JP4365470B2 - Beta-alumina tube for sodium-sulfur battery and method for producing the same - Google Patents

Beta-alumina tube for sodium-sulfur battery and method for producing the same Download PDF

Info

Publication number
JP4365470B2
JP4365470B2 JP05212799A JP5212799A JP4365470B2 JP 4365470 B2 JP4365470 B2 JP 4365470B2 JP 05212799 A JP05212799 A JP 05212799A JP 5212799 A JP5212799 A JP 5212799A JP 4365470 B2 JP4365470 B2 JP 4365470B2
Authority
JP
Japan
Prior art keywords
alumina
beta
sodium
tube
beta alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05212799A
Other languages
Japanese (ja)
Other versions
JP2000251928A (en
Inventor
宏紀 杉浦
浩二 舟木
聡 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP05212799A priority Critical patent/JP4365470B2/en
Publication of JP2000251928A publication Critical patent/JP2000251928A/en
Application granted granted Critical
Publication of JP4365470B2 publication Critical patent/JP4365470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ナトリウム−硫黄電池の固体電解質管に用いる有底円筒状ベ−タアルミナ管に関するものである。
【0002】
【従来の技術】
ベータアルミナセラミックスは優れたナトリウムイオン伝導性を利用して、ナトリウム−硫黄電池用固体電解質として研究開発が進められている。ナトリウム−硫黄電池においてベータアルミナセラミックスは、電池の正極室と負極室との隔壁の役割も果たしている。隔壁の破損が起こると両活物質が爆発的に反応を起こし危険であるため、ベータアルミナセラミックスには高い機械的強度も要求される。
【0003】
機械的強度向上のためには、ベータアルミナと反応しない高純度のジルコニア微粒子を分散させてセラミックスを複合強化する方法(米国特許第4358516号)が提案されている。また、ホットプレスで予備焼結を行い焼結密度を高める方法(特開昭49−30407号公報)、ベータアルミナ製造工程の各段階において、100〜200μmの粗粒原料粉末を除去する方法(特開平2−15576号公報)などが提案されている。
【0004】
【発明が解決しようとする課題】
これらセラミックスの強度を向上する試みは、電池組み立て時のベータアルミナセラミックス破損を低減する効果はあるが、電池運転時のベータアルミナセラミックス管破損に対しては、有効ではなかった。
【0005】
このナトリウム−硫黄電池の運転中に起こる電池破損は、高い電流密度で運転した場合に発生しやすい。具体的には、ベータアルミナ管の有底部と円筒側面部を連結する接続部位における破損がかなりの割合で発生する。破損発生のメカニズムとしては、円筒側面部や有底部と比べて該接続部位は曲率半径が小さいため、該接続部位に電流集中が起きて局所的に温度が高くなり、熱応力によって破損するものと考えられる。
【0006】
本発明の目的は、ナトリウムイオン伝導特性がよく、高強度で、電池の運転時及び組立時に不具合を生じない信頼性の高いナトリウム−硫黄電池の固体電解質用ベータアルミナ管を提供することを目的とする。特には、ナトリウム−硫黄電池の運転時に発生するベータアルミナ管の破損の低減を目的とする。
【0007】
【課題を解決するための手段】
発明は、有底円筒状のベータアルミナ管の有底部と円筒側面部とを連結する接続部分を備え、前記接続部分の少なくとも一部が、マグネシア、スピネル、ジルコニアもしくはアルミナからなる接触部材を接触させた状態にて焼成されてなるものである。本発明の構成部分を図1を例に以下に説明する。ここにいう「有底部」とは、例えば図1中の2をいう。ここにいう「円筒側面部」とは、例えば図1中の3をいう。ここにいう「接続部分」とは、例えば図1中の4をいう。係る構成により、上記接続部分への電流集中を防いで局所的な発熱を低減させることにより、熱応力の発生を低減し、ベータアルミナ管の破損を防止できる。
【0008】
請求項の発明は、前記接続部分の少なくとも一部、マグネシア、スピネル、ジルコニアもしくはアルミナからなる接触部材を接触させた状態にて焼成することにより、前記接続部分の少なくとも一部に、マグネシア、スピネル、ジルコニアもしくはアルミナが生成することを要旨とする。ベータアルミナ管のナトリウムイオン伝導経路を非ナトリウムイオン伝導部材が寸断するため、局部的な電流集中を防ぐことができ、ベータアルミナ管の有底部と円筒側面部との接続部分にかかる熱応力を低減して、ベータアルミナセラミックス破損を防止できる。
【0009】
本発明のマグネシア、スピネル、ジルコニア、アルミナはナトリウムイオン伝導率が実質的に無い。そのため、係る混合セラミックスがベータアルミナ管のナトリウムイオン伝導経路を寸断して局所的な電流集中を防ぎ、ベータアルミナ管の有底部と円筒側面部との接続部分にかかる熱応力を低減して、ベータアルミナセラミックス破損を防止できる。
【0010】
請求項の発明は、非ナトリウムイオン伝導性部材であるマグネシア、スピネル、ジルコニアもしくはアルミナを有底円筒状のベータアルミナ管の有底部と円筒側面部との少なくとも一部を連結する接続部分に接触させた状態で焼成するベータアルミナ管の製造方法を要旨とする。得られるベータアルミナ管の上記接触部分の少なくとも一部に非ナトリウムイオン伝導性部材であるマグネシア、スピネル、ジルコニアもしくはアルミナが生成するため、上記接続部分のナトリウムイオン伝導率が上記接続部分以外のベータアルミナと比較して小さくなる、もしくは実質的に無くなる。その結果、局所的な電流集中を防ぎ、ベータアルミナ管の有底部と円筒側面部との接続部分にかかる熱応力を低減して、ベータアルミナセラミックス破損を防止できる。
【0011】
請求項の発明は、非ナトリウムイオン伝導性部材であるマグネシア、スピネル、ジルコニアもしくはアルミナの焼結体を有底円筒状のベータアルミナ管の有底部と円筒側面部との少なくとも一部を連結する接続部分に接触させた状態で焼成するベータアルミナ管の製造方法を要旨とする。本発明の具体例を図2乃至図4に例示する。ベータアルミナ管の成形体1をその有底面を上に向けて立てて、上記の非ナトリウムイオン伝導性部材の焼結体からなる治具5を上記接続部に接するように配置した状態で焼成する方法(図2を参照)や、非ナトリウムイオン伝導性部材の焼結体からなる柱状治具6に成形体1を被せた状態で焼成する方法(図3を参照)や、非ナトリウムイオン伝導性部材の焼結体からなり、成形体1の接続部分3を保持する治具7に成形体1をその有底面を下に向けて立てた状態で焼成する方法(図4を参照)等を挙げることができる。但し、本発明の構成は上記の図2乃至図4に例示された具体的な構成にのみ限定されるものではない。
【0012】
発明の具体例を図5に例示する。耐火材8に図5に示すように非ナトリウムイオン伝導性部材の粉末9を配置し、粉末9の上に成形体1の接続部分3を保持するように立てた状態で焼成する方法等を挙げることができる。但し、本発明の構成は上記の図5に例示された具体的な構成にのみ限定されるものではない。
【0013】
他の具体例としては、請求項の発明で例示した各種治具(図2乃至図4を参照)を成形体で置き換えた方法を挙げることができる。但し、本発明の構成は上記の図2乃至図4に例示された具体的な構成にのみ限定されるものではない。
【0014】
以上、請求項2又は3のいずれの製造方法を用いても、得られるベータアルミナ管の上記接触部分の少なくとも一部に非ナトリウムイオン伝導性部材であるマグネシア、スピネル、ジルコニアもしくはアルミナが生成するため、上記接続部分のナトリウムイオン伝導率が上記接続部分以外のベータアルミナと比較して小さくなる、もしくは実質的に無くなる。その結果、局所的な電流集中を防ぎ、ベータアルミナ管の有底部と円筒側面部との接続部分にかかる熱応力を低減して、ベータアルミナセラミックス破損を防止できる。
【0015】
【実施例】
ベータアルミナセラミックスの作製は、出発原料としてαアルミナ、炭酸ナトリウム、安定化剤として炭酸リチウムを用いた。αアルミナは純度99.9%の原料、炭酸ナトリウム、炭酸リチウムは試薬1級を用いた。αアルミナ、炭酸ナトリウム、炭酸リチウムをアルミナ、酸化ナトリウム、酸化リチウムの酸化物換算で90.4%、8.85%、0.75%となるように所定量混合し、1250℃で10時間仮焼の後、振動ミルで粉砕し粉砕原料を得た。
【0016】
該ベータアルミナ粉砕粉末と、イットリア安定化酸化ジルコニウム(ベータアルミナ粉砕粉末100重量部に対して3重量部)を水溶媒で混合しスラリとし、スプレードライ造粒し造粒粉末を得た。粉末は焼結後に長さ400mm×外径45mm×肉厚2.5mmとなるようチューブ形状に成形し、所定の温度で1時間保持して焼成を行った。焼成は、表1に示すようなマグネシア、スピネル、ジルコニア、アルミナからなる接触部材をベータアルミナ有底円筒成形体の有底部と円筒側面部を連結する接続部分である曲面部に接触させた状態(図2に示した状態)で焼成した。
【0017】
このようにして得たベータアルミナ管から切り出した試験片で、エタノールを用いた浮力法により嵩密度を測定し、理論密度との比(相対密度)を算出した。また、ベータアルミナ管形状のまま、Na-Naセルで4端子法で350度におけるナトリウムイオン伝導度(比抵抗値)を測定した。また、ベータアルミナ管の内圧破壊強度を測定した。内圧破壊強度は、ベータアルミナ管の内側全体に圧力を印加し、破壊した時点の強度をベータアルミナ管の形状から計算して求めたものである。各ロットにつき8本のベータアルミナ管で内圧強度を測定し、平均値を求めた。また、上記曲面部の組成は、ベータアルミナ管を切り出し、EDS(エネルギー分散型X線分光)にて元素分析を行った。また、X線回折により結晶構造を同定した。結果を表1に示す。
【0018】
さらに同一ロットのベータアルミナ管を用いてナトリウム−硫黄電池を作製し、ナトリウム−硫黄電池としての信頼性を評価する目的で、充放電試験を行った。条件は、330℃(電池作動温度)で3時間放電−1時間休止−3時間充電1時間休止の充放電サイクル(通常のロードレベリングの約3倍の急速充放電)を500回繰り返し、信頼性を評価した。ベータアルミナアルミナの破損に伴う電池不具合が発生すると充放電が不可能になる。各ロットにつき10セル作製し、500回の連続充放電試験を行った。各ロットにおいて500回までの充放電で発生したベータアルミナ割れによる不具合の発生率を調査した。結果を表1に示す。
【0019】
【表1】

Figure 0004365470
【0020】
表1の結果より、本発明の実施例である試料番号1乃至試料番号12では破損率が30%以下であるのに対して、比較例である試料番号13では破損率が70%と劣る結果を示す。実施例のうち、接触部材に粉末を用いた試料番号2、試料番号5、試料番号8、試料番号11では破損率が20%以下と良好である。特に接触部材の材質がマグネシア(試料番号2)、スピネル(試料番号5)、ジルコニア(試料番号8)では破損率が0%と最も良好である。
【0021】
破損率を低くするには、接触部材の材質はマグネシア、スピネル、ジルコニア、アルミナの順に好ましい。結晶構造(X線回折)の結果が示すように、マグネシア、スピネル、ジルコニア、アルミナの順にβ”アルミナ以外の結晶層が多く観察されることから、ベータアルミナ管の有底部と円筒側面部とを連結する接続部分のナトリウムイオン伝導率を下げる効果が利いていることがわかる。
【0022】
【発明の効果】
本発明によれば、ナトリウム−硫黄電池を通常の数倍の電流密度で急速充放電運転を行った時に発生するベータアルミナセラミックス管の破損率を抑えたベータアルミナ管を提供可能である。ベータアルミナ管の有底部と円筒側面部とを連結する接続部分に電流集中を発生させないように、上記連結部のナトリウムイオン伝導率を円筒側面部や有底部に比べて小さくする、もしくはナトリウムイオン伝導率を実質的に無くすことで、ナトリウム−硫黄電池運転中に起こるベータアルミナセラミックス管破損を大幅に低減できる。
【図面の簡単な説明】
【図1】ベータアルミナ管の説明図。
【図2】本発明の一実施例を例示した説明図。
【図3】本発明の一実施例を例示した説明図。
【図4】本発明の一実施例を例示した説明図。
【図5】本発明の一実施例を例示した説明図。
【符号の説明】
1 ベータアルミナ管の成形体
2 有底部
3 円筒側面部
4 接続部分
5 非ナトリウムイオン伝導性部材の焼結体からなる治具
6 非ナトリウムイオン伝導性部材の焼結体からなる柱状治具
7 非ナトリウムイオン伝導性部材の焼結体からなる治具
8 耐火材
9 非ナトリウムイオン伝導性部材の粉末[0001]
[Industrial application fields]
The present invention relates to a bottomed cylindrical solid alumina tube used for a solid electrolyte tube of a sodium-sulfur battery.
[0002]
[Prior art]
Beta-alumina ceramics are being researched and developed as solid electrolytes for sodium-sulfur batteries by utilizing excellent sodium ion conductivity. In a sodium-sulfur battery, beta alumina ceramics also serve as a partition between the positive electrode chamber and the negative electrode chamber of the battery. When the partition wall breaks, both active materials react explosively, which is dangerous. Therefore, beta alumina ceramics are required to have high mechanical strength.
[0003]
In order to improve the mechanical strength, there has been proposed a method (US Pat. No. 4,358,516) in which high-purity zirconia fine particles that do not react with beta alumina are dispersed to reinforce ceramics. In addition, a method of pre-sintering by hot pressing to increase the sintering density (Japanese Patent Laid-Open No. 49-30407) and a method of removing coarse raw material powder of 100 to 200 μm at each stage of the beta alumina production process (special feature) (Kaihei 2-15576) has been proposed.
[0004]
[Problems to be solved by the invention]
Attempts to improve the strength of these ceramics have the effect of reducing beta alumina ceramic breakage during battery assembly, but are not effective against beta alumina ceramic tube breakage during battery operation.
[0005]
Battery damage that occurs during operation of the sodium-sulfur battery is likely to occur when operating at a high current density. Specifically, the breakage at the connecting portion connecting the bottomed portion of the beta alumina tube and the cylindrical side surface portion occurs at a considerable rate. As the mechanism of the occurrence of damage, the connecting part has a smaller radius of curvature than the cylindrical side part or the bottomed part, so that current concentration occurs at the connecting part, the temperature locally increases, and damage is caused by thermal stress. Conceivable.
[0006]
An object of the present invention is to provide a beta-alumina tube for a solid electrolyte of a sodium-sulfur battery having good sodium ion conduction characteristics, high strength, and high reliability that does not cause problems during battery operation and assembly. To do. In particular, the object is to reduce the breakage of the beta alumina tube that occurs during operation of the sodium-sulfur battery.
[0007]
[Means for Solving the Problems]
The present invention includes a connecting portion that connects a bottomed portion of a bottomed cylindrical beta-alumina tube and a cylindrical side surface portion, and at least a part of the connecting portion contacts a contact member made of magnesia, spinel, zirconia, or alumina. in which are formed by being fired at a state of being. The components of the present invention will be described below with reference to FIG. Here, the “bottomed portion” refers to 2 in FIG. 1, for example. Here, the “cylindrical side surface portion” refers to 3 in FIG. 1, for example. The “connection portion” here refers to 4 in FIG. 1, for example. With such a configuration, the generation of thermal stress can be reduced and the breakage of the beta alumina tube can be prevented by preventing the concentration of current to the connection portion and reducing the local heat generation.
[0008]
According to the first aspect of the present invention, at least a part of the connection part is baked in a state where a contact member made of magnesia, spinel, zirconia or alumina is in contact with the connection part . The gist is that spinel, zirconia or alumina is produced. The non-sodium ion conduction member cuts off the sodium ion conduction path of the beta alumina tube, so that local current concentration can be prevented, and the thermal stress applied to the connecting portion between the bottomed portion of the beta alumina tube and the cylindrical side surface is reduced. Thus, it is possible to prevent the beta alumina ceramic from being damaged.
[0009]
The magnesia, spinel, zirconia, and alumina of the present invention have substantially no sodium ion conductivity. Therefore, the mixed ceramics cut the sodium ion conduction path of the beta alumina tube to prevent local current concentration, reduce the thermal stress applied to the connecting portion between the bottomed portion of the beta alumina tube and the cylindrical side surface, Alumina ceramics can be prevented from being damaged.
[0010]
In the invention of claim 2 , magnesia, spinel, zirconia, or alumina, which is a non-sodium ion conductive member, is brought into contact with a connecting portion that connects at least part of the bottomed portion and the cylindrical side surface of the bottomed cylindrical beta alumina tube. The gist of the method is to produce a beta alumina tube that is fired in a fired state. Magnesia, spinel, zirconia or alumina, which is a non-sodium ion conductive member, is produced at least in part of the contact portion of the resulting beta alumina tube, so that the sodium ion conductivity of the connecting portion is beta alumina other than the connecting portion. It becomes smaller than or substantially disappears. As a result, local current concentration can be prevented, the thermal stress applied to the connecting portion between the bottomed portion of the beta alumina tube and the cylindrical side surface portion can be reduced, and damage to the beta alumina ceramic can be prevented.
[0011]
In the invention of claim 3, a sintered body of magnesia, spinel, zirconia or alumina which is a non-sodium ion conductive member is connected to at least a part of the bottomed portion and the cylindrical side surface portion of the bottomed cylindrical beta alumina tube. The gist of the present invention is a method for producing a beta alumina tube that is fired while being in contact with the connecting portion. Specific examples of the present invention are illustrated in FIGS. The beta-alumina tube shaped body 1 is erected with its bottomed surface facing upward, and the jig 5 made of a sintered body of the non-sodium ion conductive member is fired in a state of being placed in contact with the connecting portion. A method (see FIG. 2), a method in which the molded body 1 is covered with a columnar jig 6 made of a sintered body of a non-sodium ion conductive member (see FIG. 3), or a non-sodium ion conductive property. A method of firing the molded body 1 with the bottom surface thereof facing down on a jig 7 made of a sintered body of members and holding the connecting portion 3 of the molded body 1 (see FIG. 4), etc. be able to. However, the configuration of the present invention is not limited to the specific configuration illustrated in FIGS. 2 to 4 described above.
[0012]
A specific example of the present invention is illustrated in FIG. As shown in FIG. 5, a powder 9 of a non-sodium ion conductive member is disposed on the refractory material 8, and firing is performed in such a manner that the connection portion 3 of the molded body 1 is held on the powder 9. be able to. However, the configuration of the present invention is not limited to the specific configuration illustrated in FIG.
[0013]
As another specific example, there may be mentioned a method in which various jigs exemplified in the invention of claim 3 (see FIGS. 2 to 4) are replaced with molded bodies. However, the configuration of the present invention is not limited to the specific configuration illustrated in FIGS. 2 to 4 described above.
[0014]
As mentioned above, even if it uses any manufacturing method of Claim 2 or 3 , since magnesia, a spinel, a zirconia, or an alumina which is a non-sodium ion conductive member produces | generates at least one part of the said contact part of the beta alumina pipe | tube obtained. The sodium ion conductivity of the connecting portion is smaller than or substantially eliminated from beta alumina other than the connecting portion. As a result, local current concentration can be prevented, the thermal stress applied to the connecting portion between the bottomed portion of the beta alumina tube and the cylindrical side surface portion can be reduced, and damage to the beta alumina ceramic can be prevented.
[0015]
【Example】
Preparation of beta alumina ceramics used alpha alumina and sodium carbonate as starting materials, and lithium carbonate as a stabilizer. α-alumina was a 99.9% pure raw material, and sodium carbonate and lithium carbonate were grade 1 reagent. α Alumina, sodium carbonate, and lithium carbonate are mixed in a predetermined amount so as to be 90.4%, 8.85%, and 0.75% in terms of oxides of alumina, sodium oxide, and lithium oxide, and temporarily mixed at 1250 ° C. for 10 hours. After firing, it was pulverized with a vibration mill to obtain a pulverized raw material.
[0016]
The pulverized beta alumina powder and yttria-stabilized zirconium oxide (3 parts by weight with respect to 100 parts by weight of the beta alumina pulverized powder) were mixed with an aqueous solvent to form a slurry, which was then spray-dried to obtain a granulated powder. The powder was formed into a tube shape having a length of 400 mm, an outer diameter of 45 mm, and a wall thickness of 2.5 mm after sintering, and was fired by holding at a predetermined temperature for 1 hour. Firing is a state in which a contact member made of magnesia, spinel, zirconia, and alumina as shown in Table 1 is brought into contact with a curved surface portion that is a connecting portion that connects a bottomed portion and a cylindrical side surface of a beta alumina bottomed cylindrical molded body ( Firing was performed in the state shown in FIG.
[0017]
With the test piece cut out from the beta alumina tube thus obtained, the bulk density was measured by a buoyancy method using ethanol, and the ratio (relative density) to the theoretical density was calculated. In addition, the sodium ion conductivity (specific resistance value) at 350 degrees was measured by a four-terminal method using a Na—Na cell while maintaining the beta alumina tube shape. Further, the internal pressure fracture strength of the beta alumina tube was measured. The internal pressure fracture strength is obtained by applying pressure to the entire inside of the beta alumina tube and calculating the strength at the time of fracture from the shape of the beta alumina tube. The internal pressure strength was measured with 8 beta alumina tubes for each lot, and the average value was obtained. Moreover, the composition of the said curved surface part cut out the beta alumina tube, and performed elemental analysis by EDS (energy dispersive X-ray spectroscopy). The crystal structure was identified by X-ray diffraction. The results are shown in Table 1.
[0018]
Furthermore, a sodium-sulfur battery was produced using a beta alumina tube of the same lot, and a charge / discharge test was conducted for the purpose of evaluating the reliability of the sodium-sulfur battery. The conditions are: 3 hours discharge at 330 ° C. (battery operating temperature), 1 hour pause, 3 hours charge, 1 hour pause charge / discharge cycle (rapid charge / discharge about 3 times normal load leveling) repeated 500 times, reliability Evaluated. If a battery failure occurs due to the breakage of beta alumina alumina, charging / discharging becomes impossible. Ten cells were prepared for each lot, and 500 continuous charge / discharge tests were performed. In each lot, the occurrence rate of defects due to beta-alumina cracks generated by charging and discharging up to 500 times was investigated. The results are shown in Table 1.
[0019]
[Table 1]
Figure 0004365470
[0020]
From the results shown in Table 1, the failure rate of Sample No. 1 to Sample No. 12 which is an example of the present invention is 30% or less, whereas the failure rate of Sample No. 13 which is a comparative example is inferior to 70%. Indicates. Among the examples, Sample No. 2, Sample No. 5, Sample No. 8, and Sample No. 11 using powder as the contact member have good breakage rates of 20% or less. In particular, when the material of the contact member is magnesia (sample number 2), spinel (sample number 5), or zirconia (sample number 8), the breakage rate is 0%, which is the best.
[0021]
In order to reduce the breakage rate, the contact member is preferably made of magnesia, spinel, zirconia, and alumina in this order. As the result of the crystal structure (X-ray diffraction) shows that many crystal layers other than β "alumina are observed in the order of magnesia, spinel, zirconia, and alumina. It can be seen that the effect of lowering the sodium ion conductivity of the connecting portion to be linked is effective.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the beta alumina pipe | tube which suppressed the failure | damage rate of the beta alumina ceramic pipe | tube which generate | occur | produces when a sodium-sulfur battery is rapidly charged / discharged by the current density several times the normal can be provided. In order to prevent current concentration from occurring in the connecting part connecting the bottomed part of the beta alumina tube and the cylindrical side part, the sodium ion conductivity of the connecting part is made smaller than that of the cylindrical side part or bottomed part, or sodium ion conduction By substantially eliminating the rate, the beta alumina ceramic tube breakage that occurs during operation of the sodium-sulfur battery can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a beta alumina tube.
FIG. 2 is an explanatory diagram illustrating an embodiment of the present invention.
FIG. 3 is an explanatory diagram illustrating an embodiment of the present invention.
FIG. 4 is an explanatory diagram illustrating an embodiment of the present invention.
FIG. 5 is an explanatory diagram illustrating an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molded body of beta alumina tube 2 Bottomed portion 3 Cylindrical side surface portion 4 Connection portion 5 Jig made of sintered body of non-sodium ion conductive member 6 Columnar jig made of sintered body of non-sodium ion conductive member 7 Jig 8 made of a sodium ion conductive member sintered body Refractory material 9 Non-sodium ion conductive member powder

Claims (3)

ナトリウム−硫黄電池の固体電解質管に用いる有底円筒状ベータアルミナ管であって、
該ベータアルミナ管の有底部と円筒側面部とを連結する接続部分を備え、
前記接続部分の少なくとも一部、マグネシア、スピネル、ジルコニアもしくはアルミナからなる接触部材を接触させた状態にて焼成することにより、前記接続部分の少なくとも一部に、マグネシア、スピネル、ジルコニアもしくはアルミナが生成することを特徴とするナトリウム−硫黄電池用ベータアルミナ管。
A bottomed cylindrical beta alumina tube used for a solid electrolyte tube of a sodium-sulfur battery,
A connecting portion for connecting the bottomed portion and the cylindrical side surface of the beta alumina tube;
At least a portion of said connecting portion, magnesia, spinel, by firing in a state contacting the contact member made of zirconia or alumina, at least a portion of said connecting portion, magnesia, spinel, zirconia or alumina-yielding A beta alumina tube for a sodium-sulfur battery.
ナトリウム−硫黄電池の固体電解質管に用いる有底円筒状ベータアルミナ管の製造方法であって、
前記ベータアルミナ管の有底部と円筒側面部とを連結する接続部分の少なくとも一部に、マグネシア、スピネル、ジルコニアもしくはアルミナからなる接触部材を接触させた状態にて焼成することを特徴とするナトリウム−硫黄電池用ベータアルミナ管の製造方法。
A method for producing a bottomed cylindrical beta alumina tube for use in a solid electrolyte tube of a sodium-sulfur battery, comprising:
Firing in a state where a contact member made of magnesia, spinel, zirconia or alumina is in contact with at least a part of the connecting portion connecting the bottomed portion and the cylindrical side surface portion of the beta alumina tube. A method for producing a beta alumina tube for a sulfur battery.
上記接触部材がマグネシア、スピネル、ジルコニアもしくはアルミナの焼結体であることを特徴とする請求項に記載のナトリウム−硫黄電池用ベータアルミナ管の製造方法。The method for producing a beta-alumina tube for a sodium-sulfur battery according to claim 2 , wherein the contact member is a sintered body of magnesia, spinel, zirconia or alumina.
JP05212799A 1999-03-01 1999-03-01 Beta-alumina tube for sodium-sulfur battery and method for producing the same Expired - Fee Related JP4365470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05212799A JP4365470B2 (en) 1999-03-01 1999-03-01 Beta-alumina tube for sodium-sulfur battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05212799A JP4365470B2 (en) 1999-03-01 1999-03-01 Beta-alumina tube for sodium-sulfur battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000251928A JP2000251928A (en) 2000-09-14
JP4365470B2 true JP4365470B2 (en) 2009-11-18

Family

ID=12906221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05212799A Expired - Fee Related JP4365470B2 (en) 1999-03-01 1999-03-01 Beta-alumina tube for sodium-sulfur battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4365470B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011782A (en) * 2013-01-17 2013-04-03 宁夏天宇光电太阳能科技有限公司 Method for preparing alumina ceramic tube used for sodium-nickel battery
JP2014141985A (en) * 2013-01-22 2014-08-07 Nsk Ltd Rolling bearing

Also Published As

Publication number Publication date
JP2000251928A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US20140134483A1 (en) All-solid battery and manufacturing method therefor
US20150017490A1 (en) Planar alkali metal-beta battery
TW201304249A (en) Molten salt cell
KR20120071367A (en) Electrochemical cell
JP4365470B2 (en) Beta-alumina tube for sodium-sulfur battery and method for producing the same
CA2175783A1 (en) Battery separator
US11515564B2 (en) Surface treatment of a solid electrolyte to lower the interfacial resistance between the solid electrolyte and an electrode
US20230343957A1 (en) All-solid-state battery
JP2000302582A (en) beta-ALUMINA CERAMICS, ITS PRODUCTION AND PRODUCTION OF SOLID ELECTROLYTE-TYPE BATTERY USING THE beta-ALUMINA CERAMICS
KR101353600B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
US12111282B2 (en) Solid electrolyte and gas sensor with thermal shock resistance
JP3446093B2 (en) Beta-alumina sintered body and method for producing the same
JP2000128627A (en) Bottomed cylindrical beta-alumina tube and its production
JPS628468A (en) Solid electrolyte for secondary battery
JP3054795B2 (en) Solid electrolyte for sodium-sulfur battery and method for producing sodium-sulfur battery using the same
US20230378523A1 (en) All-solid-state battery
JPH11250931A (en) Beta alumina ceramics for sodium-sulfur battery, its manufacture, and sodium-sulfur battery
JP3479187B2 (en) Solid electrolyte tube and method for producing the same
JPH0646984Y2 (en) Bottomed ceramic sintered tube
RU2069358C1 (en) Process of manufacture of potassium electrochemical cell
JPH10247498A (en) Fuel electrode material
KR20240129849A (en) Solid electrolyte for sodium secondary battery, sodium secondary battery having the same and method of manufacturing for solid electrolyte for sodium secondary battery
WO2024009109A1 (en) Solid electrolyte
JPS6017865A (en) Molten salt fuel cell
JP2013114824A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees