JPH08291423A - Inorganic material filled fiber, its production and concrete molding produced by using the fiber - Google Patents

Inorganic material filled fiber, its production and concrete molding produced by using the fiber

Info

Publication number
JPH08291423A
JPH08291423A JP11931995A JP11931995A JPH08291423A JP H08291423 A JPH08291423 A JP H08291423A JP 11931995 A JP11931995 A JP 11931995A JP 11931995 A JP11931995 A JP 11931995A JP H08291423 A JPH08291423 A JP H08291423A
Authority
JP
Japan
Prior art keywords
fiber
fine particles
inorganic fine
inorganic
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11931995A
Other languages
Japanese (ja)
Inventor
Koki Nagano
幸喜 永野
Seiji Yokota
誠二 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP11931995A priority Critical patent/JPH08291423A/en
Publication of JPH08291423A publication Critical patent/JPH08291423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE: To obtain the subject fiber having excellent concrete-reinforcing function and useful for producing a concrete molding having improved shock resistance and flexural strength by compounding a polyolefin fiber with inorganic fine particles such as silicon oxide in a specific state. CONSTITUTION: This fiber is produced by dispersing inorganic fine particles shown below near the surface layer of a polyolefin fiber and making a part of the particles expose from the fiber surface. The inorganic fine particles comprise an oxide, carbonate or sulfate of at least one kind of element selected from a group of silicon, aluminum, calcium and magnesium, and they optionally contain oxide of sodium or potassium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機物を充填されたポ
リオレフィン系繊維、その製造法及びそれを用いたコン
クリート成形体に関する。さらに詳しくは、無機物を充
填することによりコンクリートとの親和性を増したポリ
オレフィン系繊維、その製造法及びそれにより補強され
た耐衝撃性や曲げ強度の向上したコンクリート成形体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin fiber filled with an inorganic material, a method for producing the same, and a concrete molded product using the same. More specifically, the present invention relates to a polyolefin fiber having an increased affinity for concrete by being filled with an inorganic material, a method for producing the same, and a concrete molded body reinforced by the fiber having improved impact resistance and bending strength.

【0002】[0002]

【従来の技術】従来、コンクリート補強用繊維として、
ナイロン、ビニロン、ポリプロピレンなどの合成繊維を
コンクリートに混入することが広く行われている。なか
でもポリプロピレン繊維は、他繊維に較べ加熱下での耐
アルカリ性に優れ、強度にも優れているので、コンクリ
ート製品の耐衝撃性の向上に好適であるため現在も広く
用いられている。しかし、ポリプロピレン、ポリエチレ
ン等の成分からなるポリオレフィン系繊維は本来の性質
として、疎水性が大きく、セメント粒子との親和性に乏
しいため、ポリプロピレン繊維に炭酸カルシウムの微粉
末を加え、更に繊維表面に界面活性剤を付着させたもの
(特開平5−44163号公報)が知られている。
2. Description of the Related Art Conventionally, as a fiber for reinforcing concrete,
It is widely practiced to mix synthetic fibers such as nylon, vinylon and polypropylene into concrete. Among them, polypropylene fiber is excellent in alkali resistance under heating and excellent in strength as compared with other fibers, and is suitable for improving impact resistance of concrete products, and therefore is still widely used at present. However, since polyolefin fibers made of polypropylene, polyethylene, etc. have inherently high hydrophobicity and poor affinity with cement particles, fine powder of calcium carbonate is added to polypropylene fibers, and the interface is further added to the fiber surface. There is known one to which an activator is attached (JP-A-5-44163).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
5−44163号公報等に開示された技術は、炭酸カル
シウムの微粉末を含有したポリオレフィン系繊維である
が、表面の形状は炭酸カルシウムの微粉末が突出してい
るにすぎず、突出した部分はポリオレフィンのフィルム
に被われた状態になっているため、炭酸カルシウムの微
粉末はセメント成分との結合力が発揮されていない。そ
のため、耐衝撃性や曲げ強度のあるコンクリート成形体
用途としては未だ用をなさないという欠点があった。特
に堆積保管時や堆積運搬時においてコンクリート成形体
としては曲げ強度が必須であるにも拘らず、曲げ強度が
不足しているという課題がある。
However, the technique disclosed in Japanese Unexamined Patent Publication No. 5-44163 is a polyolefin fiber containing fine powder of calcium carbonate, but the surface shape is fine powder of calcium carbonate. However, since the protruding portion is covered with the polyolefin film, the calcium carbonate fine powder does not exert the binding force with the cement component. Therefore, it has a drawback that it is not yet used as a concrete molded product having impact resistance and bending strength. In particular, there is a problem in that the flexural strength is insufficient, even though the flexural strength is essential for the concrete molded body during storage and transportation of the sediment.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、無機微粒子状物を
繊維表面に形態上露出させたものをさらに擦過し無機微
粒子状物を表面に露出させたポリオレフィン系繊維を得
ることで、所期の目的が達成されることを知り、本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors further rubbed the inorganic fine particles exposed formally on the fiber surface to further rub the inorganic fine particles. The inventors have found that the desired object can be achieved by obtaining a polyolefin fiber having a surface exposed to the surface, and have completed the present invention.

【0005】本発明は下記構成を有する。 (1)ケイ素、アルミニウム、カルシウム、マグネシウ
ムの群から選ばれた少なくとも1種の元素の酸化物、炭
酸塩若しくは硫酸塩からなり、必要によりナトリウム、
カリウムの酸化物をも含む無機微粒子状物が、ポリオレ
フィン系繊維の表層近傍に分散し、かつ一部は繊維表面
から露出していることを特徴とする無機物充填繊維。 (2)ポリオレフィン系繊維が、鞘芯型複合繊維からな
り、該鞘成分に無機微粒子状物が分散し、かつ一部は繊
維表面から露出している(1)項に記載の無機物充填繊
維。 (3)ポリオレフィン系繊維が、非円異形断面を有して
いる(1)項または(2)項に記載の無機物充填繊維。 (4)無機微粒子状物の表面露出係数(繊維表面積にお
ける露出無機微粒子状物の占める面積の割合)が、5%
以上である(1)または(2)項に記載の無機物充填繊
維。 (5)MFR50〜200のポリプロピレン樹脂10〜
70重量%、MFR1〜30のポリプロピレン樹脂90
〜30重量%からなるポリプロピレン樹脂及び該ポリプ
ロピレン樹脂との合計量の10〜40重量%の無機微粒
子状物からなる鞘部、及びポリオレフィン系樹脂のみか
らなる芯部を溶融紡糸することを特徴とするポリオレフ
ィン系繊維の製造法。 (6)(1)乃至(4)項に記載の無機物充填繊維を用
いて形成したコンクリート成形体。 (7)コンクリート成形体から補強用繊維の引抜き抵抗
強力が糸強度の80%以上である(6)項に記載のコン
クリート成形体。 本発明でいう無機物充填繊維とは、前記無機微粒子状物
を繊維表面に露出させた無機物充填繊維をいう。
The present invention has the following configuration. (1) An oxide, carbonate or sulfate of at least one element selected from the group consisting of silicon, aluminum, calcium and magnesium, and optionally sodium.
Inorganic fine particles containing inorganic oxides, which also contain potassium oxide, are dispersed in the vicinity of the surface layer of the polyolefin fiber and are partially exposed from the fiber surface. (2) The inorganic material-filled fiber according to item (1), wherein the polyolefin fiber is a sheath-core type composite fiber, inorganic fine particles are dispersed in the sheath component, and a part is exposed from the fiber surface. (3) The inorganic material-filled fiber according to item (1) or (2), wherein the polyolefin-based fiber has a non-circular modified cross section. (4) Surface exposure coefficient of inorganic fine particles (ratio of the area occupied by exposed inorganic fine particles to the fiber surface area) is 5%.
The inorganic-filled fiber according to item (1) or (2) above. (5) MFR50-200 polypropylene resin 10
70 wt%, polypropylene resin 90 with MFR 1-30
Characterized in that a polypropylene resin consisting of ˜30% by weight and a sheath part consisting of 10 to 40% by weight of the total amount of the polypropylene resin and an inorganic fine particle, and a core part consisting only of a polyolefin resin are melt-spun. Manufacturing method of polyolefin fiber. (6) A concrete molded body formed by using the inorganic-filled fiber according to the items (1) to (4). (7) The concrete molded body according to the item (6), wherein the strength of pulling out the reinforcing fiber from the concrete molded body is 80% or more of the yarn strength. The term “inorganic substance-filled fiber” as used in the present invention means an inorganic substance-filled fiber in which the inorganic fine particles are exposed on the fiber surface.

【0006】本発明でいうポリオレフィン系繊維とは、
α−オレフィン系樹脂で代表されるポリオレフィン系樹
脂であって、該ポリオレフィン系樹脂としては、ポリプ
ロピレン、プロピレンを主とした他のオレフィンとの結
晶性共重合体、高密度ポリエチレン、中密度ポリエチレ
ン、低密度ポリエチレン、直鎖型低密度ポリエチレン、
共重合ポリプロピレン等を例示できる。これらポリオレ
フィン系樹脂のなかでも、高密度ポリエチレン、低密度
ポリエチレン、直鎖状低密度ポリエチエン、ポリプロピ
レンから選ばれた少なくとも1種が好ましく用いられ
る。特にポリプロピレン繊維が好ましく、この中でも高
結晶性ポリプロピレン繊維がより好ましく用いられる。
The polyolefin fiber referred to in the present invention means
A polyolefin resin represented by α-olefin resin, and as the polyolefin resin, polypropylene, a crystalline copolymer mainly composed of propylene with other olefins, high density polyethylene, medium density polyethylene, low Density polyethylene, linear low density polyethylene,
A copolymer polypropylene etc. can be illustrated. Among these polyolefin resins, at least one selected from high-density polyethylene, low-density polyethylene, linear low-density polyethylene and polypropylene is preferably used. In particular, polypropylene fibers are preferable, and among them, highly crystalline polypropylene fibers are more preferably used.

【0007】本発明でいう無機微粒子状物とは具体的
に、ケイ素酸化物として(SiO2系:石英粉、珪石粉、
珪藻土、シリカフューム、天然シリカ、真珠岩、)、ア
ルミニウム酸化物、マグネシウム酸化物(若しくは炭酸
塩)として(MgCO3系:ドロマイト、マグネシア)、
酸化カルシウム、炭酸カルシウムが挙げられ、他にもS
iO2・Al23系:カオリン、クレー、雲母、絹雲母、
SiO2・Al23・K2O・Na2O系:ゼオライト、セリ
サイト、SiO2・Al23系:カオリンクレー、カオリ
ン、焼成カオリン(メタカオリン)、モンモリロナイ
ト、SiO2・MgO系:石綿、マイカ、タルク、セピオ
ライト、バーミキュライト、SiO2・CaO系:珪灰
石、珪酸カルシウム、硫酸カルシウム、SiO2・Al2
3・MgO系:アタパルジャイト等が挙げられる。これら
の中では炭酸マグネシウム、ケイ素酸化物及びアルミニ
ウム酸化物の両者を含有する化合物が得に好ましい。無
機微粒子状物の大きさについては、練り込みの場合、径
10μm以下のものが紡糸時の曳糸性が良く好ましい。
The inorganic fine particles referred to in the present invention specifically include silicon oxide (SiO 2 system: quartz powder, silica stone powder,
As diatomaceous earth, silica fume, natural silica, pearlite,) aluminum oxide, magnesium oxide (or carbonate) (MgCO 3 system: dolomite, magnesia),
Calcium oxide and calcium carbonate can be mentioned. In addition, S
iO 2 · Al 2 O 3 system: Kaolin, clay, mica, sericite,
SiO 2 · Al 2 O 3 · K 2 O · Na 2 O system: zeolite, sericite, SiO 2 · Al 2 O 3 system: kaolin clay, kaolin, calcined kaolin (metakaolin), montmorillonite, SiO 2 · MgO system: Asbestos, mica, talc, sepiolite, vermiculite, SiO 2 · CaO series: wollastonite, calcium silicate, calcium sulfate, SiO 2 · Al 2 O
3 · MgO-based: attapulgite, and the like. Of these, compounds containing both magnesium carbonate, silicon oxide and aluminum oxide are particularly preferable. Regarding the size of the inorganic fine particles, in the case of kneading, those having a diameter of 10 μm or less are preferable because the spinnability during spinning is good.

【0008】前記無機微粒子状物は、ポリオレフィン系
繊維表面に露出した状態に於いてのみ結合力の面で効果
を発揮することから、如何に繊維表面に存在させるかが
大事な要件である。しかし、繊維に無機微粒子状物を混
入させることは、繊維の強度を低下させることにつなが
る。また、前記無機微粒子状物を添加しても、ポリオレ
フィン系樹脂に表面を被われてしまうために露出してお
らず、物理的に引っかかりがあるだけで、結合力に寄与
していなかった。そこで、繊維の表面に前記無機微粒子
状物を露出させる方法が必要となる。その方法として2
方法あり、一つは紡糸時に溶融状態のポリオレフィン系
樹脂に前記無機微粒子状物を吹き付けるA法、もう一つ
は前記無機微粒子状物をポリオレフィン系樹脂に添加
し、繊維化したものを擦過することにより前記無機微粒
子状物を被うポリオレフィンの樹脂を削り取るB法であ
り、どちらの方法によっても良い。
Since the above-mentioned inorganic fine particles exert their effect in terms of binding force only when they are exposed on the surface of the polyolefin fiber, it is an important requirement how they are present on the fiber surface. However, mixing inorganic fine particles into the fiber leads to a reduction in the strength of the fiber. Further, even when the inorganic fine particles were added, they were not exposed because the surface was covered with the polyolefin resin, and they were physically caught, but did not contribute to the binding force. Therefore, a method of exposing the inorganic fine particles on the surface of the fiber is required. 2 as the method
There is a method, one is method A in which the above-mentioned inorganic fine particles are sprayed onto a molten polyolefin resin during spinning, and the other is to add the above inorganic fine particles to the polyolefin resin and rub the fiberized one. Method B is a method in which the polyolefin resin covering the inorganic fine particles is scraped off, and either method may be used.

【0009】A法では、繊維表面に直接前記無機微粒子
状物を吹き付けるため、繊維内に添加する方法とは違
い、繊維表層近傍に分散し、一部は表面から露出した状
態を形成する。しかも、前記無機微粒子状物による紡糸
時の曳糸性の悪化及びフィルターライフの心配がなく、
大きな径の前記無機微粒子状物を用いることができる。
B法では、前記無機微粒子状物が確実にオレフィン系樹
脂の中にあるため、繊維化までの工程、特に延伸工程で
の前記無機微粒子状物の落下がない。しかし、紡糸時の
前記無機微粒子状物のフィルター詰まりによるフィルタ
ーライフの短縮化が問題となる。フィルターライフを延
ばすためにも前記無機微粒子状物の添加量を極力減らす
必要がある。
In the method A, since the inorganic fine particles are sprayed directly on the fiber surface, unlike the method in which they are added into the fiber, they are dispersed in the vicinity of the surface layer of the fiber and a part is exposed from the surface. Moreover, there is no concern about deterioration of spinnability and filter life during spinning due to the inorganic fine particles,
The inorganic fine particles having a large diameter can be used.
In the method B, the inorganic fine particles are surely contained in the olefin resin, so that the inorganic fine particles do not fall in the steps up to fiber formation, particularly in the stretching step. However, there is a problem that the filter life is shortened due to the clogging of the inorganic fine particles during spinning. In order to extend the filter life, it is necessary to reduce the added amount of the inorganic fine particles as much as possible.

【0010】B法には分散鞘芯型の鞘部のみに前記無機
微粒子状物を添加するB−1法と、分子量の小さい(M
FR大)オレフィン系樹脂で前記無機微粒子状物をペレ
ット化したものを分子量の大きい(MFR小)オレフィ
ン系樹脂に混ぜることにより、繊維の表層のみに前記無
機微粒子状物を存在させるB−2法と、双方を組み合わ
せるB−3法がある。分子量が大きいポリマーと分子量
が小さいものをブレンドし紡糸すると、表面張力の関係
で、繊維表面に分子量の小さいものが存在することにな
る。これが、本発明の特徴であるポリオレフィン樹脂に
練り込んだ無機微粒子状物を表面露出させると考えられ
る。
Methods B include method B-1 in which the above-mentioned inorganic fine particles are added only to the dispersed sheath-core type sheath, and method B has a small molecular weight (M
B-2 method in which the inorganic fine particles are present only in the surface layer of the fibers by mixing the pelletized inorganic fine particles with the (large FR) olefin resin into an olefin resin having a large molecular weight (small MFR) And B-3 method which combines both. When a polymer having a large molecular weight and a polymer having a small molecular weight are blended and spun, a fiber having a small molecular weight is present on the fiber surface due to the surface tension. It is considered that this exposes the surface of the inorganic fine particles kneaded into the polyolefin resin, which is a feature of the present invention.

【0011】即ち、分子量の小さいポリオレフィン樹脂
に前記無機微粒子状物を練り込んだペレットを、分子量
の大きいポリオレフィン樹脂とブレンドし紡糸すること
で、繊維表面に分子量の小さいポリオレフィン樹脂が多
く存在し、これに伴い練り込んだ前記無機微粒子状物が
繊維表層に集められると考えられる。この前記無機微粒
子状物が繊維表層に集められたものを最終的に露出を目
的に擦過することによって、前記無機微粒子状物が繊維
表面から露出した繊維を製造することができる。分子量
の小さいポリオレフィン樹脂の分子量はMFR(230
℃測定値。以下同様)50〜200であり、分子量の大
きいポリオレフィン樹脂の分子量は1〜30である。両
者の混合比率は前者が10〜70重量%である。紡糸は
通常の溶融紡糸法により行うことが出来る。通常の円形
断面用の口金を用いることも可能であるが、必要により
Y字型、十字型、卍型、偏平型、波形或いは多溝型など
の異形断面用の口金を用いることもできる。異形断面繊
維の場合には円形断面に比して比表面積を増大させるこ
とが出来る。
That is, a pellet obtained by kneading the above-mentioned inorganic fine particles into a polyolefin resin having a small molecular weight is blended with a polyolefin resin having a large molecular weight and spun to give a large amount of the polyolefin resin having a small molecular weight on the fiber surface. It is considered that the above-mentioned inorganic fine particles that have been kneaded together are collected in the fiber surface layer. A fiber in which the inorganic fine particles are exposed from the fiber surface can be manufactured by finally rubbing the inorganic fine particles collected in the surface layer of the fiber for the purpose of exposing. The molecular weight of polyolefin resin with a small molecular weight is MFR (230
Measured in ° C. The same applies hereinafter) 50 to 200, and the polyolefin resin having a large molecular weight has a molecular weight of 1 to 30. The mixing ratio of both is 10 to 70% by weight in the former case. Spinning can be performed by a usual melt spinning method. Although it is possible to use an ordinary die having a circular cross section, it is also possible to use a die having an irregular cross section such as a Y-shape, a cross shape, a swastika type, a flat type, a corrugated shape, or a multi-groove type if necessary. In the case of the modified cross section fiber, the specific surface area can be increased as compared with the circular cross section.

【0012】B−1法は、芯部をポリオレフィン系樹脂
のみとし、鞘部のポリオレフィン系樹脂に前記無機微粒
子状物を添加する方法である。この場合は芯部のポリオ
レフィンにより紡糸性を維持すると共に鞘部のみに無機
微粒子状物を添加するため、その添加量を減らすことが
出来る。B−2法は、分子量の小さいオレフィン系樹脂
で前記無機微粒子状物をペレット化したものを、分子量
の大きいオレフィン系樹脂に混ぜることにより、繊維の
表層のみに前記無機微粒子状物を存在させる方法である
が、溶融したオレフィン系樹脂中の中心部に存在する前
記無機微粒子状物は、固化するまでの間に表層に向かい
移動するため、それを有効に利用することが出来る。
Method B-1 is a method in which the core is made of only the polyolefin resin and the inorganic fine particles are added to the polyolefin resin of the sheath. In this case, the polyolefin in the core maintains spinnability and the inorganic fine particles are added only to the sheath, so that the amount of addition can be reduced. Method B-2 is a method in which the inorganic fine particles are pelletized with an olefin resin having a small molecular weight, and the pelletized inorganic fine particles are mixed with an olefin resin having a large molecular weight so that the inorganic fine particles are present only in the surface layer of the fiber. However, the inorganic fine particles present in the central portion of the melted olefin resin move toward the surface layer until they solidify, so that they can be effectively used.

【0013】鞘芯型の鞘部のみに前記無機微粒子状物を
添加するB−1法と、分子量の小さいオレフィン系樹脂
で前記無機微粒子状物をペレット化したものを分子量の
大きいオレフィン系樹脂に混ぜることにより、繊維の表
層のみに前記無機微粒子状物を存在させるB−2法の双
方を組み合わせたB−3法は、両者の長所を取り入れた
ため無機微粒子状物の添加量を一層減少でき、フィルタ
ーライフのロング化のメリットがあり、最も好ましい方
法である。すなわち、B−3法によれば、紡出時に表層
近傍にある前記無機微粒子状物が、オレフィン系樹脂が
固化するまでの間に表面に集中させることができる。最
終的に、これらB法で得たポリオレフィン系繊維を擦過
させることで、本発明の目的とする無機物充填繊維を製
造することができる。
The B-1 method in which the inorganic fine particles are added only to the sheath-core type sheath, and the inorganic fine particles are pelletized with an olefin resin having a small molecular weight to obtain an olefin resin having a large molecular weight. The B-3 method, which is a combination of both the B-2 method in which the inorganic fine particles are present only in the surface layer of the fiber by mixing, can further reduce the amount of addition of the inorganic fine particles because the advantages of both methods are incorporated. This is the most preferable method because it has the advantage of extending the filter life. That is, according to the B-3 method, the inorganic fine particles in the vicinity of the surface layer during spinning can be concentrated on the surface before the olefin resin solidifies. Finally, by rubbing these polyolefin fibers obtained by the method B, the inorganic-filled fibers which are the object of the present invention can be produced.

【0014】繊維が太い場合(10d/f〜2000d/f)
には、小さな径はもちろん大きな径の前記無機微粒子状
物を保持することができるため、A法が望ましく、繊維
が細い場合(1d/f〜10d/f)には大きな径の前記無機
微粒子状物の保持が困難なため、小さな径の前記無機微
粒子状物を用いることが望ましく、微粒子飛散を考慮す
ると環境上、B法が望ましい。前記B−1法またはB−
3法では鞘芯型複合繊維の形態で用いられ、鞘部若しく
は芯部を構成するポリオレフィン系樹脂としては、前述
した同一若しくは異なるポリオレフィン系樹脂を使用す
ることが出来る。複合比(重量比。以下同様)は30/
70〜70/30、好ましくは40/60〜60/4
0、より好ましくは45/55〜55/45の範囲であ
る。複合繊維の鞘部の複合比70%以上では繊維の引張
り強度が不足し、コンクリート成形体として十分な曲げ
強力が得られない。また、30%未満では、鞘芯の押出
機のバランスから生産性が悪くなり、好ましくない。
When the fiber is thick (10 d / f to 2000 d / f)
In addition, since it is possible to hold the above-mentioned inorganic fine particles having a large diameter as well as a small diameter, the method A is desirable, and when the fiber is thin (1 d / f to 10 d / f), the above-mentioned inorganic fine particles having a large diameter can be retained. Since it is difficult to retain the object, it is desirable to use the inorganic fine particles having a small diameter, and the method B is desirable from the environmental point of view in consideration of scattering of fine particles. Method B-1 or B-
In the 3rd method, it is used in the form of a sheath-core type composite fiber, and the same or different polyolefin-based resin described above can be used as the polyolefin-based resin constituting the sheath or the core. The composite ratio (weight ratio; the same applies below) is 30 /
70-70 / 30, preferably 40 / 60-60 / 4
0, more preferably 45/55 to 55/45. If the composite ratio of the sheath portion of the composite fiber is 70% or more, the tensile strength of the fiber is insufficient, and sufficient bending strength as a concrete molded body cannot be obtained. On the other hand, if it is less than 30%, the productivity is deteriorated due to the balance of the sheath-core extruder, which is not preferable.

【0015】無機微粒子状物の表面露出係数とは、無機
微粒子状物が繊維表面にどれだけ露出しているかを示す
ファクターである。繊維表面に露出した無機微粒子状物
は、コンクリートとの親和性を持ち、この親和性によっ
てコンクリートを補強しているためコンクリート補強用
繊維として非常に重要なファクターである。具体的に
は、繊維表面の側面を電子顕微鏡を用いて写真撮影し、
画像解析することにより下式で算出することができる。 (繊維表面から露出している無機微粒子状物の占める面
積)/(視野に占める繊維表面積)×100(%) 前記の算出式で得られた表面露出係数が5%以上になる
とコンクリートとの結合力による効果が得られるように
なるが、好ましくは10%、より好ましくは20%以上
である。この結果、引き抜き抵抗強力が向上し、これに
よりコンクリートの曲げ強度、衝撃強度が向上し、目的
とするコンクリート補強を達成することができるのであ
る。
The surface exposure coefficient of the inorganic fine particles is a factor indicating how much the inorganic fine particles are exposed on the fiber surface. The inorganic fine particles exposed on the surface of the fiber have an affinity with concrete, and since this affinity reinforces the concrete, it is a very important factor as a fiber for reinforcing concrete. Specifically, the side surface of the fiber surface is photographed using an electron microscope,
It can be calculated by the following formula by analyzing the image. (Area occupied by the inorganic fine particles exposed from the fiber surface) / (Fiber surface area occupied in the field of view) x 100 (%) When the surface exposure coefficient obtained by the above calculation formula is 5% or more, it bonds with concrete. Although the effect of force can be obtained, it is preferably 10%, more preferably 20% or more. As a result, the pull-out resistance strength is improved, whereby the bending strength and impact strength of concrete are improved, and the desired concrete reinforcement can be achieved.

【0016】本発明のコンクリート成形体の物性は、コ
ンクリート補強用繊維のデニール及びカット長により大
きく影響される。コンクリート補強用繊維のデニール
は、1〜2000デニールが好ましい。より好ましくは
2d/f〜100d/f、さらに好ましくは5d/f〜30d/fで
ある。1デニール未満では応力集中時に繊維強度が耐え
られず、十分でない。2000デニールを越えるとコン
クリートと該繊維との均一分散が難しくなり、耐衝撃性
及び曲げ強度が小さい部分が形成され易くなる。カット
長は3〜15mmが好ましい。カット長が3mm未満で
は繊維の交差がないため、コンクリートの衝撃強度が十
分でなくなり、15mmを越えると該繊維同士が絡ま
り、分散が悪くなるため、コンクリートと該繊維との均
一分散が難しくなり、耐衝撃性及び曲げ強度が小さい部
分が形成され易くなる。
The physical properties of the concrete molding of the present invention are greatly influenced by the denier and cut length of the concrete reinforcing fiber. The denier of the concrete reinforcing fiber is preferably 1 to 2000 denier. It is more preferably 2 d / f to 100 d / f, and even more preferably 5 d / f to 30 d / f. If it is less than 1 denier, the fiber strength cannot withstand when stress is concentrated, and it is not sufficient. If it exceeds 2000 denier, it becomes difficult to uniformly disperse the concrete and the fibers, and it becomes easy to form a portion having low impact resistance and low bending strength. The cut length is preferably 3 to 15 mm. If the cut length is less than 3 mm, the fibers do not intersect, so that the impact strength of the concrete becomes insufficient, and if the cut length exceeds 15 mm, the fibers are entangled with each other and the dispersion becomes poor, so that it becomes difficult to uniformly disperse the concrete and the fibers. It becomes easy to form a portion having low impact resistance and low bending strength.

【0017】本発明の複合成形体に用いる熱接着性複合
繊維は、繊維同士の絡みがなく、分散しやすいことか
ら、捲縮していない直線状のものが望ましい。本発明の
コンクリート補強用繊維は、前記無機微粒子状物が10
〜40重量%含有されることが望ましい。この場合鞘部
のみに充填する場合は鞘部のみの%を表し、繊維全体に
充填する場合には繊維全体中の%を表す。前記無機微粒
子状物が10重量%未満ではコンクリート成形体の耐衝
撃性及び曲げ強力が十分でない。また、前記無機微粒子
状物が40重量%を超えると、紡糸時のフィルターライ
フが短くなってしまい、望ましくない。又、本発明の繊
維を全セメントスラリーの0.01〜10重量%添加
し、更にセメント、水以外に必要により岩石、アスベス
ト、パルプ等を添加してセメントスラリーを調製し、常
法に従い乾燥、硬化させることにより本発明のコンクリ
ート成形体を得ることが出来る。本発明のコンクリート
成形体において充填された繊維の引き抜き強力がその繊
維の引張り強力の80%以上であることがコンクリート
との親和性に優れる繊維と考えられ好ましい。
The heat-adhesive conjugate fiber used in the composite molded article of the present invention is preferably a non-crimped linear one because the fibers are not entangled with each other and are easily dispersed. In the fiber for reinforcing concrete of the present invention, the inorganic fine particles are 10
It is desirable that the content be ˜40% by weight. In this case, when only the sheath portion is filled, the percentage of only the sheath portion is shown, and when the whole fiber is filled, the percentage of the whole fiber is shown. If the content of the inorganic fine particles is less than 10% by weight, the impact resistance and bending strength of the concrete molded body are not sufficient. If the content of the inorganic fine particles exceeds 40% by weight, the filter life during spinning is shortened, which is not desirable. Further, the fiber of the present invention is added in an amount of 0.01 to 10% by weight of the total cement slurry, and further cement, water, if necessary, rock, asbestos, pulp or the like to prepare a cement slurry, which is dried according to a conventional method, The concrete molded product of the present invention can be obtained by curing. In the concrete molded product of the present invention, it is preferable that the fiber having excellent pull-out strength of the filled fiber is 80% or more of the tensile strength of the fiber, which is considered to be excellent in affinity with concrete.

【0018】[0018]

【実施例】以下、本発明を実施例によってさらに詳細に
説明するが、本発明の要旨を越えない限り、以下の実施
例、比較例に限定されるものではない。尚、各例の中で
用いた表面露出係数、引抜き抵抗強力、曲げ強度、シャ
ルピー衝撃強度は以下のようにして測定した。尚、紡糸
において特に断らない限り円形断面用の口金を使用し
た。 《表面露出係数》繊維表面の側面を電子顕微鏡を用いて
写真撮影し、画像解析することにより無機微粒子状物の
露出面積/視野に占める繊維表面積を求め、面積百分率
で表した。(n=10) 《引抜き抵抗強力》引抜き抵抗強力は、コンクリート成
形体の表層部のPP繊維を、イマダ(株)製Push−
Pull−Scaleの釣り針型引っかけ具で引っか
け、PP繊維の一方の端が引き抜ける時の最大荷重を引
抜き強力とした。(n=20) 《曲げ強度》曲げ試験JIS−A−1408に準じて測
定した。 《シャルピー衝撃強度》シャルピー衝撃強度試験JIS
−B−7722に準じて測定した。 [実施例1〜4、比較例1]表1、表2に示す無機微粒
子状物及びポリプロピレンを用い、単一繊維を280℃
で溶融紡糸し、口金直下にて各種平均粒子径の各種無機
微粒子状物を吹き付け、110℃で4倍延伸し、10m
mにカットした。延伸糸の繊度、強伸度及びコンクリー
トからの引き抜き抵抗強力を測定し、結果を表4に示し
た。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the invention is not limited to the following examples and comparative examples as long as the gist of the present invention is not exceeded. The surface exposure coefficient, pullout resistance strength, bending strength, and Charpy impact strength used in each example were measured as follows. Unless otherwise specified in spinning, a die for circular cross section was used. << Surface Exposure Coefficient >> The side surface of the fiber surface was photographed using an electron microscope and the image analysis was performed to obtain the exposed area of the inorganic fine particles / the fiber surface area occupying in the visual field, which was expressed as an area percentage. (N = 10) << Pull-out resistance strength >> The pull-out resistance strength is obtained by adjusting the PP fiber of the surface layer portion of the concrete molded body to the Push-manufactured by Imada Co., Ltd.
The maximum load when one end of the PP fiber was pulled out was set as the pull-out strength by hooking with a pull-scale hooking tool. (N = 20) << Bending strength >> Bending test It was measured according to JIS-A-1408. <Charpy impact strength> Charpy impact strength test JIS
-Measured according to B-7722. [Examples 1 to 4 and Comparative Example 1] Using the inorganic fine particles and polypropylene shown in Tables 1 and 2, a single fiber was heated to 280 ° C.
Melt spinning, spraying various inorganic fine particles with various average particle diameters directly under the spinneret, stretching 4 times at 110 ° C., 10 m
Cut to m. The fineness of the drawn yarn, the strength and elongation, and the pulling resistance strength from concrete were measured, and the results are shown in Table 4.

【0019】[実施例5〜8、実施例13、比較例2〜
3]表1〜表3に示すポリプロピレン及びこのポリプロ
ピレンに各種平均粒子径の各種無機微粒子状物を練り込
んだペレットを用い、単一繊維及び繊維断面における面
積比が50/50である鞘芯型複合繊維の鞘成分に前記
ペレットを用いて280℃で溶融紡糸し、110℃で4
倍延伸した後、固定ロールを通すことにより、繊維表面
を擦過し10mmにカットした。延伸糸の繊度、強伸度
及びコンクリートからの引き抜き強力を測定し、結果を
表5に示した。尚、実施例13はY字型用口金を使用し
た。
[Examples 5 to 8, Example 13, Comparative Examples 2 to 2]
3] Polypropylene shown in Tables 1 to 3 and a sheath-core type having a single fiber and an area ratio in the fiber cross section of 50/50 using pellets obtained by kneading the polypropylene with various inorganic fine particles having various average particle sizes The pellets were used as the sheath component of the composite fiber, melt-spun at 280 ° C, and
After double stretching, the fiber surface was rubbed by passing through a fixed roll and cut into 10 mm. The fineness of the drawn yarn, the strength and elongation, and the pulling strength from the concrete were measured, and the results are shown in Table 5. In Example 13, a Y-shaped mouthpiece was used.

【0020】[実施例9〜12、比較例4]実施例3、
6〜8及び比較例1の短繊維を各24g、それぞれ7.
2リットルの水道水に投入、攪拌しながら普通ポルトラ
ンドセメント680g、アスベスト40g、パルプ8
g、蛇紋岩粉末48gを順次投入混合して8リットルの
セメントスラリーを作製した。更に凝集剤アイケイフロ
ック(商品名:市川毛織(株)製)0.02重量%液を
20ml添加し、モールド容器中にこのスラリーを注入
後、60メッシュの金網を通して脱水し、厚さ5mmの
平板状の半可塑状生成物を得た。この生成物を室温、湿
潤状態で28日間放置し自然養生後、コンクリート製品
を評価した。その各々を実施例9〜12及び比較例4と
して、結果を表6に示した。
[Examples 9 to 12, Comparative Example 4] Example 3,
24 g each of 6 to 8 and Comparative Example 1 short fibers, 7.
Pour into 2 liters of tap water and, with stirring, ordinary Portland cement 680 g, asbestos 40 g, pulp 8
g and serpentine powder 48 g were sequentially added and mixed to prepare an 8-liter cement slurry. Further, 20 ml of a 0.02 wt% liquid of a flocculant IKE FLOCK (trade name: manufactured by Ichikawa Kaori Co., Ltd.) was added, and after pouring this slurry into a mold container, it was dehydrated through a wire mesh of 60 mesh, and a flat plate having a thickness of 5 mm. A semi-plastic product in the form of a solid was obtained. The product was allowed to stand at room temperature in a wet state for 28 days, and after natural curing, the concrete product was evaluated. The results are shown in Table 6 as Examples 9 to 12 and Comparative Example 4, respectively.

【0021】実験の結果、表4、表5に示すようにブラ
ンクである比較例1を除く無機微粒子状物を吹き付けた
ものと、ペレット練り込み後に擦過したものすべてにつ
いて、引き抜き抵抗強力は糸強度(糸物性のうち引張強
力)の80%以上であった。これに対し、無機微粒子状
物を吹き付けなかったものの引き抜き強度は非常に小さ
かった。表5に示す比較例2、3は無機微粒子状物の径
が10ミクロンのものを使用した場合であり、曳糸性が
悪かった。よって表面露出係数以下の項目のデータがな
い。安定した紡糸ができなかったことから、10ミクロ
ンの径のものは練り込み方式では用いることが出来ない
ことが分かる。実施例5、13と6を較べると、単一繊
維の場合は鞘部だけに無機微粒子状物を添加した複合繊
維よりも糸の引張強力が低下しているのがわかる。又、
実施例5と13を比較するとY字型断面である実施例1
3の引き抜き抵抗強力の方が実施例5のそれに比してや
や大である。実施例7と8を較べると、分子量の小さい
ポリプロピレンを用いたペレットを用いた実施例8の方
が、表面露出係数が大きくなっていることから、分子量
の小さいポリプロピレンを用いたペレットを用いること
により無機微粒子状物が表層に集めるのに有効であるこ
とがわかった。実施例11と12を較べると、分子量の
小さいポリプロピレンを用いたペレットを用いた実施例
12の方が、曲げ強度及び衝撃強度両方優れていること
から、表面に無機微粒子状物を多く出させることが有効
であり、分子量の小さいポリプロピレンを用いたペレッ
トを用いることが有効であることがわかった。
As a result of the experiment, as shown in Tables 4 and 5, with respect to all of the blanks excluding Comparative Example 1 sprayed with the inorganic fine particles and the ones rubbed after kneading the pellets, the pull-out resistance strength is the yarn strength. It was 80% or more of the (tensile strength of the yarn properties). On the other hand, the pull-out strength was very small even though the inorganic fine particles were not sprayed. In Comparative Examples 2 and 3 shown in Table 5, the inorganic fine particles having a diameter of 10 μm were used, and the spinnability was poor. Therefore, there is no data for items below the surface exposure coefficient. Since stable spinning could not be performed, it can be seen that the one having a diameter of 10 μm cannot be used in the kneading method. Comparing Examples 5, 13 and 6 with each other, it can be seen that in the case of the single fiber, the tensile strength of the yarn is lower than that of the composite fiber in which the inorganic fine particles are added only to the sheath portion. or,
Comparing Examples 5 and 13 with each other, Example 1 having a Y-shaped cross section
The pull-out resistance of No. 3 is stronger than that of Example 5. Comparing Examples 7 and 8, Example 8 using the pellets using the low molecular weight polypropylene has a larger surface exposure coefficient. Therefore, by using the pellets using the low molecular weight polypropylene, It was found that the inorganic fine particles are effective for collecting on the surface layer. Comparing Examples 11 and 12, Example 12 using pellets made of polypropylene having a small molecular weight is superior in both bending strength and impact strength. Therefore, a large amount of inorganic fine particles are to be produced on the surface. Was found to be effective, and it was found to be effective to use pellets made of polypropylene having a small molecular weight.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【発明の効果】本発明の無機物充填繊維は、無機微粒子
状物が、ポリオレフィン系繊維の表層近傍に分散し、か
つ一部は露出しているので、コンクリートとの親和性が
あるため、コンクリート補強効果に優れる。本発明の製
造法により、本発明の繊維を効率的に製造することが出
来る。又、本発明のコンクリートは親和性の良い本発明
の繊維が充填されているために曲げ強度及び衝撃強度に
優れている。
INDUSTRIAL APPLICABILITY In the inorganic-filled fiber of the present invention, the inorganic fine particles are dispersed in the vicinity of the surface layer of the polyolefin-based fiber, and part of it is exposed. Excellent effect. The fiber of the present invention can be efficiently produced by the production method of the present invention. Further, the concrete of the present invention is excellent in bending strength and impact strength because it is filled with the fibers of the present invention having good affinity.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素、アルミニウム、カルシウム、マ
グネシウムの群から選ばれた少なくとも1種の元素の酸
化物、炭酸塩若しくは硫酸塩からなり、必要によりナト
リウム、カリウムの酸化物をも含む無機微粒子状物が、
ポリオレフィン系繊維の表層近傍に分散し、かつ一部は
繊維表面から露出していることを特徴とする無機物充填
繊維。
1. An inorganic fine particle comprising an oxide, carbonate or sulfate of at least one element selected from the group consisting of silicon, aluminum, calcium and magnesium, and optionally containing oxides of sodium and potassium. But,
An inorganic-filled fiber characterized in that it is dispersed in the vicinity of the surface layer of a polyolefin fiber, and part of it is exposed from the fiber surface.
【請求項2】 ポリオレフィン系繊維が、鞘芯型複合繊
維からなり、該鞘成分に無機微粒子状物が分散し、かつ
一部は繊維表面から露出している請求項1に記載の無機
物充填繊維。
2. The inorganic-filled fiber according to claim 1, wherein the polyolefin-based fiber is a sheath-core type composite fiber, inorganic fine particles are dispersed in the sheath component, and a part thereof is exposed from the fiber surface. .
【請求項3】 ポリオレフィン系繊維が、非円異形断面
を有している請求項1または2に記載の無機物充填繊
維。
3. The inorganic-filled fiber according to claim 1, wherein the polyolefin fiber has a non-circular irregular cross section.
【請求項4】 無機微粒子状物の表面露出係数(繊維表
面積における露出無機微粒子状物の占める面積の割合)
が、5%以上である請求項1または2に記載の無機物充
填繊維。
4. Surface exposure coefficient of inorganic particulate matter (ratio of area occupied by exposed inorganic particulate matter in fiber surface area)
Is 5% or more, and the inorganic-filled fiber according to claim 1 or 2.
【請求項5】 MFR50〜200のポリプロピレン樹
脂10〜70重量%、MFR1〜30のポリプロピレン
樹脂90〜30重量%からなるポリプロピレン樹脂及び
該ポリプロピレン樹脂との合計量の10〜40重量%の
無機微粒子状物からなる鞘部、及びポリオレフィン系樹
脂のみからなる芯部を溶融紡糸することを特徴とするポ
リオレフィン系繊維の製造法。
5. A polypropylene resin comprising 10 to 70% by weight of a polypropylene resin having an MFR of 50 to 200 and 90 to 30% by weight of a polypropylene resin having an MFR of 1 to 30, and 10 to 40% by weight of the total amount of the polypropylene resin and inorganic fine particles. A method for producing a polyolefin fiber, which comprises melt-spinning a sheath made of a material and a core made of a polyolefin resin only.
【請求項6】 請求項1乃至4に記載の無機物充填繊維
を用いて形成したコンクリート成形体。
6. A concrete molded body formed by using the inorganic-filled fiber according to any one of claims 1 to 4.
【請求項7】 コンクリート成形体から補強用繊維の引
抜き抵抗強力が糸強度の80%以上である請求項6に記
載のコンクリート成形体。
7. The concrete formed body according to claim 6, wherein the pull-out resistance strength of the reinforcing fiber from the concrete formed body is 80% or more of the yarn strength.
JP11931995A 1995-04-19 1995-04-19 Inorganic material filled fiber, its production and concrete molding produced by using the fiber Pending JPH08291423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11931995A JPH08291423A (en) 1995-04-19 1995-04-19 Inorganic material filled fiber, its production and concrete molding produced by using the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11931995A JPH08291423A (en) 1995-04-19 1995-04-19 Inorganic material filled fiber, its production and concrete molding produced by using the fiber

Publications (1)

Publication Number Publication Date
JPH08291423A true JPH08291423A (en) 1996-11-05

Family

ID=14758520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11931995A Pending JPH08291423A (en) 1995-04-19 1995-04-19 Inorganic material filled fiber, its production and concrete molding produced by using the fiber

Country Status (1)

Country Link
JP (1) JPH08291423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282250A (en) * 2000-03-31 2001-10-12 Taiheiyo Cement Corp Vibration isolating function material made of concrete
JP2002029793A (en) * 2000-07-12 2002-01-29 Daiwabo Co Ltd Composite fiber for reinforcing cement
JP2005220498A (en) * 2004-02-09 2005-08-18 Ube Nitto Kasei Co Ltd Polyolefin short fiber for reinforcing cement and cement-based molded product using the same
AU2012200025A1 (en) * 2011-08-25 2013-03-14 NK Alkenz Co., Ltd. Environmentally Friendly Coated Yarn and Coating Composition Therefor
CN115233337A (en) * 2022-08-11 2022-10-25 浙江大学台州研究院 Preparation method of nano composite fiber powder for recycled concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282250A (en) * 2000-03-31 2001-10-12 Taiheiyo Cement Corp Vibration isolating function material made of concrete
JP2002029793A (en) * 2000-07-12 2002-01-29 Daiwabo Co Ltd Composite fiber for reinforcing cement
JP2005220498A (en) * 2004-02-09 2005-08-18 Ube Nitto Kasei Co Ltd Polyolefin short fiber for reinforcing cement and cement-based molded product using the same
AU2012200025A1 (en) * 2011-08-25 2013-03-14 NK Alkenz Co., Ltd. Environmentally Friendly Coated Yarn and Coating Composition Therefor
AU2012200025B2 (en) * 2011-08-25 2014-08-28 NK Alkenz Co., Ltd. Environmentally Friendly Coated Yarn and Coating Composition Therefor
CN115233337A (en) * 2022-08-11 2022-10-25 浙江大学台州研究院 Preparation method of nano composite fiber powder for recycled concrete
CN115233337B (en) * 2022-08-11 2023-10-03 浙江大学台州研究院 Preparation method of nano composite fiber powder for recycled concrete

Similar Documents

Publication Publication Date Title
DE60105269T2 (en) FIRE-RESISTANT ULTRA-HIGH-PERFORMANCE COMPOSITION COMPOSITION
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
US4474907A (en) Fiber-reinforced hydraulically setting materials
JPH08291423A (en) Inorganic material filled fiber, its production and concrete molding produced by using the fiber
JP2835812B2 (en) Focused cement reinforcing fibers
JP4221900B2 (en) Method for producing fiber-containing thermoplastic resin composition
JPH0986984A (en) Polypropylene fiber for cement reinforcement
JP3980762B2 (en) Polyolefin fiber bundle for cement reinforcement
JP3186498B2 (en) Bundled fiber for cement reinforcement
JP4970675B2 (en) Polyolefin fiber for cement reinforcement and method for producing the same
JP3348971B2 (en) Bundled fiber for cement reinforcement
JP2616877B2 (en) Organic fiber-based propylene resin composition
JPH07173722A (en) Polyolefin fiber for reinforcing cement
JP4744676B2 (en) Cement reinforcing composite fiber
JP2008266872A (en) Polypropylene yarn
JPH0216257B2 (en)
JPS6278136A (en) Manufacture of hydraulic inorganic paper product
JPS5861149A (en) Reinforced thermoplastic resin composition
JPH06248506A (en) Polypropylene fiber and fiber-reinforced formed cement article
JP7364836B2 (en) Bundled fiber for adding hydraulic hardening material, premix cement composition and hydraulic hardening material containing the same, and manufacturing method thereof
JP2538122B2 (en) Hydraulic Extrusion Composition
EP4168611B1 (en) Polymer fibers for concrete reinforcement
JPH08333152A (en) Cement composition and auxiliary for its extrusion molding
JP2003160365A (en) Cement reinforcing fiber
JPH0867539A (en) Cement-reinforcing fiber