半径Rの半球状500(第3図)、半径
Rχ(R≠Rχ)の丸底600(第4図)、または平底筒
状700(第5図)に形成された後、焼成されている。
As shown in FIGS. 3 to 5, the bottomed ceramic sintered tube has a hemispherical portion 500 having a radius R (FIG. 3) and a round bottom 600 having a radius Rχ (R ≠ Rχ) (fourth portion). (Fig.) Or a flat-bottomed cylinder 700 (Fig. 5), and then fired.

なお、管壁から底壁に至る連結部の内周曲率半径をB、
内径の直径を2A、底外壁に形成した円状の平面の直径を
2D、管の外径の直径を2Cとした場合、第3図(底部半球
状)のものの、B/Aは1、D/Cは0である。
The radius of curvature of the inner circumference of the connecting portion from the pipe wall to the bottom wall is B,
The diameter of the inner diameter is 2A, the diameter of the circular plane formed on the outer wall of the bottom is
2D, the outer diameter of the pipe is 2C, the B / A is 1 and the D / C is 0, as shown in Fig. 3 (bottom hemisphere).

[考案が解決しようとする課題] しかるに、有底セラミック焼結管の底部が半球状500や
丸底600の場合は、焼成時に倒置あるいは横に寝かせる
必要があり、反り不良、口端部変形不良を生じやすい。
また、平底筒状700の場合は、成形時のクラック、欠
け、剥離不良が起きやすく、焼成時にも耐熱衝撃性の低
下によるクラック等の不良が起こりやすく、歩留まり率
が悪い。
[Problems to be solved by the invention] However, when the bottom of the bottomed ceramic sintered tube has a hemispherical shape of 500 or a round bottom of 600, it is necessary to invert or lay it down during firing, resulting in poor warpage and poor mouth end deformation. Prone to
Further, in the case of the flat-bottomed cylinder 700, cracks, chips, and peeling defects are likely to occur during molding, and defects such as cracks due to a decrease in thermal shock resistance are likely to occur even during firing, resulting in a poor yield rate.

特に、有底セラミック焼結管が固体電解質管である場合
は、固体中を特定イオンの移動が容易に行われるように
管壁や底壁を薄く形成するので支障が起きやすくこれら
の課題の解決が迫られていた。
In particular, when the bottomed ceramic sintered tube is a solid electrolyte tube, the tube wall and the bottom wall are thinly formed so that specific ions can easily move in the solid, and problems are likely to occur. Was being pressed.

本考案の目的は、成形時や焼成時のクラック、欠け、剥
離不良率の低減、および耐熱衝撃性の向上を図った有底
セラミック焼結管の提供にある。
An object of the present invention is to provide a bottomed ceramic sinter tube that is designed to reduce cracking, chipping, peeling failure rate during molding and firing, and to improve thermal shock resistance.

[課題を解決するための手段] 上記目的を達成するために、本考案は、以下の構成を採
用した。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configurations.

(1)一端が閉じられ他端が開口するとともに、底外壁
に円状の平面を形成し、内底が半球状となった円筒状の
有底セラミック焼結管において、底部の肉厚を管側面部
の肉厚より大きく、且つ前記底部から前記管側面部に至
る連結部の肉厚を前記底部の肉厚より大きく設定すると
ともに、管の外径の直径2Cに対し前記平面の直径2Dを1/
3≦D/C≦11/12に設定した。
(1) In a cylindrical bottomed ceramic sintered tube in which one end is closed and the other end is open, a circular flat surface is formed on the bottom outer wall, and the inner bottom is hemispherical, the bottom wall thickness is Greater than the wall thickness of the side surface portion, and with the thickness of the connecting portion from the bottom portion to the side surface portion of the pipe set to be larger than the wall thickness of the bottom portion, the diameter 2D of the plane with respect to the diameter 2C of the outer diameter of the pipe. 1 /
It was set to 3 ≦ D / C ≦ 11/12.

(2)上記(1)の構成を有し、有底セラミック焼結管
は、β−アルミナ系固体電解質管である。
(2) The bottomed ceramic sintered tube having the configuration of (1) above is a β-alumina-based solid electrolyte tube.

[作用および考案の効果] 本考案の有底セラミック焼結管は、次の作用および効果
を有する。
[Operation and Effect of Invention] The bottomed ceramic sintered tube of the present invention has the following operation and effects.

<請求項1の効果> 底外壁に円状の平面が形成されている。このため有底セ
ラミック焼結管の焼成を直立状態で行うことが可能とな
り、焼成時における、反り不良、他端(口端部)変形不
良の低減が図れる。
<Effect of Claim 1> A circular flat surface is formed on the outer wall of the bottom. For this reason, it becomes possible to perform firing of the bottomed ceramic sintered tube in an upright state, and it is possible to reduce warp defects and other end (mouth end) deformation defects during firing.

底部の肉厚が管側面部の肉厚より大きいので、焼成の際
の収縮時に生じる重力による荷重の影響を低減でき、底
部の変形を防止できる。又、連結部の肉厚を底部の肉厚
より大きく設定しているので、管側面部の重量と底部の
反力により加わる剪断力に伴う連結部の変形が防止でき
る。
Since the wall thickness of the bottom portion is larger than the wall thickness of the pipe side surface portion, the influence of the load due to the gravity generated at the time of contraction during firing can be reduced, and the deformation of the bottom portion can be prevented. Further, since the wall thickness of the connecting portion is set larger than the wall thickness of the bottom portion, it is possible to prevent the deformation of the connecting portion due to the shearing force applied by the weight of the pipe side surface portion and the reaction force of the bottom portion.

内底が半球状であるとともに、底外壁に円状の平面を形
成し、管の外径の直径2Cに対し平面の直径2Dを1/3≦D/C
≦11/12に設定している。このため、管側面部から底部
にかけての形状の変化が緩やかになり、耐熱衝撃性を向
上させることができる。また、成形時に発生する圧力分
布が一定となり均一密度の成形体を得ることができ、成
形時や焼成時のクラック、欠け、剥離等の不良率を低減
することができる。
The inner bottom has a hemispherical shape and a circular flat surface is formed on the outer wall of the bottom, and the diameter 2D of the flat surface is 1/3 ≤ D / C for the diameter 2C of the outer diameter of the pipe.
It is set to ≦ 11/12. For this reason, the change in shape from the side surface portion to the bottom portion of the pipe becomes gentle, and the thermal shock resistance can be improved. In addition, the pressure distribution generated during molding becomes constant, and a molded product having a uniform density can be obtained, and the defect rate such as cracks, chips, and peeling during molding or firing can be reduced.

数値限定の理由は、D/C<1/3であると直立焼成時不安定
となるため、反り不良が発生しやすく、D/C>11/12であ
ると成形時、焼成時にクラック、欠け、剥離が生じやす
く、耐熱衝撃性が低下するためである。
The reason for the numerical limitation is that if D / C <1/3, it becomes unstable during upright firing, so warp defects are likely to occur, and if D / C> 11/12, cracks and chips occur during molding and firing. This is because peeling easily occurs and the thermal shock resistance is reduced.

<請求項2に対する効果> 請求項1の構成を、管壁と底壁の薄いβ−アルミナ系固
体電解質管に適応すれば、上記効果が顕著に作用する。
<Effects of Claim 2> When the configuration of Claim 1 is applied to a β-alumina-based solid electrolyte tube having a thin tube wall and a bottom wall, the above-mentioned effect is remarkably exerted.

[実施例] つぎに本考案の一実施例(請求項1、2に対応)を第1
図および第2図に基づき説明する。
[Embodiment] Next, an embodiment of the present invention (corresponding to claims 1 and 2) will be described below.
It will be described with reference to FIG. 2 and FIG.

ナトリウム−硫黄の二次電池は、陽極活物質に溶融状の
硫黄または溶融状のNa2Sχ、陰極活物質に溶融状のナト
リウム、電解質にナトリウムイオンに対して選択的に導
電性をもつβ−アルミナ系固体電解質管を用い、この電
池は、30℃前後で作動させ、反応は、 2Na+χS→Na2Sχ(放電) 2Na+χS←Na2Sχ(充電) となり、開路電圧は2.08V、エネルギーを200Whkg-1程度
取り出している。
A sodium-sulfur secondary battery is composed of molten sulfur or molten Na 2 Sχ as the positive electrode active material, molten sodium as the negative electrode active material, and β- which is selectively conductive to sodium ions in the electrolyte. using an alumina-based solid electrolyte tube, the cell was operated at about 30 ° C., the reaction is, 2Na + χS → Na 2 Sχ ( discharge) 2Na + χS ← Na 2 Sχ ( charging), and the open circuit voltage is 2.08V, the energy 200Whkg - I have taken out about 1 .

本考案のβ−アルミナ系固体電解質管Eは、円筒状のβ
−アルミナの焼成体からなり、一端が閉じられ底部1と
なり、他端は開口され口端部2となっている。ここで、
焼成前の各寸法は、管壁21から底壁11に至る連結部3の
内周曲率半径をB、内径の直径を2A、管の外径の直径を
2C、底壁11の外壁に形成される円状の平面12の直径を2D
としている。
The β-alumina solid electrolyte tube E of the present invention is a cylindrical β
It is made of a fired body of alumina and has one end closed to form a bottom portion 1 and the other end opened to form a mouth end portion 2. here,
The respective dimensions before firing are the inner radius of curvature B of the connecting portion 3 from the pipe wall 21 to the bottom wall 11, the inner diameter of 2A, and the outer diameter of the pipe.
2C, the diameter of the circular plane 12 formed on the outer wall of the bottom wall 11 is 2D
I am trying.

底部1は、底壁11が前記連結部3の内周曲率半径Bの寸
法を有する円弧の一部となり、底部1の肉厚は、口端部
2の肉厚よりやや厚く形成されている。
In the bottom portion 1, the bottom wall 11 becomes a part of an arc having a dimension of the inner circumference curvature radius B of the connecting portion 3, and the thickness of the bottom portion 1 is formed to be slightly thicker than the thickness of the mouth end portion 2.

口端部2は、先端が開口22となっている。The mouth end 2 has an opening 22 at the tip.

連結部3は、前記底部1の内周曲率半径Bと内径の直径
2Aとの関係をB/A=1とし、且つ、底部1の平面12の直
径2Dと前記口端部2の管の外径の直径2Cとの関係D/Cを
本実施例では1/2と2/3に、各々設定されている。この連
結部3の肉厚は底部1の肉厚よりやや厚く形成されてい
る。
The connecting portion 3 has an inner radius of curvature B and an inner diameter of the bottom portion 1.
The relationship with 2A is B / A = 1, and the relationship D / C between the diameter 2D of the flat surface 12 of the bottom 1 and the diameter 2C of the outer diameter of the pipe at the mouth end 2 is 1/2 in this embodiment. And 2/3 respectively. The wall thickness of the connecting portion 3 is formed to be slightly thicker than the wall thickness of the bottom portion 1.

本実施例では、未焼成のβ−アルミナ系固体電解質管E
の開口22を塞ぎ、同系の組成を有する粉末中に埋設して
1600℃前後の温度で30分焼成し、第1表〜第4表に示す
試験毎に、各20本、合計160本製造がなされた。なお、
焼成後、収縮によりβ−アルミナ系固体電解質管Eの体
積が約1/2となるがB/AおよびD/Cの関係は変化しない。
In this example, an unsintered β-alumina-based solid electrolyte tube E was used.
Block the opening 22 and embed it in a powder having a similar composition.
Firing was performed at a temperature around 1600 ° C. for 30 minutes, and 20 pieces each, 160 pieces in total were manufactured for each test shown in Tables 1 to 4. In addition,
After firing, the volume of the β-alumina-based solid electrolyte tube E becomes about 1/2 due to contraction, but the relationship between B / A and D / C does not change.

<第1表>焼成時の反り不良、口端部変形不良の発生の
本数(本)、および不良率(%)の結果を示し、比較と
して、従来の底部半球状(第3図品)のものを、それぞ
れ上記の方法で各20本ずつ製造(以下第4表まで同様)
した。
<Table 1> The results of the warp defect during firing, the number of defects at the mouth end deformation (the number of lines), and the defect rate (%) are shown. For comparison, the results of the conventional bottom hemisphere (Fig. 3 product) are shown. 20 pieces each are manufactured by the above method (the same applies up to Table 4 below)
did.

本実施例のβ−アルミナ系固体電解質管Eは、焼成時の
反り不良、口端部変形の不良率が低減した。
In the β-alumina-based solid electrolyte tube E of the present example, the defective rate of warp failure and mouth end deformation during firing was reduced.

一方、底部半球状のもの(従来例)は高い不良率(9
本)を示した。これは、底部外側に平面が無い為、焼成
時に垂直に立てる事ができず、耐火材るつぼにもたせ掛
ける状況になり、収縮により反りや変形が生じるものと
思われる。
On the other hand, the bottom hemispherical type (conventional example) has a high defect rate (9
Book). This is because there is no flat surface on the outside of the bottom, so it cannot stand upright during firing, and the crucible is placed against the crucible, which is believed to cause warpage and deformation due to shrinkage.

<第2表>成形時のクラック、欠け、剥離の発生の本数
および不良率の結果を示す。
<Table 2> The results of the number of cracks, chips and peeling during molding and the defect rate are shown.

本実施例のものは、成形時のクラック、欠け、剥離の不
良率が低減した。
In the case of this example, the defective rate of cracks, chips, and peeling during molding was reduced.

平底筒状のもの(従来例)は高い不良率(16本)を示し
た。これは、側面部から底部にかけて形状が急激に変化
している為に、成形時の加圧が均一的にかかり難く、ク
ラック、欠け、剥離が発生し易いものと思われる。
The flat-bottomed cylinder (conventional example) showed a high defect rate (16 pieces). It is considered that this is because the shape is drastically changed from the side surface portion to the bottom portion, so that it is difficult to uniformly apply pressure during molding, and cracks, chips, and peeling are likely to occur.

<第3表>成形体を焼成した際のクラック、欠け、剥離
の発生の本数および不良率の結果を示す。
<Table 3> The results of the number of cracks, chips and peeling when firing the molded body and the defect rate are shown.

本実施例のものは、焼成時のクラック、欠け、剥離の不
良率が低減した。
In the case of this example, the defective rate of cracking, chipping and peeling during firing was reduced.

平底筒状のもの(従来例)は高い不良率(11本)を示し
た。これは、成形時に均一に加圧され難い形状である為
に、成形時に不良にはならなかったものの、内部に残留
応力が残り、焼成時の収縮過程で、クラック、欠け、剥
離が発生し易いものと思われる。
The flat-bottomed cylinder (conventional example) showed a high defect rate (11 pieces). This was a shape that was difficult to pressurize uniformly during molding, so although it did not become defective during molding, residual stress remains inside and cracks, chips, and peeling easily occur during the shrinking process during firing. It seems to be.

<第4表>焼成管に、800℃耐熱衝撃試験を行った結果
を示す。
<Table 4> The results of the 800 ° C thermal shock test performed on the fired tube are shown below.

本実施例のものは、耐熱衝撃性が向上した。The material of this example has improved thermal shock resistance.

平底筒状のもの(従来例)は高い不良率(15本)を示し
た。これは、成形時、焼成時のクラック、欠け、剥離不
良と同様、側面部から底部にかけて急激な形状変化が熱
衝撃による応力集中を招き、破壊され易くなるものと思
われる。
The flat-bottomed cylinder (conventional example) showed a high failure rate (15 pieces). It is considered that, like cracking, chipping, and peeling failure during molding and firing, a rapid change in shape from the side surface portion to the bottom portion causes stress concentration due to thermal shock and is easily broken.

本考案は、上記実施例以外に次の実施態様を含む。The present invention includes the following embodiments in addition to the above embodiments.

a.セラミック焼結管は、固体電解質の場合、固定中のイ
オンの移動の種類により次のものを使用しても良い。
For the ceramic sintered tube, in the case of a solid electrolyte, the following may be used depending on the type of ion movement during fixation.

H+……H3PW12040・29H2O、HUO2PO2・4H2O Li+ …Li3N、リシコン;Li14Zn(GeO4)4 Na+ …ナシコン;Na3Zr2Si2PO12 Cu+ …7CuBr・C6H12N4CH2Br、RbCu4Cl3I2 Ag+ …RbAg4I5、Ag6I4(WO4) K+……K2O・5.2Fe2O3・0.8ZnO Tl+ …Tl1.8Ta1.8W0.2O6・nH2O Sr+ …Sr−β″−アルミナ Cd++…Cd−β″−アルミナ Ba++…Ba−β″−アルミナ F-……PbF2 Cl- …PbCl2、SnCl2 O-……安定化ジルコニア;(ZrO2)0.9(Y2O3)0.1または(B
iO3)0.75(Y2O3)0.25 b.セラミック焼結管のセラミック材料は、α−アルミ
ナ、ベリリア(BeO)、カルシア(CaO)、マグネシア
(MgO)、石英ガラス(SiO2)、トリア(ThO2)、チタ
ニア(TiO2)、ウラニア(UO2)、ジルコニア、(Zr
O2)、ムライト(3Al2O3・2SiO2)、スピネル(MgO・Al2
O3)、フォルステライト(2MgO・SiO2)、ジルコン(Zr
O2・SiO2)等を使用しても良い。
H + ...... H 3 PW 12 0 40 · 29H 2 O, HUO 2 PO 2 · 4H 2 O Li + ... Li 3 N, Rishikon; Li 14 Zn (GeO 4) 4 Na + ... NASICON; Na 3 Zr 2 Si 2 PO 12 Cu + … 7CuBr ・ C 6 H 12 N 4 CH 2 Br, RbCu 4 Cl 3 I 2 Ag + … RbAg 4 I 5 , Ag 6 I 4 (WO 4 ) K + …… K 2 O ・ 5.2Fe 2 O 3・ 0.8 ZnO Tl + … Tl 1.8 Ta 1.8 W 0.2 O 6・ nH 2 O Sr + … Sr−β ″ -alumina Cd ++ … Cd−β ″ -alumina Ba ++ … Ba−β ″ -alumina F - ...... PbF 2 Cl - ... PbCl 2, SnCl 2 O - ...... stabilized zirconia; (ZrO 2) 0.9 (Y 2 O 3) 0.1 or (B
iO 3 ) 0.75 (Y 2 O 3 ) 0.25 b. The ceramic material of the ceramic sintered tube is α-alumina, beryllia (BeO), calcia (CaO), magnesia (MgO), quartz glass (SiO 2 ), thoria ( ThO 2 ), titania (TiO 2 ), urania (UO 2 ), zirconia, (Zr
O 2 ), mullite (3Al 2 O 3・ 2SiO 2 ), spinel (MgO ・ Al 2
O 3 ), forsterite (2MgO ・ SiO 2 ), zircon (Zr
O 2 · SiO 2 ) or the like may be used.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案のβ−アルミナ系固体電解質管の一実
施例の横部断面図、第2図はその底面図である。 第3図〜第5図は従来のβ−アルミナ系固体電解質管の
横部断面図である。 図中 E…β−アルミナ系固体電解質管(有底セラミッ
ク焼結管)、1…底部(一端)、2…口端部(他端)、
2C…管の外径の直径、2D…平面の直径、3…連結部、11
…底壁、12…平面、21…管壁
FIG. 1 is a lateral sectional view of an embodiment of the β-alumina-based solid electrolyte tube of the present invention, and FIG. 2 is a bottom view thereof. 3 to 5 are transverse sectional views of a conventional β-alumina-based solid electrolyte tube. In the figure, E ... β-alumina-based solid electrolyte tube (bottomed ceramic sintered tube), 1 ... bottom part (one end), 2 ... mouth end part (other end),
2C… Outer diameter of pipe, 2D… Plane diameter, 3… Connection, 11
... bottom wall, 12 ... plane, 21 ... tube wall

───────────────────────────────────────────────────── フロントページの続き (72)考案者 曽我 幸三 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)考案者 広田 久雄 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (56)参考文献 実開 昭61−161877(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kozo Soga 14-18 Takatsuji-cho, Mizuho-ku, Aichi Prefecture Nihon Special Ceramics Co., Ltd. (72) Hisao Hirota 14-takatsuji-cho, Mizuho-ku, Aichi No.18 Nihon Special Ceramics Co., Ltd. (56) References

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一端が閉じられ他端が開口するとともに、
底外壁に円状の平面を形成し、内底が半球状となった円
筒状の有底セラミック焼結管において、 底部の肉厚を管側面部の肉厚より大きく、且つ前記底部
から前記管側面部に至る連結部の肉厚を前記底部の肉厚
より大きく設定するとともに、 管の外径の直径2Cに対し前記平面の直径2Dを1/3≦D/C≦
11/12に設定したことを特徴とする有底セラミック焼結
管。
1. One end is closed and the other end is open,
In a cylindrical bottomed ceramic sintered tube having a circular flat surface on the bottom and outer walls and a hemispherical inner bottom, the thickness of the bottom is greater than the thickness of the side of the tube, and The wall thickness of the connecting part to the side surface is set larger than the wall thickness of the bottom part, and the diameter 2D of the plane is 1/3 ≤ D / C ≤ the outer diameter 2C of the pipe.
A bottomed ceramic sintered tube characterized by being set to 11/12.
【請求項2】前記有底セラミック焼結管は、β−アルミ
ナ系固体電解質管である請求項1記載の有底セラミック
焼結管。
2. The bottomed ceramic sintered tube according to claim 1, wherein the bottomed ceramic sintered tube is a β-alumina-based solid electrolyte tube.
JP1988091272U 1988-07-08 1988-07-08 Bottomed ceramic sintered tube Expired - Lifetime JPH0646984Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988091272U JPH0646984Y2 (en) 1988-07-08 1988-07-08 Bottomed ceramic sintered tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988091272U JPH0646984Y2 (en) 1988-07-08 1988-07-08 Bottomed ceramic sintered tube

Publications (2)

Publication Number Publication Date
JPH0214337U JPH0214337U (en) 1990-01-29
JPH0646984Y2 true JPH0646984Y2 (en) 1994-11-30

Family

ID=31315753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988091272U Expired - Lifetime JPH0646984Y2 (en) 1988-07-08 1988-07-08 Bottomed ceramic sintered tube

Country Status (1)

Country Link
JP (1) JPH0646984Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044259A (en) * 1983-08-19 1985-03-09 Inoue Japax Res Inc Polishing device

Also Published As

Publication number Publication date
JPH0214337U (en) 1990-01-29

Similar Documents

Publication Publication Date Title
CA1112438A (en) Oxygen sensors
US9368774B2 (en) Electrolyte separator and method of making the electrolyte separator
US20150299880A1 (en) Electrolytic cell
US4056589A (en) Method for sintering ceramics
US4263381A (en) Sintering of beta-type alumina bodies using alpha-alumina encapsulation
JPH0646984Y2 (en) Bottomed ceramic sintered tube
JPS62187181A (en) Lining sealing method of electoconductive rod in ceramic body
JPH09100171A (en) Beta-alumina electrocast refractory
Rivier et al. New slip-casting technique for the laboratory fabrication of beta-alumina and other ceramics
US4117056A (en) Production of beta-alumina ceramic articles
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
PL70090B1 (en)
JP4014250B2 (en) Carbon dioxide sensor
CN115353372A (en) Sagger for sintering lithium battery positive electrode material and preparation method thereof
JPH03126505A (en) Hydrostatic pressure mold for ceramic pipe
JPH0388279A (en) Sintering method of beta alumina tube for sodium-sulfur battery
JP4365470B2 (en) Beta-alumina tube for sodium-sulfur battery and method for producing the same
JPH08293321A (en) Manufacture of beta-alumina tube
JP4036538B2 (en) Bottomed cylindrical ceramic sintered body and method for producing the same
JP3023288B2 (en) Glass joined body and method for producing the same
JP2613264B2 (en) Bag tube for Na / S secondary battery, method for producing the same, and Na / S secondary battery using the same
JP3533000B2 (en) Raw material for beta-alumina sintered body, method for producing beta-alumina sintered body using the same, and beta-alumina sintered body
JP3782530B2 (en) Method for producing bottomed tubular ceramic sintered body
JPH06349520A (en) Manufacture of beta alumina solid electrolytic pipe and high temperature type secondary battery using the pipe
JP3479187B2 (en) Solid electrolyte tube and method for producing the same