JPH08291331A - Nonmagnetic holding ring for generator and its production - Google Patents

Nonmagnetic holding ring for generator and its production

Info

Publication number
JPH08291331A
JPH08291331A JP9383895A JP9383895A JPH08291331A JP H08291331 A JPH08291331 A JP H08291331A JP 9383895 A JP9383895 A JP 9383895A JP 9383895 A JP9383895 A JP 9383895A JP H08291331 A JPH08291331 A JP H08291331A
Authority
JP
Japan
Prior art keywords
retaining ring
toughness
generator
magnetic
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9383895A
Other languages
Japanese (ja)
Inventor
Yoshio Kitamura
善男 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9383895A priority Critical patent/JPH08291331A/en
Publication of JPH08291331A publication Critical patent/JPH08291331A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To produce a nonmagnetic holding ring for a generator in which grain boundary precipitation of carbide is prevented or controlled and, as a result, deterioration in ductility and toughness due to cold tube expanding for improving material strength is reduced and which is further excellent in ductility and toughness as well as in strength and particularly excellent in toughness in a radial direction (wall thickness direction). CONSTITUTION: A nonmagnetic iron-base alloy, containing 0.04-0.08wt.% C, is heated to 1100-1250 deg.C and formed into annular shape by hot forging at >=800 deg.C forging finishing temp., followed by rapid cooling by water cooling or oil cooling. After forged surface is removed by machining, the resultant ring is heated to 1000-1100 deg.C and water-cooled to undergo solution heat treatment. By this method, the nonmagnetic holding ring for generator can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発電機用非磁性保持リ
ング及びその製造方法に関し、詳細には、タービン発電
機の界磁コイルをサポートするために使用される非磁性
鋼からなる円筒状構造物(保持リング)及びその製造方
法に関し、特には、半径方向(肉厚方向)の靱性を高め
た発電機用非磁性保持リング及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic retaining ring for a generator and a method for manufacturing the same, and more particularly to a cylindrical shape made of non-magnetic steel used for supporting a field coil of a turbine generator. TECHNICAL FIELD The present invention relates to a structure (holding ring) and a method for manufacturing the same, and more particularly to a non-magnetic holding ring for a generator having improved radial (thickness direction) toughness and a method for manufacturing the same.

【0002】[0002]

【従来の技術】火力発電所等に用いるタービン発電機
は、その運転中に発電機軸に巻かれた界磁コイルが遠心
力によって飛散するのを防止するため、発電機軸の両端
に円筒状の保持リングを設けている。この保持リング
は、発電効率を高めるために非磁性であることが必要で
あり、又、発電機軸に焼ばめにより固着され、その使用
中は3000〜3600rpm 程度で高速回転し、且つ大径である
ために極めて大きな遠心力が作用するので、機械的性質
(強度、靭性等)、特に焼ばめ部においては半径方向の
機械的性質が重要であり、中でも半径方向の切欠靭性が
大きいことが要求される。
2. Description of the Related Art A turbine generator used in a thermal power plant or the like has a cylindrical holding at both ends of the generator shaft in order to prevent the field coil wound around the generator shaft from being scattered by centrifugal force during its operation. A ring is provided. This retaining ring needs to be non-magnetic in order to improve power generation efficiency, and it is fixed to the generator shaft by shrink fit, rotates at a high speed of about 3000 to 3600 rpm during its use, and has a large diameter. Because of this, an extremely large centrifugal force acts, so the mechanical properties (strength, toughness, etc.), especially in the shrink-fitted part, are important in the radial direction, and in particular, the notch toughness in the radial direction is large. Required.

【0003】かかる保持リングとしては、従来からオー
ステイト鋼(組織:室温でオーステイト組織)が用いら
れており、該オーステイト鋼は焼入れ等の熱処理によっ
ては材料強度を上げることができないので、冷間加工に
よる加工硬化により材料強度を上げ、保持リングとして
の必要強度の確保をはかっている。この冷間加工として
は、保持リングの形状が円筒形であるため通常は冷間拡
管により行われる。
As such a retaining ring, an austite steel (structure: an austite structure at room temperature) has been conventionally used, and since the ausstate steel cannot increase the material strength by heat treatment such as quenching, it is cold. The material strength is increased by work hardening by hot working to secure the necessary strength as a retaining ring. This cold working is usually performed by cold pipe expansion because the retaining ring has a cylindrical shape.

【0004】従来、非磁性保持リング及びその製造方法
としては、種々検討されており、例えば、特開昭57-1
56647 号公報、特開平5-9696号公報、特開昭62-297
439号公報、技術論文「G.Stein : Tech.Mitt.Krupp,
Werksberichte, Band 38 (1980)H.2 」、特開昭60-14
1823 号公報に記載されたもの等がある。
Conventionally, various studies have been made on a non-magnetic retaining ring and a method of manufacturing the non-magnetic retaining ring.
56647, JP 5-9696, JP 62-297
No. 439 publication, technical paper `` G. Stein: Tech.Mitt.Krupp,
Werksberichte, Band 38 (1980) H.2 '', JP 60-14
Some are described in the 1823 publication.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記従来の
非磁性保持リングにおいては、材料強度を高めるために
冷間拡管を行うと、延性や靭性が低下して不充分とな
り、換言すれば、材料強度を充分に高められないという
問題点がある。即ち、冷間拡管を行うことにより、鋼組
織内のメタルフローは円周方向に伸長され、いわゆる横
目方向である保持リングの半径方向の延性や切欠靭性等
の靭性が低下する。その傾向は要求材料強度が高く、そ
れにより拡管量が大きくなる程高くなり、その条件によ
っては延性や靭性が極めて低下して著しく劣った性能し
か得られない。かかる問題点は、前記従来から使用され
てきた非磁性保持リングに存し、又、前記、、、
、に記載されたものでも解決し得るものではなく、
同様に存する問題点である。
However, in the above-mentioned conventional non-magnetic retaining ring, if cold pipe expansion is performed to increase the material strength, the ductility and toughness decrease and the material becomes insufficient. There is a problem that the strength cannot be increased sufficiently. That is, by performing the cold pipe expansion, the metal flow in the steel structure is elongated in the circumferential direction, and the ductility in the radial direction of the retaining ring, which is the so-called grain direction, and the toughness such as the notch toughness decrease. This tendency becomes higher as the required material strength becomes higher, and as the pipe expansion amount increases, the ductility and toughness extremely decrease depending on the condition, and only extremely poor performance can be obtained. Such a problem exists in the non-magnetic retaining ring that has been conventionally used, and the above-mentioned ...
, The ones listed in, cannot solve the problem,
There is a similar problem.

【0006】本発明は、このような事情に着目してなさ
れたものであって、その目的は前記従来のものが有する
問題点を解消し、材料強度を高めるための冷間拡管によ
る延性及び靭性の低下が少なく、そのため強度と共に延
性及び靭性に優れ、特に半径方向(肉厚方向)の靱性に
優れた発電機用非磁性保持リング及びその製造方法をを
提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to solve the problems of the above-mentioned conventional ones and to improve ductility and toughness by cold pipe expansion for increasing material strength. It is an object of the present invention to provide a non-magnetic retaining ring for a generator, which is excellent in ductility and toughness together with strength, and particularly excellent in toughness in the radial direction (thickness direction), and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、鋭意研究した結果、本発明に係る発電機用非磁性保
持リング及びその製造方法は次のような構成としてい
る。即ち、請求項1記載の非磁性保持リングは、C:0.
04〜0.08wt% を含有する非磁性鉄基合金を1100〜1250℃
に加熱し、鍛造終了温度:800℃以上の熱間鍛造をしてリ
ング状に形成した後、水冷又は油冷により急冷し、次に
鍛造肌を切削加工により除去した後、1000〜1100℃に加
熱した後水冷する溶体化処理をしてなることを特徴とす
る発電機用非磁性保持リングである。
In order to achieve the above object, as a result of intensive research, the non-magnetic retaining ring for a generator and the method for manufacturing the same according to the present invention have the following configurations. That is, the non-magnetic retaining ring according to claim 1 has C: 0.
Nonmagnetic iron-based alloy containing 04-0.08wt% 1100-1250 ℃
After heating, forging end temperature: after hot forging at 800 ℃ or more to form a ring shape, quenching with water cooling or oil cooling, then removing the forged skin by cutting, then 1000 ~ 1100 ℃ A non-magnetic retaining ring for a generator, characterized by being subjected to a solution treatment of heating and then water cooling.

【0008】請求項2記載の非磁性保持リングは、前記
溶体化処理の後、更に150 〜250 ℃に予熱し、次いで拡
管終了温度:100 ℃以上の拡管加工をしてなる請求項1
記載の発電機用非磁性保持リングである。請求項3記載
の非磁性保持リングは、前記非磁性鉄基合金として、
C:0.04〜0.08wt%, Mn:18〜22wt%, Cr:18〜20wt%,
N:0.5wt%以上を含有する非磁性鉄基合金を用いてなる
請求項1又は2記載の発電機用非磁性保持リングであ
る。
The non-magnetic retaining ring according to claim 2 is further preheated to 150 to 250 ° C. after the solution treatment, and then subjected to pipe expanding processing at a pipe expansion end temperature of 100 ° C. or more.
The non-magnetic retaining ring for a generator as described. The nonmagnetic retaining ring according to claim 3, wherein the nonmagnetic iron-based alloy is
C: 0.04 to 0.08 wt%, Mn: 18 to 22 wt%, Cr: 18 to 20 wt%,
The non-magnetic retaining ring for a generator according to claim 1 or 2, wherein the non-magnetic iron-based alloy contains N: 0.5 wt% or more.

【0009】請求項4記載の製造方法は、C:0.04〜0.
08wt% を含有する非磁性鉄基合金を1100〜1250℃に加熱
し、鍛造終了温度:800 ℃以上の熱間鍛造をしてリング
状に形成した後、水冷又は油冷により急冷し、次に鍛造
肌を切削加工により除去した後、1000〜1100℃に加熱し
た後水冷する溶体化処理をすることを特徴とする発電機
用非磁性保持リングの製造方法である。
The manufacturing method according to claim 4 is C: 0.04 to 0.
A non-magnetic iron-based alloy containing 08wt% is heated to 1100 to 1250 ° C, hot forged at a forging end temperature of 800 ° C or higher to form a ring, and then rapidly cooled by water cooling or oil cooling. A method for producing a non-magnetic retaining ring for a power generator, which comprises removing a forged skin by cutting and then subjecting the solution to heat treatment at 1000 to 1100 ° C. and then water cooling.

【0010】請求項5記載の製造方法は、前記溶体化処
理の後、更に150 〜250 ℃に予熱し、次いで拡管終了温
度:100 ℃以上の拡管加工をする請求項4記載の発電機
用非磁性保持リングの製造方法である。請求項6記載の
製造方法は、前記非磁性鉄基合金として、C:0.04〜0.
08wt%, Mn:18〜22wt%, Cr:18〜20wt%, N:0.5wt%
以上を含有する非磁性鉄基合金を用いる請求項4又は5
記載の発電機用非磁性保持リングの製造方法である。
According to the fifth aspect of the present invention, after the solution treatment, preheating is further performed at 150 to 250 ° C., and then the tube expansion process is performed at a tube expansion end temperature of 100 ° C. or more. It is a manufacturing method of a magnetic holding ring. The manufacturing method according to claim 6, wherein the non-magnetic iron-based alloy is C: 0.04 to 0.
08wt%, Mn: 18-22wt%, Cr: 18-20wt%, N: 0.5wt%
A non-magnetic iron-based alloy containing the above is used.
It is a method for manufacturing a non-magnetic retaining ring for a generator as described.

【0011】[0011]

【作用】材料強度を高めるための冷間拡管による延性及
び靭性の低下について、より金属組織学的な面から検討
すると、炭化物の粒界折出が特に大きな影響を及ぼし、
メタルフローの円周方向への伸長と相俟って延性及び靭
性を低下させている。即ち、炭化物の粒界折出物が存在
するか、又は、これが多くなると、引張延性や切欠靭性
が低下し、特に、拡管加工を施す場合、結晶粒が円周方
向に伸長され、方向性を生じ、その結晶粒界に炭化物
(粒界折出物)が存在するか、又は、これが多いと、円
周方向と直角な方向であるところの半径方向(横目方
向)の延性や切欠靭性が低下する。このように、炭化物
の粒界折出状態が大きな影響を及ぼす。
[Function] When the reduction of ductility and toughness due to cold pipe expansion for increasing the material strength is examined from a more metallographic viewpoint, grain boundary protrusion of carbide exerts a particularly large effect.
The ductility and toughness are reduced in combination with the circumferential extension of the metal flow. That is, if there are grain boundary protrusions of carbide, or if the number thereof is large, the tensile ductility and notch toughness decrease, and particularly when subjecting to pipe expansion processing, the crystal grains are elongated in the circumferential direction and the directionality is changed. If there are carbides (grain boundary protrusions) at the crystal grain boundaries, or if there are many carbides, the ductility and notch toughness in the radial direction (transverse direction), which is the direction perpendicular to the circumferential direction, decreases. To do. In this way, the grain boundary protruding state of the carbide has a great influence.

【0012】従って、かかる炭化物の粒界折出を防止す
るか、抑制又は軽減しておけば、冷間拡管によってメタ
ルフローが円周方向へ伸長しても延性及び靭性の低下が
少なくなり、そのため冷間拡管による延性及び靭性の低
下を抑制又は軽減し得、ひいては強度と共に延性及び靭
性に優れ、特に半径方向(肉厚方向)の靱性に優れたも
のとなる。
Therefore, if the grain boundary protrusion of such carbides is prevented, or suppressed or reduced, even if the metal flow is extended in the circumferential direction by cold pipe expansion, the ductility and toughness are less deteriorated. It is possible to suppress or reduce the deterioration of ductility and toughness due to cold pipe expansion, and it is therefore excellent in ductility and toughness together with strength, and particularly excellent in radial (thickness direction) toughness.

【0013】そこで、本発明の目的を達成するため、非
磁性保持リングの組成及び製造条件について鋭意研究を
重ね、その結果、炭化物の粒界折出を防止又は抑制或い
は軽減できる組成及び製造条件を見出し、それにより、
冷間拡管による延性及び靭性の低下を抑制又は軽減し
得、高強度と共に優れた延性及び靭性が得られ、特に半
径方向(肉厚方向)の靱性を大幅に向上し得ることがわ
かった。本発明はかかる知見に基づき完成されたもので
あり、前記の如き構成としている。
Therefore, in order to achieve the object of the present invention, intensive studies have been conducted on the composition and manufacturing conditions of the non-magnetic retaining ring, and as a result, the composition and manufacturing conditions capable of preventing, suppressing or reducing grain boundary protrusion of carbides have been determined. Headline, and thus
It has been found that the deterioration of ductility and toughness due to cold pipe expansion can be suppressed or reduced, excellent ductility and toughness can be obtained together with high strength, and particularly the toughness in the radial direction (thickness direction) can be significantly improved. The present invention has been completed based on such knowledge, and has the above-described configuration.

【0014】即ち、本発明に係る発電機用非磁性保持リ
ングの製造方法は、C:0.04〜0.08wt% を含有する非磁
性鉄基合金を1100〜1250℃に加熱し、鍛造終了温度:80
0 ℃以上の熱間鍛造をしてリング状に形成した後、水冷
又は油冷により急冷し、次に鍛造肌を切削加工により除
去した後、1000〜1100℃に加熱した後水冷する溶体化処
理をするようにしている(請求項4記載の製造方法)。
That is, in the method for producing a non-magnetic retaining ring for a generator according to the present invention, a non-magnetic iron-based alloy containing C: 0.04 to 0.08 wt% is heated to 1100 to 1250 ° C., and a forging end temperature: 80.
After hot forging at 0 ℃ or more to form a ring, quenching with water cooling or oil cooling, then removing the forged skin by cutting, heating to 1000 ~ 1100 ℃, then water cooling solution treatment (The manufacturing method according to claim 4).

【0015】このようにすると、次のようになる。C含
有量を0.08wt% 以下にすることにより、炭化物の粒界折
出の駆動力が低くなる。
In this way, the following is obtained. When the C content is 0.08 wt% or less, the driving force for carbide grain boundary cracking becomes low.

【0016】熱間鍛造に際し、鍛造終了温度:800 ℃以
上とし、熱間鍛造後、水冷又は油冷により急冷すること
により、炭化物の粒界折出が起こる800 〜500 ℃の温度
域で急冷され、従って、炭化物の粒界折出が防止又は抑
制される。即ち、炭化物の粒界折出は800 〜500 ℃の間
で起こるので、この温度域を急冷することにより炭化物
の粒界折出が防止又は抑制され、炭化物の粒界折出を最
小限にできる。
In the hot forging, the forging end temperature is set to 800 ° C. or higher, and after the hot forging, it is rapidly cooled by water cooling or oil cooling so that the grain boundary cracking of carbides is rapidly cooled in the temperature range of 800 to 500 ° C. Therefore, the grain boundary protrusion of carbide is prevented or suppressed. That is, since grain boundary precipitation of carbide occurs between 800 and 500 ° C, grain boundary precipitation of carbide can be prevented or suppressed by quenching this temperature range, and grain boundary precipitation of carbide can be minimized. .

【0017】次に鍛造肌を切削加工により除去すること
により、表面から内部への熱伝達性が良くなる。該切削
加工後、1000〜1100℃に加熱した後水冷する溶体化処理
をすることにより、前工程で微量析出した炭化物が固溶
体化され(マトリックスに溶け込み)、皆無になるか又
は減少する。このとき、上記切削加工による熱伝達性の
向上は水冷時の急冷効果を高め、炭化物の固溶体化後の
析出を防止する働きを果たす。
Next, the forged skin is removed by cutting to improve the heat transfer from the surface to the inside. After the cutting process, a solution treatment of heating to 1000 to 1100 ° C. and then water cooling is performed, so that a small amount of carbide precipitated in the previous step is solidified (melts into the matrix) and disappears or disappears. At this time, the improvement of the heat transfer property by the cutting work serves to enhance the rapid cooling effect during water cooling and prevent precipitation of the carbide after solid solution.

【0018】従って、炭化物の粒界折出を防止又は抑制
或いは軽減でき、そのため、冷間拡管による延性及び靭
性の低下を抑制又は軽減し得、引いては強度と共に延性
及び靭性に優れ、特に半径方向(肉厚方向)の靱性に優
れた発電機用非磁性保持リングが得られる。
Therefore, it is possible to prevent or suppress or reduce the grain boundary protrusion of the carbide, and therefore, it is possible to suppress or reduce the deterioration of the ductility and the toughness due to the cold pipe expansion, and, by extension, the ductility and the toughness are excellent together with the strength. A non-magnetic retaining ring for a generator having excellent toughness in the direction (thickness direction) can be obtained.

【0019】ここで、非磁性鉄基合金中のC量を0.04〜
0.08wt% としているのは、0.04wt%未満ではオーステナ
イトが不安定となって非磁性が不安定となり、一方0.08
wt%超では炭化物の粒界折出の駆動力が高くなって炭化
物の粒界折出の抑制が不充分となり、引いては靱性が不
充分となるからである。
Here, the amount of C in the non-magnetic iron-based alloy is 0.04 to
0.08 wt% means that if it is less than 0.04 wt%, austenite becomes unstable and non-magnetic becomes unstable.
This is because if it exceeds wt%, the driving force for the grain boundary protrusion of carbides becomes high and the suppression of grain boundary protrusions of carbide becomes insufficient, and eventually the toughness becomes insufficient.

【0020】熱間鍛造に際し、熱間鍛造前の加熱温度を
1100〜1250℃としているのは、1100℃未満では変形抵抗
が高く、充分な塑性流動が得られないため、結晶粒の均
一な微細化が困難となり、1250℃超ではいわゆるバーニ
ング(燃焼)現象を招き、加工割れが起こり易くなり、
鍛造に適さないからである。鍛造終了温度を800 ℃以上
としているのは、800 ℃未満とすると炭化物の粒界折出
が起こる800 〜500 ℃の温度域での急冷をすることがで
きず、炭化物の粒界折出を抑制し得ず、引いては靱性が
不充分となるからである。
In hot forging, the heating temperature before hot forging is
The temperature of 1100 to 1250 ℃ means that if the temperature is less than 1100 ℃, the deformation resistance is high and sufficient plastic flow cannot be obtained, so it is difficult to make the crystal grains uniform, and if it exceeds 1250 ℃, the so-called burning (combustion) phenomenon occurs. Induced, processing cracks are more likely to occur,
This is because it is not suitable for forging. The forging end temperature is set to 800 ° C or higher because when it is lower than 800 ° C, grain boundary precipitation of carbides cannot be rapidly quenched in the temperature range of 800 to 500 ° C, which suppresses grain boundary precipitation of carbides. This is because the toughness cannot be obtained and the toughness is insufficient.

【0021】溶体化処理温度を1000〜1100℃としている
のは、1000℃未満にすると炭化物の固溶体化が不充分と
なり、引いては靱性が不充分となり、1100℃超では結晶
粒が成長、粗大化し、充分な強度が得られないか、又は
超音波透過性が悪くなり、内部品質の確認が困難なもの
となるからである。
The solution treatment temperature is set to 1000 to 1100 ° C. The reason why the solution treatment temperature is 1000 to 1100 ° C. is that if the temperature is less than 1000 ° C., the solid solution of the carbide becomes insufficient and the toughness becomes insufficient, and if it exceeds 1100 ° C., the crystal grains grow and become coarse. This is because sufficient strength cannot be obtained, or the ultrasonic wave transmission becomes poor, making it difficult to check the internal quality.

【0022】本発明に係る発電機用非磁性保持リング
は、C:0.04〜0.08wt% を含有する非磁性鉄基合金を11
00〜1250℃に加熱し、鍛造終了温度:800 ℃以上の熱間
鍛造をしてリング状に形成した後、水冷又は油冷により
急冷し、次に鍛造肌を切削加工により除去した後、1000
〜1100℃に加熱した後水冷する溶体化処理をしてなるも
のである(請求項1記載の非磁性保持リング)。これは
前記製造方法(請求項4記載の製造方法)により得られ
るものであるので、炭化物の粒界折出が防止又は抑制さ
れたものとなっており、そのため、冷間拡管による延性
及び靭性の低下を抑制又は軽減し得、冷間拡管後のもの
は強度と共に延性及び靭性に優れ、特に半径方向の靱性
に優れたものとなる。
The non-magnetic retaining ring for a generator according to the present invention comprises a non-magnetic iron-based alloy containing C: 0.04 to 0.08 wt%.
After heating to 00 ~ 1250 ℃, forging finish temperature: 800 ℃ or more hot forging to form a ring shape, then quenching with water or oil cooling, then removing the forged skin by cutting, 1000
The non-magnetic retaining ring according to claim 1, which has been subjected to solution treatment by heating to ˜1100 ° C. and then cooling with water. Since this is obtained by the above-mentioned manufacturing method (the manufacturing method according to claim 4), grain boundary protrusion of carbides is prevented or suppressed. Therefore, ductility and toughness due to cold pipe expansion are reduced. The deterioration can be suppressed or reduced, and after cold-expanding, the ductility and toughness as well as the strength are excellent, and particularly the toughness in the radial direction is excellent.

【0023】前記溶体化処理の後、拡管加工するに際
し、予め150 〜250 ℃に加熱(予熱)してから拡管加工
し、拡管終了温度を100 ℃以上にすることが望ましい
(請求項2記載の非磁性保持リング、請求項5記載の製
造方法)。このようにすると、材料の変形能(結晶のす
べり易さ)が向上し、それにより、炭素化合物や介在物
を起因とするマイクロボイドの発生を防止することがで
きるからである。
After the solution heat treatment, in the tube expansion processing, it is desirable to preheat the tube to 150 to 250 ° C. and then to perform the tube expansion processing so that the tube expansion end temperature is 100 ° C. or more. A non-magnetic retaining ring, the manufacturing method according to claim 5. This is because the deformability of the material (the slipperiness of the crystal) is improved, and as a result, it is possible to prevent the generation of microvoids due to the carbon compound or inclusions.

【0024】前記非磁性鉄基合金としては、C:0.04〜
0.08wt% の他に、Mn,Cr,Nを含有するものを用いるこ
とができる。この場合、Mn量は18〜22wt%, Cr量は18〜
20wt%, N量は0.5wt%以上とするのがよい(請求項3記
載の非磁性保持リング、請求項6記載の製造方法)。そ
の理由を以下に述べる。
As the non-magnetic iron-based alloy, C: 0.04 to
A material containing Mn, Cr, N in addition to 0.08 wt% can be used. In this case, the Mn amount is 18 to 22 wt% and the Cr amount is 18 to 22 wt%.
It is preferable that the content of 20 wt% and the amount of N be 0.5 wt% or more (the non-magnetic retaining ring according to claim 3 and the manufacturing method according to claim 6). The reason is described below.

【0025】Mnはオーステナイトフォーマーであり、他
のオーステナイトフォーマーであるNの溶解度を向上す
るため18wt% 以上を必要とするが、22wt% 超では多すぎ
て、加工硬化率が小さくなり、又、熱間加工性が悪化す
る。従って、Mn:18〜22wt%とする。
Mn is an austenite former, and 18 wt% or more is required to improve the solubility of N, which is another austenite former, but if it exceeds 22 wt%, it is too much and the work hardening rate becomes small. , Hot workability deteriorates. Therefore, Mn: 18 to 22 wt% is set.

【0026】Crはマンガンと同様の作用効果があり、同
様の趣旨で下限値を18wt% とする。しかし、20wt% 超で
は多すぎて、δフェライトを生成し、靭性が低下する。
特にCr量がMn量より多くなるとオーステナイトが不安定
となる。かかる点からCr:18〜20wt% とする。
Cr has the same effect as manganese, and the lower limit is set to 18 wt% for the same reason. However, if it exceeds 20 wt%, the amount is too large to form δ ferrite and the toughness decreases.
In particular, when the amount of Cr exceeds the amount of Mn, austenite becomes unstable. From this point of view, Cr: 18 to 20 wt% is set.

【0027】Nはオーステナイトフォーマーであり、C
と同様にオーステナイトを安定化させて非磁性を安定に
させるが、0.5wt%未満ではその効果が発揮できず、従っ
て、0.5wt%以上とする。このとき、NはCのように粒界
析出物を生成し性質を劣化させることはないので、極力
含有量は高い方が良い。尚、上記Mn、Crの含有量の範囲
では、Nの溶解度は0.8 〜0.9wt%程度であり、これ以上
は通常の製鋼法では含有させることは不可能である。従
って、上限を設定する必要はない。
N is an austenite former and C
Similarly, the austenite is stabilized to stabilize the non-magnetic property, but if it is less than 0.5 wt%, its effect cannot be exhibited, and therefore, it is set to 0.5 wt% or more. At this time, N does not form grain boundary precipitates and deteriorates the properties unlike C, so the higher the content, the better. In addition, the solubility of N is about 0.8 to 0.9 wt% within the above range of Mn and Cr contents, and it is impossible to add more than this by the ordinary steelmaking method. Therefore, it is not necessary to set the upper limit.

【0028】本発明に係る発電機用保持リングは、例え
ば、図1の部分断面図に示す如く、発電機の回転軸1の
端部2に対し、嵌合部3を形成すると共に角にラグ部4
を設け、焼ばめにより嵌合して取付けられ、その内周に
コイルエンドターン5及び支持リング6が固定されて使
用される。尚、図1においてRは保持リングを示すもの
である。
The retaining ring for a generator according to the present invention has, for example, as shown in the partial sectional view of FIG. 1, a fitting portion 3 formed on an end 2 of a rotating shaft 1 of the generator and a lug at a corner. Part 4
Are fitted and fitted by shrinkage fitting, and the coil end turn 5 and the support ring 6 are fixedly used on the inner circumference thereof. Incidentally, R in FIG. 1 indicates a retaining ring.

【0029】[0029]

【実施例】表1に示す組成(化学成分)の合金を用い、
同表に示す製造条件により非磁性保持リングを製造し
た。そして、該リングより試験片を採取し、機械的性質
の評価試験(引張試験、衝撃試験等)を行った。その結
果を表2に示す。
EXAMPLES Using alloys having the compositions (chemical components) shown in Table 1,
A non-magnetic retaining ring was manufactured under the manufacturing conditions shown in the table. Then, a test piece was sampled from the ring and a mechanical property evaluation test (tensile test, impact test, etc.) was performed. The results are shown in Table 2.

【0030】この表からわかる如く、本発明の実施例に
係るNo.1及びNo.2のものは、比較例(従来法)に係るN
o.3〜6 のものと比較して、機械的性質に優れ、特に半
径方向の切欠靭性値(シャルピ衝撃試験による吸収エネ
ルギ値:vERT)に優れ、その値は従来法No.3及び4 の約
2倍、従来法No.5及び6 の約3〜4倍であり、本発明に
よる非磁性保持リングは、特に優れた半径方向靭性値を
示すことが確認された。
As can be seen from this table, No. 1 and No. 2 according to the examples of the present invention are the same as N according to the comparative example (conventional method).
Excellent mechanical properties, especially notch toughness value in the radial direction (absorbed energy value by Charpy impact test: vE RT ) compared to those of o.3 to 6 It is confirmed that the non-magnetic retaining ring according to the present invention exhibits a particularly excellent radial toughness value, which is about 2 times of the conventional method Nos. 5 and 6 and about 3 to 4 times.

【0031】上記本発明の実施例と比較例との差異は、
金属学的調査試験からも裏付けされた。即ち、ミクロ組
織の観察及びX線マイクロアナライザーによるC、Cr、
N等の元素の分析を行ったところ、比較例に係るもので
は、結晶粒界に折出物が認められ、該折出物でのC及び
Cr濃度がマトリックスでのそれらに比べて高く、該折出
物はクロム炭化物であることが検証された(図2、
3)。これに対し、本発明の実施例に係るものでは、か
かる折出物は認められなかった(図4、5)。
The difference between the embodiment of the present invention and the comparative example is as follows.
Corroborated by metallurgical investigations. That is, observation of microstructure and C, Cr, and X-ray microanalyzer
When elements such as N were analyzed, in the case of the comparative example, cracks were observed at the grain boundaries, and C and C in the cracks were observed.
The Cr concentration was higher than those in the matrix, and it was verified that the protrusions were chromium carbides (Fig. 2,
3). On the other hand, in the example of the present invention, such a protrusion was not observed (Figs. 4 and 5).

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明は以上の如き構成を有し作用をな
すものであり、炭化物の粒界折出が防止又は抑制され、
そのため、材料強度を高めるための冷間拡管による延性
及び靭性の低下が少なく、ひいては強度と共に延性及び
靭性に優れ、特に半径方向(肉厚方向)の靱性に優れた
発電機用非磁性保持リングを得ることができるという効
果を奏する。
EFFECTS OF THE INVENTION The present invention has the above-described constitution and functions, and prevents grain boundary protrusion of carbides from being suppressed or suppressed.
Therefore, there is little decrease in ductility and toughness due to cold pipe expansion to increase the material strength, and by extension, excellent ductility and toughness along with strength, especially a non-magnetic retaining ring for generators that is excellent in radial (thickness direction) toughness. There is an effect that can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 発電機における非磁性保持リング近傍の部分
断面図である。
FIG. 1 is a partial cross-sectional view in the vicinity of a non-magnetic retaining ring in a generator.

【図2】 比較例に係る保持リングについてのX線マイ
クロアナライザーによるN、Crの分布調査結果を示す図
である。
FIG. 2 is a diagram showing a result of a distribution investigation of N and Cr by an X-ray microanalyzer for a retaining ring according to a comparative example.

【図3】 比較例に係る保持リングについてのX線マイ
クロアナライザーによるCの分布調査結果を示す図であ
る。
FIG. 3 is a diagram showing a result of a C distribution investigation by an X-ray microanalyzer for a retaining ring according to a comparative example.

【図4】 本発明の実施例に係る保持リングについての
X線マイクロアナライザーによるCrの分布調査結果を示
す図である。
FIG. 4 is a diagram showing a result of Cr distribution investigation by an X-ray microanalyzer for a retaining ring according to an example of the present invention.

【図5】 本発明の実施例に係る保持リングについての
X線マイクロアナライザーによるN、Cの分布調査結果
を示す図である。
FIG. 5 is a diagram showing N and C distribution survey results by an X-ray microanalyzer for a retaining ring according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1--回転軸、2--端部、3--嵌合部、4--ラグ部、5--
コイルエンドターン、6--支持リング、R--保持リン
グ。
1--Rotary shaft, 2--End, 3--Mating part, 4--Lag, 5--
Coil end turn, 6--support ring, R--retaining ring.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 C:0.04〜0.08wt% を含有する非磁性鉄
基合金を1100〜1250℃に加熱し、鍛造終了温度:800 ℃
以上の熱間鍛造をしてリング状に形成した後、水冷又は
油冷により急冷し、次に鍛造肌を切削加工により除去し
た後、1000〜1100℃に加熱した後水冷する溶体化処理を
してなることを特徴とする発電機用非磁性保持リング。
1. A non-magnetic iron-based alloy containing C: 0.04 to 0.08 wt% is heated to 1100 to 1250 ° C., and forging end temperature is 800 ° C.
After forming into a ring shape by hot forging as described above, it is rapidly cooled by water cooling or oil cooling, and then the forged skin is removed by cutting, then heated to 1000 to 1100 ° C. and then solution cooled by water cooling. A non-magnetic retaining ring for a generator characterized by the following.
【請求項2】 前記溶体化処理の後、更に150 〜250 ℃
に予熱し、次いで拡管終了温度:100 ℃以上の拡管加工
をしてなる請求項1記載の発電機用非磁性保持リング。
2. After the solution treatment, the temperature is further 150 to 250 ° C.
The non-magnetic retaining ring for a generator according to claim 1, wherein the non-magnetic retaining ring is pre-heated and then subjected to a tube expansion process at a tube expansion end temperature of 100 ° C. or more.
【請求項3】 前記非磁性鉄基合金として、C:0.04〜
0.08wt%, Mn:18〜22wt%, Cr:18〜20wt%, N:0.5w
t%以上を含有する非磁性鉄基合金を用いてなる請求項1
又は2記載の発電機用非磁性保持リング。
3. The non-magnetic iron-based alloy as C: 0.04 to
0.08wt%, Mn: 18-22wt%, Cr: 18-20wt%, N: 0.5w
A non-magnetic iron-based alloy containing t% or more is used.
Alternatively, the non-magnetic retaining ring according to 2 above.
【請求項4】 C:0.04〜0.08wt% を含有する非磁性鉄
基合金を1100〜1250℃に加熱し、鍛造終了温度:800 ℃
以上の熱間鍛造をしてリング状に形成した後、水冷又は
油冷により急冷し、次に鍛造肌を切削加工により除去し
た後、1000〜1100℃に加熱した後水冷する溶体化処理を
することを特徴とする発電機用非磁性保持リングの製造
方法。
4. A non-magnetic iron-based alloy containing C: 0.04 to 0.08 wt% is heated to 1100 to 1250 ° C., and forging end temperature: 800 ° C.
After forming into a ring shape by hot forging as described above, it is rapidly cooled by water cooling or oil cooling, and then the forged skin is removed by cutting, then heated to 1000 to 1100 ° C. and then water cooled to perform solution treatment. A method of manufacturing a non-magnetic retaining ring for a generator, comprising:
【請求項5】 前記溶体化処理の後、更に150 〜250 ℃
に予熱し、次いで拡管終了温度:100 ℃以上の拡管加工
をする請求項4記載の発電機用非磁性保持リングの製造
方法。
5. After the solution treatment, the temperature is further 150 to 250 ° C.
5. The method for producing a non-magnetic retaining ring for a generator according to claim 4, wherein the tube is preheated to a tube, and then the tube is expanded at a tube expansion end temperature of 100 ° C. or more.
【請求項6】 前記非磁性鉄基合金として、C:0.04〜
0.08wt%, Mn:18〜22wt%, Cr:18〜20wt%, N:0.5w
t%以上を含有する非磁性鉄基合金を用いる請求項4又は
5記載の発電機用非磁性保持リングの製造方法。
6. The non-magnetic iron-based alloy as C: 0.04 to
0.08wt%, Mn: 18-22wt%, Cr: 18-20wt%, N: 0.5w
The method for manufacturing a non-magnetic retaining ring for a generator according to claim 4, wherein a non-magnetic iron-based alloy containing t% or more is used.
JP9383895A 1995-04-19 1995-04-19 Nonmagnetic holding ring for generator and its production Withdrawn JPH08291331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9383895A JPH08291331A (en) 1995-04-19 1995-04-19 Nonmagnetic holding ring for generator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9383895A JPH08291331A (en) 1995-04-19 1995-04-19 Nonmagnetic holding ring for generator and its production

Publications (1)

Publication Number Publication Date
JPH08291331A true JPH08291331A (en) 1996-11-05

Family

ID=14093541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9383895A Withdrawn JPH08291331A (en) 1995-04-19 1995-04-19 Nonmagnetic holding ring for generator and its production

Country Status (1)

Country Link
JP (1) JPH08291331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411210A (en) * 2020-04-26 2020-07-14 陕西理工大学 Multi-angle grain boundary pure iron material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411210A (en) * 2020-04-26 2020-07-14 陕西理工大学 Multi-angle grain boundary pure iron material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103510007B (en) Steel for high-frequency quenching and high-frequency quenching steel part and their manufacture method
KR100939462B1 (en) Hot forged products excellent in fatigue strength, process for production thereof, and machine structural parts
US20120152413A1 (en) Method of producing large components from austempered ductile iron alloys
JP2001049388A (en) Steel wire bar steel, and steel tube for bearing element parts, excellent in machinability
US4721153A (en) High-chromium compound roll
JPH08127845A (en) Graphite steel,its article and its production
JP2009052106A (en) High strength seamless steel pipe for machine structure having excellent toughness and method for producing the same
JP2001192730A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL AND ITS HEAT TREATMENT METHOD
JP3536770B2 (en) Non-heat treated steel
JP5986434B2 (en) Seamless steel pipe for hollow spring
JPH09241746A (en) Production of high strength duplex stainless steel tube
JP2567630B2 (en) High-fatigue strength free-cutting steel and manufacturing method thereof
JP6525115B1 (en) Nitriding bars and machine parts
JPH08291331A (en) Nonmagnetic holding ring for generator and its production
JP4392376B2 (en) Method for producing composite roll for hot rolling
JPH05156407A (en) Steel for high-performance rolling die and production thereof
JP3409275B2 (en) Case hardened steel with little heat treatment distortion
JPH10330836A (en) Production of hot forged parts excellent in machinability and fatigue characteristic
JPH10291008A (en) Tool for hot making tube and its manufacture
JP3919092B2 (en) Composite roll for hot rolling
JPH0860289A (en) Centrifugally cast composite roll
JP2000273582A (en) Cast steel for pressure vessel and production of pressure vessel using the same
JP2004011017A (en) Hot rolled steel sheet for rotary ironing, method for producing the same and automobile parts
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3409276B2 (en) High carbon steel with low heat treatment strain

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702