JP2009052106A - High strength seamless steel pipe for machine structure having excellent toughness and method for producing the same - Google Patents

High strength seamless steel pipe for machine structure having excellent toughness and method for producing the same Download PDF

Info

Publication number
JP2009052106A
JP2009052106A JP2007221170A JP2007221170A JP2009052106A JP 2009052106 A JP2009052106 A JP 2009052106A JP 2007221170 A JP2007221170 A JP 2007221170A JP 2007221170 A JP2007221170 A JP 2007221170A JP 2009052106 A JP2009052106 A JP 2009052106A
Authority
JP
Japan
Prior art keywords
steel pipe
less
cooling
toughness
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007221170A
Other languages
Japanese (ja)
Other versions
JP4959471B2 (en
Inventor
Yasuhiro Shinohara
康浩 篠原
Hitoshi Asahi
均 朝日
Susumu Ochiai
進 落合
Bunshi Kato
文士 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007221170A priority Critical patent/JP4959471B2/en
Publication of JP2009052106A publication Critical patent/JP2009052106A/en
Application granted granted Critical
Publication of JP4959471B2 publication Critical patent/JP4959471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength seamless steel pipe for a machine structure suitable for a structural member such as a cylinder, a bush and a boom and a machine member such as a shaft, and particularly having excellent toughness. <P>SOLUTION: The high strength seamless steel pipe for a machine structure is provided which has a composition comprising suitable amounts of C, Mn, Ti, Nb and O, restricted contents of Si, P, S, Al and N, one or more kinds selected from among B, Ni, Cr and Cu, and satisfying Al/Ti≤0.75, and the balance Fe with inevitable impurities, and which has metallic structure composed of a self-tempered martensite single structure or a mixed structure of self-tempered martensite and lower bainite, and has an effective crystal grain size of ≤10 μm. A method for producing the above seamless steel pipe is also provided by which the steel pipe is subjected to seamless rolling, and thereafter, its cooling speed is controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、機械構造部材、特にシリンダー、ブッシュ、ブーム等の構造部材及びシャフト等の機械用部材に好適なシームレス鋼管及びその製造方法に関する。   The present invention relates to a seamless steel pipe suitable for mechanical structural members, particularly structural members such as cylinders, bushes, and booms, and mechanical members such as shafts, and a method of manufacturing the same.

従来から、自動車や産業機械に使用される機械部品の多くは、棒鋼を鍛造、切削加工して所定の形状とした後、調質熱処理により、所定の機械的性質が付与されている。また、近年では、部品の製造コストを低減させるために、部品に要求される機械的性質を有する鋼管を素材として中空形状部品を製造し、鍛造工程の短縮及び熱処理工程の省略を図る場合も増えてきている。   Conventionally, many mechanical parts used in automobiles and industrial machines are given predetermined mechanical properties by tempering heat treatment after forging and cutting steel bars into a predetermined shape. Also, in recent years, in order to reduce the manufacturing cost of parts, there is an increasing number of cases where hollow shaped parts are manufactured using steel pipes having the mechanical properties required for the parts to shorten the forging process and omit the heat treatment process. It is coming.

しかし、一般に、鋼管は棒鋼よりも高価であり、特にシームレス鋼管は製造コストが高いため、鋼管を中空形状部品の素材としても製造コストの低減の効果が十分でないことがある。そこで、製造コストを低減した安価な鋼管の提供が検討されており、熱間製管後の調質熱処理を省略した、いわゆる非調質型の機械部品用鋼管及び構造用鋼管が提案されている(例えば、特許文献1〜7)。   However, in general, a steel pipe is more expensive than a steel bar, and particularly a seamless steel pipe has a high manufacturing cost. Therefore, even if the steel pipe is used as a material for a hollow shape part, the effect of reducing the manufacturing cost may not be sufficient. Accordingly, the provision of inexpensive steel pipes with reduced manufacturing costs has been studied, and so-called non-tempered steel pipes for machine parts and structural steel pipes have been proposed in which tempering heat treatment after hot pipe making is omitted. (For example, Patent Documents 1 to 7).

特許文献1〜6に提案された鋼管は、いずれもC量が高く、炭窒化物生成元素の添加により、焼き入れ性や析出強化能を向上させて所定の強度を得ようとするものである。そのため、合金コストが高くなり、また、溶接時の割れ発生を防止するための予熱などが必要になり、生産性を損なうという問題がある。   The steel pipes proposed in Patent Documents 1 to 6 all have a high C content, and are intended to obtain a predetermined strength by improving the hardenability and precipitation strengthening ability by adding carbonitride-forming elements. . For this reason, there is a problem in that the alloy cost is increased, and preheating for preventing the occurrence of cracks during welding is required, which impairs productivity.

また、特許文献7に提案された方法は、熱間圧延温度を600〜750℃という、かなり低い温度として圧延することによって金属組織を微細化し、強度を向上させようとするものである。しかしながら、低温圧延は、厚板圧延では一般的な技術となっているものの、シームレス鋼管の圧延に際しては工具との接触により疵や焼き付きが発生しやすい等の問題があることから、現実には適用範囲が大きく制限されている。   Further, the method proposed in Patent Document 7 attempts to refine the metal structure and improve the strength by rolling at a hot rolling temperature of 600 to 750 ° C., which is a considerably low temperature. However, although low temperature rolling is a common technique for thick plate rolling, it is actually applied because rolling and rolling of seamless steel pipes tend to cause wrinkles and seizures due to contact with tools. The range is greatly limited.

更に、シームレス鋼管を熱間加工後、加速冷却することにより強度を向上させる技術が提案されている(例えば、特許文献8及び9)。特許文献8に提案されている方法は、最終仕上げ圧延後、Ar3点以上の温度から500〜400℃まで10〜60℃/sで外面から冷却し、その後、空冷するものである。また、特許文献9の方法は、熱間圧延ままで直接焼き入れ、又は加速冷却し、その後焼き戻しを行うものである。しかし、これらは油井管であり、溶接性を考慮する必要がないため、0.1%以上の炭素を含有するものである。 Furthermore, techniques for improving the strength by cooling the seamless steel pipe after hot working have been proposed (for example, Patent Documents 8 and 9). The method proposed in Patent Document 8 is to cool from the outer surface at a temperature of 10 to 60 ° C./s from the temperature of Ar 3 point or higher to 500 to 400 ° C. after the final finish rolling, and then air cool. Moreover, the method of patent document 9 performs direct quenching or accelerated cooling with hot rolling, and then tempering. However, since these are oil well pipes and it is not necessary to consider weldability, they contain 0.1% or more of carbon.

一方、機械構造用鋼管の中で、シリンダーやブッシュなどに使用される鋼管は、高強度、高靭性及び溶接性を求められることが多く、一般的には炭素量を0.1%以下に制限することが好ましい。これに対して、特許文献1〜9の鋼管は、いずれも炭素量は0.1%以上であり、また特許文献8及び9の加速冷却は、強度確保のための組織制御を目的としており、靭性及び溶接性に関する記載がなく、加速冷却後に焼き戻しを行うものである。   On the other hand, steel pipes used for cylinders and bushes among machine structural steel pipes are often required to have high strength, high toughness, and weldability, and generally the carbon content is limited to 0.1% or less. It is preferable to do. On the other hand, the steel pipes of Patent Documents 1 to 9 all have a carbon content of 0.1% or more, and the accelerated cooling of Patent Documents 8 and 9 is intended to control the structure for ensuring the strength. There is no description regarding toughness and weldability, and tempering is performed after accelerated cooling.

そこで、本発明者らの一部は、炭素量が0.1%以下でシームレス圧延後、直ちに加速冷却を施すことで、強度と低温靭性の両立を達成した鋼管を提案した(例えば、特許文献10)。しかし、この方法は、特に、−60℃のような極低温での靭性の向上を図ったものではない。   Therefore, some of the present inventors have proposed a steel pipe that achieves both strength and low-temperature toughness by performing accelerated cooling immediately after seamless rolling at a carbon content of 0.1% or less (for example, patent documents) 10). However, this method is not particularly intended to improve toughness at an extremely low temperature such as −60 ° C.

特開平5−202447号公報JP-A-5-202447 特開平10−130783号公報Japanese Patent Laid-Open No. 10-130783 特開平10−204571号公報Japanese Patent Laid-Open No. 10-204571 特開平10−324946号公報JP-A-10-324946 特開平11−36017号公報Japanese Patent Laid-Open No. 11-36017 特開2004−292857号公報JP 2004-292857 A 特開2001−247931号公報JP 2001-247931 A 特許3503211号公報Japanese Patent No. 3503211 特開平7−41856号公報JP 7-41856 A 特願2006−87723号Japanese Patent Application No. 2006-87723

本発明は上記のような現状に鑑みてなされたものであり、特にシリンダー、ブッシュ、ブーム等の構造部材及びシャフト等の機械用部材に好適な、特に靭性に優れる機械構造用高強度シームレス鋼管を提供し、また機械構造用高強度シームレス鋼管を焼き戻しを行うことなく、安価に製造する方法を提供するものである。   The present invention has been made in view of the current situation as described above, and is particularly suitable for structural members such as cylinders, bushes, and booms and mechanical members such as shafts. The present invention also provides a method for producing a high-strength seamless steel pipe for machine structure at low cost without tempering.

本発明者らは、AlとTiの添加量を最適化して粒内変態を活用し、更に、シームレス圧延後の加速冷却により、板厚方向全面に亘って、高強度、高靭性を両立できる微細な金属組織を有する鋼管が得られることを見出した。本発明はこのような知見に基づいてなされたものであり、その要旨とするところは以下の通りである。   The present inventors have optimized the addition amount of Al and Ti to make use of intragranular transformation, and furthermore, by accelerated cooling after seamless rolling, the fineness capable of achieving both high strength and high toughness over the entire plate thickness direction. It has been found that a steel pipe having a good metal structure can be obtained. This invention is made | formed based on such knowledge, The place made into the summary is as follows.

(1)質量%で、C:0.030〜0.100%、Mn:0.80〜3.00%、Ti:0.005〜0.045%、Nb:0.003〜0.040%、O:0.0010〜0.0050%を含有し、Si:0.50%以下、P:0.020%以下、S:0.008%以下、Al:0.010%以下、N:0.0080%以下に制限し、
Al/Ti≦0.75
を満足し、更に、B:0.0030%以下、Ni:1.50%以下、Cr:1.50%以下、Cu:1.00%以下、Mo:0.50%以下の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、金属組織が自己焼き戻しマルテンサイト単独組織又は自己焼き戻しマルテンサイトと下部ベイナイトとの混合組織であって、方位差が15°以上の大角粒界で囲われる領域の平均径が10μm以下であることを特徴とする靭性に優れた機械構造用高強度シームレス鋼管。
(1) By mass%, C: 0.030 to 0.100%, Mn: 0.80 to 3.00%, Ti: 0.005 to 0.045%, Nb: 0.003 to 0.040% , O: 0.0010 to 0.0050%, Si: 0.50% or less, P: 0.020% or less, S: 0.008% or less, Al: 0.010% or less, N: 0 .0080% or less,
Al / Ti ≦ 0.75
Further, B: 0.0030% or less, Ni: 1.50% or less, Cr: 1.50% or less, Cu: 1.00% or less, Mo: 0.50% or less It contains more than seeds, the balance consists of Fe and inevitable impurities, the metal structure is a self-tempered martensite single structure or a mixed structure of self-tempered martensite and lower bainite, and the orientation difference is 15 ° or more A high-strength seamless steel pipe for machine structures excellent in toughness, characterized in that an average diameter of a region surrounded by large-angle grain boundaries is 10 μm or less.

(2)金属組織中の鉄系炭化物の平均粒径が400nm以下であり、該鉄系炭化物の密度が2.0×105個/mm2以上であることを特徴とする上記(1)に記載の靭性に優れた機械構造用高強度シームレス鋼管。 (2) In the above (1), the average particle diameter of the iron-based carbide in the metal structure is 400 nm or less, and the density of the iron-based carbide is 2.0 × 10 5 pieces / mm 2 or more. High-strength seamless steel pipe for machine structures with excellent toughness described.

(3)上記(1)に記載の化学成分を有する鋼片に熱間での穿孔及び圧延を施し、そのまま又は650℃未満の温度域に冷却することなく再加熱し、850〜1050℃の温度域に1〜30分保持した後、750℃以上の温度域から、鋼管を円周方向に回転させながら、鋼管の外表面から2〜30℃/sの冷却速度で450〜550℃の温度域まで一次冷却を施し、引き続き、10〜50℃/sの範囲内であり、かつ一次冷却の冷却速度よりも速い二次冷却速度V[℃/s]で、下記(式1)で求まる範囲の二次冷却停止温度T[℃]まで二次冷却を施すことを特徴とする靭性に優れた機械構造用高強度シームレス鋼管の製造方法。
150≦T≦821.34×V-0.3112 ・・・ (式1)
(3) Hot piercing and rolling are performed on a steel piece having the chemical component described in (1) above, and the steel piece is reheated as it is or without cooling to a temperature range of less than 650 ° C., and a temperature of 850 to 1050 ° C. After holding in the zone for 1 to 30 minutes, from the temperature range of 750 ° C. or higher, while rotating the steel pipe in the circumferential direction, the temperature range from 450 to 550 ° C. at a cooling rate of 2 to 30 ° C./s from the outer surface of the steel pipe The secondary cooling rate V [° C./s] that is within the range of 10 to 50 ° C./s and higher than the cooling rate of the primary cooling is continuously within the range obtained by the following (formula 1). A method for producing a high-strength seamless steel pipe for machine structures excellent in toughness, characterized by performing secondary cooling to a secondary cooling stop temperature T [° C].
150 ≦ T ≦ 821.34 × V −0.3112 (Formula 1)

(4)上記(3)に記載の850〜1050℃の温度域での1〜30分の保持の後、延伸工程により造管し、750℃以上の温度域から、鋼管を円周方向に回転させながら、一次冷却及び二次冷却を施すことを特徴とする上記(3)に記載の靭性に優れた機械構造用高強度シームレス鋼管の製造方法。 (4) After holding for 1 to 30 minutes in the temperature range of 850 to 1050 ° C. described in (3) above, the tube is formed by a stretching process, and the steel pipe is rotated in the circumferential direction from the temperature range of 750 ° C. or higher. The manufacturing method of the high-strength seamless steel pipe for machine structures excellent in toughness as described in (3) above, wherein primary cooling and secondary cooling are performed.

(5)シームレス圧延後又は延伸工程後、加速冷却前の鋼管の長さを外径の5倍以上とすることを特徴とする上記(3)又は(4)に記載の靭性に優れた機械構造用高強度シームレス鋼管の製造方法。 (5) The mechanical structure excellent in toughness according to the above (3) or (4), wherein the length of the steel pipe after the seamless rolling or after the stretching process and before accelerated cooling is at least 5 times the outer diameter For manufacturing high-strength seamless steel pipes.

本発明により、機械構造部材、特にシリンダー、ブッシュ、ブーム等の構造部材及びシャフト等の機械用部材に好適な、特に、靭性に優れた機械構造用高強度シームレス鋼管及び機械構造用高強度シームレス鋼管を安価に製造する方法の提供が可能になり、産業上の貢献が極めて顕著である。   According to the present invention, a high-strength seamless steel pipe for machine structure and a high-strength seamless steel pipe for machine structure, particularly excellent in toughness, suitable for machine structural members, particularly structural members such as cylinders, bushes, and booms, and mechanical members such as shafts. Can be provided at low cost, and the industrial contribution is extremely remarkable.

機械構造に適用し得る高強度を有する鋼管は、低温変態組織からなる金属組織を有していることが必要である。なお、低温変態組織とは、マルテンサイト、下部ベイナイトである。また、靭性を確保するには、マルテンサイトを、セメンタイトを析出させた焼き戻しマルテンサイトとする必要がある。更に、製造コストの面から、焼き入れ処理後に焼き戻し処理を施すよりも、圧延後の冷却によって自己焼き戻しマルテンサイトとすることが有利である。   A steel pipe having a high strength that can be applied to a mechanical structure needs to have a metal structure composed of a low-temperature transformation structure. The low temperature transformation structure is martensite and lower bainite. Moreover, in order to ensure toughness, it is necessary to make a martensite into the tempered martensite which precipitated the cementite. Furthermore, from the viewpoint of production cost, it is advantageous to use self-tempered martensite by cooling after rolling, rather than performing tempering after quenching.

本発明者らは、実験室で、熱間圧延後、冷却し、自己焼き戻しマルテンサイト単独組織、又は自己焼き戻しマルテンサイトと下部ベイナイトの複合組織からなる金属組織を有する鋼板を試作し、強度及び靭性を調査した。その結果、特に、引張強度が900MPa以上になると、−60℃でのシャルピー衝撃試験を行った際に、脆性破壊が生じることがわかった。   The inventors of the present invention have made a prototype steel sheet having a metal structure composed of a self-tempered martensite and a lower bainite composite structure after cooling in a laboratory after hot rolling and cooling. And the toughness was investigated. As a result, it was found that when the tensile strength was 900 MPa or more, brittle fracture occurred when the Charpy impact test was performed at -60 ° C.

また、試験後の試料の破面形態及び結晶方位差について詳細な調査を行い、結晶粒径の細粒化、特に、方位差が15°以上の大角粒界で囲われる領域の平均径(有効結晶粒径という。)の微細化によって、脆性破壊の発生を防止できるという知見が得られた。即ち、有効結晶粒径を10μm以下にすれば、破壊形態が延性破壊から脆性破壊に遷移する温度(遷移温度という。)が低下し、−60℃で脆性破壊が生じないことがわかった。   In addition, a detailed investigation of the fracture surface morphology and crystal orientation difference of the sample after the test was conducted to refine the crystal grain size, especially the average diameter of the region surrounded by large-angle grain boundaries with an orientation difference of 15 ° or more (effective The knowledge that the occurrence of brittle fracture can be prevented by making the crystal grain size finer). That is, it was found that if the effective crystal grain size is 10 μm or less, the temperature at which the fracture mode transitions from ductile fracture to brittle fracture (referred to as transition temperature) decreases, and brittle fracture does not occur at −60 ° C.

一般に、鋼の低温靭性を向上させるには、結晶粒径の微細化が有効である。鋼管を製造する際に、シームレス圧延後、一旦常温まで冷却すると、加工を受け、低温変態組織が生成した金属組織を再加熱することになるので、再加熱温度を900℃以下にすれば旧オーステナイトを微細化することができる。しかし、製造コストの観点から、シームレス圧延後、加速冷却し、自己焼き戻しマルテンサイト単独組織又は、自己焼き戻しマルテンサイトと下部ベイナイトからなる金属組織を有する鋼管を製造する場合は、圧延前の高温加熱の影響でオーステナイトを微細化することは困難である。   In general, refinement of the crystal grain size is effective for improving the low temperature toughness of steel. When producing a steel pipe, once it is cooled to room temperature after seamless rolling, it undergoes processing, and the metal structure produced by the low temperature transformation structure is reheated. Therefore, if the reheating temperature is made 900 ° C. or lower, the old austenite Can be refined. However, from the viewpoint of production cost, after seamless rolling, accelerated cooling, when producing a steel pipe having a self-tempered martensite single structure or a metal structure composed of self-tempered martensite and lower bainite, the high temperature before rolling It is difficult to refine austenite due to the effect of heating.

そこで、本発明者らは、シームレス圧延後、加速冷却した鋼管の有効結晶粒径を微細化するために、旧オーステナイトの粒内変態の活用を検討した。粒内変態は、結晶粒内に存在する析出物を生成核としてフェライト変態が生じる現象である。この粒内変態の生成核として有効に作用する酸化物は、Ti酸化物であるから、脱酸元素であるAlの添加量とTiの添加量の最適化によって粒内変態が促進されると考え、以下の試験を行った。   In view of this, the present inventors examined the use of intragranular transformation of prior austenite in order to refine the effective crystal grain size of the steel pipe that had been subjected to accelerated cooling after seamless rolling. Intragranular transformation is a phenomenon in which ferrite transformation occurs with precipitates present in crystal grains as production nuclei. Since the oxide that effectively acts as a nucleus for the formation of intragranular transformation is Ti oxide, it is considered that intragranular transformation is promoted by optimizing the addition amount of Al as a deoxidizing element and the addition amount of Ti. The following tests were conducted.

質量%で、C:0.030〜0.100%、Mn:0.80〜3.00%、Ti:0.005〜0.045%、Nb:0.003〜0.040%、O:0.0010〜0.0050%を含有し、Si:0.50%以下、P:0.020%以下、S:0.008%以下、Al:0.010%以下、N:0.0080%以下に制限し、更に、B:0.0030%以下、Ni:1.50%以下、Cr:1.50%以下、Cu:1.00%以下、Mo:0.50%以下の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、Al/Tiを変化させた鋼を溶製し、鋳造して鋼片とした。   In mass%, C: 0.030 to 0.100%, Mn: 0.80 to 3.00%, Ti: 0.005 to 0.045%, Nb: 0.003 to 0.040%, O: 0.0010 to 0.0050%, Si: 0.50% or less, P: 0.020% or less, S: 0.008% or less, Al: 0.010% or less, N: 0.0080% One of the following, further limited to B: 0.0030% or less, Ni: 1.50% or less, Cr: 1.50% or less, Cu: 1.00% or less, Mo: 0.50% or less A steel containing two or more, the balance being Fe and inevitable impurities, and changing Al / Ti was melted and cast to obtain a steel slab.

鋼片を、シームレス圧延を想定した圧延により鋼板とし、その後850〜1050℃の温度域に1〜30分保持し、750℃以上の温度域から加速冷却を行った。鋼板の金属組織を光学顕微鏡及び走査型電子顕微鏡(SEMという。)によって観察し、自己焼き戻しマルテンサイトの単独組織又は、自己焼き戻しマルテンサイトと下部ベイナイトからなる組織であることを確認した。   The steel piece was made into a steel plate by rolling assuming seamless rolling, and then held in a temperature range of 850 to 1050 ° C. for 1 to 30 minutes, and accelerated cooling was performed from a temperature range of 750 ° C. or higher. The metallographic structure of the steel sheet was observed with an optical microscope and a scanning electron microscope (referred to as SEM), and was confirmed to be a single structure of self-tempered martensite or a structure composed of self-tempered martensite and lower bainite.

得られた鋼板の有効結晶粒径を電子後方散乱分光分析法(lectron ack cattering attern、EBSPという。)によって測定した。EBSPによって得られた測定データからの結晶方位方位マップを作成し、結晶方位差が15°以上である大角粒界で囲まれる領域の平均粒径を測定した。 The effective crystal grain size of the resulting steel sheet electron backscattering spectroscopy was measured by (E lectron B ack S cattering P attern, called. EBSP). A crystal orientation map was created from the measurement data obtained by EBSP, and the average grain size of a region surrounded by a large-angle grain boundary having a crystal orientation difference of 15 ° or more was measured.

結果を図1に示す。図1の横軸はAlの含有量とTiの含有量の比Al/Tiであり、縦軸は有効結晶粒径である。図1より、Al/Tiを0.75以下にすれば、有効結晶粒径が10μm以下となることがわかる。有効結晶粒径の微細化は、旧オーステナイトの粒内変態の促進に起因することから、Al/Tiを0.75以下にすると、粒内に生成する酸化物が、主にTi酸化物となり、粒内変態の生成核として作用するようになると考えられる。   The results are shown in FIG. The horizontal axis in FIG. 1 is the ratio Al / Ti between the Al content and the Ti content, and the vertical axis is the effective crystal grain size. As can be seen from FIG. 1, when Al / Ti is 0.75 or less, the effective crystal grain size is 10 μm or less. Since the refinement of the effective crystal grain size is due to the promotion of intragranular transformation of prior austenite, when Al / Ti is made 0.75 or less, the oxide produced in the grain mainly becomes Ti oxide, It is thought to act as a nucleus for intragranular transformation.

次に、強度と靭性を両立し得る最適な金属組織を得る方法について検討を行った。熱間圧延後の冷却時、粒内変態を促進し、更に、金属組織を自己焼き戻しマルテンサイト単独組織、又は自己焼き戻しマルテンサイトと下部ベイナイトとの複合組織とするには、二段階の加速冷却を行うことが必要である。これは、高温での一次冷却ではフェライトの生成を抑制し、より低温での二次冷却で、自己焼き戻しマルテンサイト、下部ベイナイトを生成させるためである。   Next, a method for obtaining an optimum metal structure capable of achieving both strength and toughness was investigated. In order to promote intragranular transformation during cooling after hot rolling, and to make the metal structure self-tempered martensite alone or a composite structure of self-tempered martensite and lower bainite, two-stage acceleration It is necessary to perform cooling. This is because primary cooling at a high temperature suppresses the formation of ferrite, and secondary cooling at a lower temperature generates self-tempered martensite and lower bainite.

二次冷却において、加速冷却の停止温度、特に、冷却速度と停止温度との関係は、極めて重要である。これは、鋼管の強度と靭性とのバランス(強度−靭性バランスともいう。)の向上に影響を及ぼす鉄系炭化物(セメンタイトともいう。)の析出の挙動を制御するためである。また、鉄系炭化物の生成は、靭性にも大きく影響を及ぼす。これは、鉄系炭化物の生成が不十分であると強度が高すぎて靭性が低下し、鉄系炭化物が粗大化すると破壊の起点になって靭性を低下させるためである。また、二次冷却の停止温度が高すぎると、上部ベイナイトを生じて靭性が低下する。   In secondary cooling, the stop temperature of accelerated cooling, in particular, the relationship between the cooling rate and the stop temperature is extremely important. This is to control the precipitation behavior of iron-based carbide (also referred to as cementite) that affects the improvement of the balance between the strength and toughness of the steel pipe (also referred to as strength-toughness balance). In addition, the formation of iron-based carbides greatly affects toughness. This is because if the generation of iron-based carbide is insufficient, the strength is too high and the toughness decreases, and if the iron-based carbide is coarsened, it becomes a starting point of fracture and decreases the toughness. On the other hand, if the secondary cooling stop temperature is too high, upper bainite is produced and the toughness is lowered.

そこで、本発明者らは、二次冷却の条件と低温靭性との関係について検討を行った。上述の検討で有効結晶粒径が10μm以下となった化学成分を有する鋼を溶製し、鋳造して鋼片を製造した。得られた鋼片は円柱状のビレットであり、これに熱間での穿孔及び圧延(シームレス圧延)を施し、そのまま850〜1050℃の温度域に1〜30分保持した後、750℃以上の温度域から、鋼管を円周方向に回転させながら、鋼管の外表面からミスト冷却する、二段階の加速冷却を行った。まず、一次冷却は、450〜550℃の温度域まで、2〜30℃/sの冷却速度で行い、一次冷却に引き続き、二次冷却を行った。   Therefore, the present inventors examined the relationship between secondary cooling conditions and low temperature toughness. Steel having a chemical component having an effective crystal grain size of 10 μm or less in the above examination was melted and cast to produce a steel slab. The obtained steel slab is a cylindrical billet, subjected to hot piercing and rolling (seamless rolling), kept in the temperature range of 850 to 1050 ° C. for 1 to 30 minutes, and then 750 ° C. or higher. From the temperature range, two-stage accelerated cooling was performed in which the steel pipe was rotated in the circumferential direction and mist cooling was performed from the outer surface of the steel pipe. First, primary cooling was performed at a cooling rate of 2 to 30 ° C./s up to a temperature range of 450 to 550 ° C., and secondary cooling was performed following the primary cooling.

二次冷却速度V[℃/s]は、下限を10℃/s、上限を50℃/sとし、一次冷却の冷却速度よりも速い冷却速度とした。また、二次冷却停止温度T[℃]を変化させ、二次冷却速度V[℃/s]、低温靭性との関係について検討を行った。低温靭性は、鋼管から周方向を長手として、JIS Z 2242のVノッチ試験片を採取し、−60℃でシャルピー衝撃試験を行い、脆性破面の有無によって評価した。   The lower limit of the secondary cooling rate V [° C./s] was 10 ° C./s, the upper limit was 50 ° C./s, and the cooling rate was higher than the cooling rate of the primary cooling. Further, the secondary cooling stop temperature T [° C.] was changed, and the relationship between the secondary cooling rate V [° C./s] and the low temperature toughness was examined. The low temperature toughness was evaluated based on the presence or absence of a brittle fracture surface by collecting a V-notch test piece of JIS Z 2242 with the circumferential direction as the longitudinal direction from the steel pipe, performing a Charpy impact test at -60 ° C.

結果を図2に示す。図2の横軸は二次冷却速度V[℃/s]、縦軸は二次冷却停止温度T[℃]であり、破線は、T=821.34×V-0.3112 の曲線である。図2の○及び●は、−60℃で脆性破面の有無について示したものであり、○は脆性破面が見られないこと、●は脆性破面が見られることを意味する。 The results are shown in FIG. The horizontal axis in FIG. 2 is the secondary cooling rate V [° C./s], the vertical axis is the secondary cooling stop temperature T [° C.], and the broken line is a curve of T = 821.34 × V −0.3112 . In FIG. 2, ◯ and ● indicate the presence or absence of a brittle fracture surface at −60 ° C., ◯ means that no brittle fracture surface is seen, and ● means that a brittle fracture surface is seen.

図2に示したように、二次冷却停止温度が150℃未満になると、−60℃で脆性破面が見られる。これは、鉄系炭化物の生成が不十分であり、強度が上昇したためであると考えられる。また、破線、即ち、T=821.34×V-0.3112 の曲線より上側でも−60℃で脆性破面が見られる。これは、二次冷却温度が高すぎるため、セメンタイトが粗大化し、上部ベイナイトを生じて靭性が低下したものと考えられる。 As shown in FIG. 2, when the secondary cooling stop temperature is less than 150 ° C., a brittle fracture surface is observed at −60 ° C. This is thought to be because the production of iron carbide was insufficient and the strength increased. Further, a brittle fracture surface is observed at −60 ° C. even above the broken line, that is, above the curve of T = 821.34 × V −0.3112 . This is probably because the secondary cooling temperature is too high, and cementite is coarsened, resulting in upper bainite and reduced toughness.

以上の検討から、良好な低温靭性を得るには、二次冷却速度V[℃/s]と、二次冷却停止温度T[℃]とが、
150≦T≦821.34×V-0.3112 ・・・ (式1)
の関係を満足することが必要であることがわかった。
From the above examination, in order to obtain good low temperature toughness, the secondary cooling rate V [° C./s] and the secondary cooling stop temperature T [° C.]
150 ≦ T ≦ 821.34 × V −0.3112 (Formula 1)
It was found necessary to satisfy the relationship.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず本発明において鋼管の化学成分を限定した理由を述べる。なお、以下に示す「%」は、特段の説明がない限り、「質量%」を意味する。   First, the reason why the chemical composition of the steel pipe is limited in the present invention will be described. Note that “%” shown below means “% by mass” unless otherwise specified.

C:Cは強度向上に極めて有効な元素であり、目標とする強度を得るためには、0.030%以上の添加が必要である。一方、0.100%超のCを含有すると低温靭性が低下し、溶接時の割れが問題となる。したがって、Cは0.030〜0.100%に限定する。   C: C is an extremely effective element for improving the strength. To obtain the target strength, 0.030% or more must be added. On the other hand, if it contains more than 0.100% C, the low temperature toughness is lowered, and cracking during welding becomes a problem. Therefore, C is limited to 0.030 to 0.100%.

Si:Siは脱酸元素であるが、過剰に添加すると上部ベイナイトが生成し、低温靭性を損なうため上限を0.50%に制限した。なお、Al等を用いて脱酸を行う場合は、必ずしもSiを含有させる必要がないため、下限は特に限定しない。ただし、Siは強度の向上に寄与する元素であるため、0.10%以上を添加することが好ましい。   Si: Si is a deoxidizing element, but when added in excess, upper bainite is generated, and the upper limit is limited to 0.50% in order to impair the low temperature toughness. In addition, when performing deoxidation using Al etc., since it is not necessarily required to contain Si, a minimum is not specifically limited. However, since Si is an element contributing to improvement in strength, it is preferable to add 0.10% or more.

Mn:Mnは、低温変態組織の生成を促進する元素であり、強度と低温靭性のバランスを向上させるために有効である。この効果を得るには、0.80%以上のMnを添加することが必要である。しかし、Mn量が3.00%よりも多いと、低温靭性を損なうことがあるため、3.00%を上限とした。   Mn: Mn is an element that promotes the formation of a low-temperature transformation structure, and is effective for improving the balance between strength and low-temperature toughness. In order to obtain this effect, it is necessary to add 0.80% or more of Mn. However, if the amount of Mn is more than 3.00%, the low temperature toughness may be impaired, so 3.00% was made the upper limit.

P及びS:P及びSは不純物であり、過剰に含有させると靭性が低下し、溶接性が低下することがあるため、それぞれ、上限を0.020%及び0.008%とした。P及びSの含有量は、靭性を確保するために、添加量が少ない方が望ましく、それぞれ、0.015%以下及び0.005%以下がより好適である。なお、製造コストの観点から、P及びSの含有量の好ましい下限は0.001%である。   P and S: P and S are impurities, and if contained excessively, the toughness is lowered and the weldability may be lowered. Therefore, the upper limits were made 0.020% and 0.008%, respectively. In order to ensure toughness, the content of P and S is preferably less, and more preferably 0.015% or less and 0.005% or less, respectively. In addition, from a viewpoint of manufacturing cost, the minimum with preferable content of P and S is 0.001%.

Al:Alは本発明においては重要な元素であり、溶鋼中の酸素濃度を確保して、粒内変態に適したTi酸化物を生成させるため、上限を0.010%に制限した。Alの含有量は少ないほど好ましく、Alを意図的に添加する必要はない。ただし、溶製時の耐火物の影響などによって、脱酸元素としてSiを添加した場合であっても、不可避的にAlを含有することがある。   Al: Al is an important element in the present invention, and the upper limit is limited to 0.010% in order to secure an oxygen concentration in the molten steel and generate a Ti oxide suitable for intragranular transformation. The smaller the content of Al, the better, and there is no need to intentionally add Al. However, even when Si is added as a deoxidizing element due to the influence of a refractory during melting, Al may inevitably be contained.

Ti:Tiは、粒内変態の起点となるTi酸化物を生成させるために必要な元素であり、本発明において最も重要な元素である。十分なTi酸化物を得るためには、Tiを0.005%以上含有させることが必要である。一方、Tiの添加量が、0.045%を超えると、粗大なTi酸化物の析出によって靭性が低下するため、上限を0.045%とした。なお、有効結晶粒径を微細化するためには、Tiを0.010%以上添加することが好ましい。また、TiNの粗大化を防止して低温靭性を向上させるには、Ti量の上限を0.035%以下とすることが好ましい。   Ti: Ti is an element necessary for generating a Ti oxide that is the starting point of intragranular transformation, and is the most important element in the present invention. In order to obtain a sufficient Ti oxide, it is necessary to contain 0.005% or more of Ti. On the other hand, if the addition amount of Ti exceeds 0.045%, the toughness decreases due to precipitation of coarse Ti oxide, so the upper limit was made 0.045%. In order to reduce the effective crystal grain size, it is preferable to add Ti by 0.010% or more. Moreover, in order to prevent coarsening of TiN and improve low temperature toughness, it is preferable to make the upper limit of Ti amount 0.035% or less.

Nb:Nbは炭化物、窒化物等の析出物を生成し、圧延時のオーステナイトの再結晶を抑制し組織を微細化するだけでなく、焼き入れ性を増大させ、鋼の強靱化に有効な元素である。この効果を得るには、Nbを0.003%以上添加することが必要である。一方、Nb量が0.040%より過剰であると、粗大なNbの析出物が生成し、靭性が劣化することがあるため、上限を0.040%とした。   Nb: Nb is an element that produces precipitates such as carbides and nitrides, suppresses recrystallization of austenite during rolling, refines the structure, increases hardenability, and is effective for strengthening steel It is. To obtain this effect, it is necessary to add 0.003% or more of Nb. On the other hand, if the Nb content is more than 0.040%, coarse Nb precipitates may be generated and the toughness may deteriorate, so the upper limit was made 0.040%.

N:Nは不純物であり、0.0080%を超えると、粗大なTiNが生成し、靭性を低下させるので上限を0.0080%に制限した。なお、微細なTiN、NbN等の窒化物を生成させて、金属組織を微細化させるためには、0.0010%以上のNを添加することが好ましい。   N: N is an impurity, and if it exceeds 0.0080%, coarse TiN is generated and the toughness is lowered, so the upper limit was limited to 0.0080%. In order to produce fine nitrides such as TiN and NbN to refine the metal structure, it is preferable to add 0.0010% or more of N.

O(酸素):Oは、粒内変態の生成核となるTi酸化物を生成させるため、0.0010%以上が必要である。一方、O量が0.0050%を超えると粗大な酸化物が生成し、低温靭性を損なうため、上限を0.0050%とした。   O (oxygen): O needs to be 0.0010% or more in order to generate Ti oxides that are the nuclei of intragranular transformation. On the other hand, if the amount of O exceeds 0.0050%, a coarse oxide is generated and the low temperature toughness is impaired, so the upper limit was made 0.0050%.

更に、B、Ni、Cr、Cu、Moの1種又は2種以上を添加しても良い。これらは、焼入れ性を高める元素であり、本発明の鋼の強靱化に寄与する。   Further, one or more of B, Ni, Cr, Cu, and Mo may be added. These are elements that enhance the hardenability and contribute to the toughening of the steel of the present invention.

B:Bは、0.0030%より多いとBNなどの析出物を生じ、焼き入れ性が低下することがあるため、上限を0.0030%とすることが好ましい。なお、Bの添加量の好ましい下限は0.0003%以上である。   B: When B is more than 0.0030%, precipitates such as BN are generated, and the hardenability may be lowered. Therefore, the upper limit is preferably made 0.0030%. In addition, the minimum with the preferable addition amount of B is 0.0003% or more.

Ni:Niは、1.50%を超えると、偏析して組織が不均一になり、靭性が劣化することがあるため、上限を1.50%とすることが好ましい。また、Niは、低温靭性を劣化させることなく強度を向上させる元素であり、0.10%以上添加することが好ましい。   Ni: If Ni exceeds 1.50%, it segregates and the structure becomes non-uniform, and the toughness may deteriorate, so the upper limit is preferably made 1.50%. Ni is an element that improves the strength without deteriorating the low-temperature toughness, and it is preferable to add 0.10% or more.

Cr、Cu、Mo:Crは、1.50%を超えるとCr析出物の生成により、靭性が劣化することがあるので、上限を1.50%とすることが好ましい。Cu及びMoは、添加量がそれぞれ、1.00%及び0.50%を超えると溶接性を損なうことがある。強度を向上させるためには、Cu、Cr及びMoは、それぞれ、0.10%以上、0.10%以上及び0.050%以上を添加することが好ましい。   If Cr, Cu, Mo: Cr exceeds 1.50%, the toughness may deteriorate due to the formation of Cr precipitates, so the upper limit is preferably made 1.50%. When Cu and Mo are added in amounts exceeding 1.00% and 0.50%, respectively, weldability may be impaired. In order to improve the strength, Cu, Cr and Mo are preferably added in an amount of 0.10% or more, 0.10% or more and 0.050% or more, respectively.

次に金属組織について説明する。本発明の鋼管のように、鋼管を外面から加速冷却して製造される場合、鋼管の内面の冷却速度は外面よりも遅くなる。そのため、鋼管の内面ではフェライトや上部ベイナイトが生成し易くなる。特に、板厚が厚い場合は、内面の冷却速度が大きくなるように外面から加速冷却すると、鋼管が変形することもある。   Next, the metal structure will be described. When the steel pipe is manufactured by accelerated cooling from the outer surface like the steel pipe of the present invention, the cooling rate of the inner surface of the steel pipe is slower than that of the outer surface. Therefore, ferrite and upper bainite are easily generated on the inner surface of the steel pipe. In particular, when the plate thickness is thick, the steel pipe may be deformed if accelerated cooling is performed from the outer surface so as to increase the cooling rate of the inner surface.

そのため、鋼管が変形しない程度に冷却速度を制御すると、内面側ではベイナイト変態が生じることがある。これに対して、本発明の鋼管のように、成分を適正な範囲とすれば、下部ベイナイトが生じて強度と靭性とのバランスが確保できる。ただし、機械構造用鋼管において板厚方向全面を下部ベイナイトとするにはMoを多量に添加する必要があり、経済性を損なうことがある。したがって、下部ベイナイトの単独組織とするよりも、自己焼き戻しマルテンサイト単独組織とするか、自己焼き戻しマルテンサイトと下部ベイナイトのとの複合組織とすることが好ましい。   Therefore, if the cooling rate is controlled to such an extent that the steel pipe does not deform, bainite transformation may occur on the inner surface side. On the other hand, if the component is within an appropriate range as in the steel pipe of the present invention, lower bainite is generated, and a balance between strength and toughness can be ensured. However, it is necessary to add a large amount of Mo to make the entire surface in the plate thickness direction lower bainite in the steel pipe for machine structure, which may impair the economy. Therefore, it is preferable to use a self-tempered martensite single structure or a composite structure of self-tempered martensite and lower bainite rather than a single structure of lower bainite.

なお、本発明において、下部ベイナイトとは、加速冷却中にラス形態のフェライトが生成し、ラス内に微細な炭化物が一方向に析出した組織と定義される。また、本発明において、自己焼き戻しマルテンサイトとは、加速冷却中にオーステナイト相がマルテンサイト変態し、加速冷却停止後の放冷でセメンタイトがラス内に析出した組織である。通常の焼き戻し処理によって得られる組織は焼き戻しマルテンサイトであるが、これと比較して自己焼き戻しマルテンサイトのセメンタイトは極めて微細であり、平均値で400nm以下になっている。   In the present invention, the lower bainite is defined as a structure in which lath-shaped ferrite is generated during accelerated cooling and fine carbides are precipitated in one direction in the lath. In the present invention, the self-tempered martensite is a structure in which the austenite phase has undergone martensitic transformation during accelerated cooling, and cementite is precipitated in the lath by cooling after the accelerated cooling is stopped. The structure obtained by the normal tempering treatment is tempered martensite, but the cementite of self-tempered martensite is very fine compared to this, and the average value is 400 nm or less.

自己焼き戻しマルテンサイトと下部ベイナイトは、粒界に粗大なセメンタイトが存在せず、母相内に微細な炭化物を有するという点で共通している。自己焼き戻しマルテンサイト、下部ベイナイトは、加速冷却により得られる組織であり、焼き戻しすることなく、強度−靭性バランスを良好にすることができる金属組織である。以上のことから、本発明の鋼管の金属組織は、自己焼き戻しマルテンサイト単独組織か、又は自己焼き戻しマルテンサイトと下部ベイナイトの複合組織とする。   Self-tempered martensite and lower bainite are common in that there is no coarse cementite at the grain boundaries and there are fine carbides in the matrix. Self-tempered martensite and lower bainite are structures obtained by accelerated cooling, and are metal structures that can improve the strength-toughness balance without tempering. From the above, the metal structure of the steel pipe of the present invention is a self-tempered martensite single structure or a composite structure of self-tempered martensite and lower bainite.

自己焼き戻しマルテンサイト、下部ベイナイトは、SEMを用いて2000倍から50000倍で観察することによって判別が可能である。自己焼き戻しマルテンサイトと下部ベイナイトはいずれもラス状の形態であり、ラス内のセメンタイト析出形態によって区分できる。セメンタイトの長軸方向が複数あるのが自己焼き戻しマルテンサイトであり、下部ベイナイトはセメンタイトの長軸方向がひとつである。なお上部ベイナイトはラス境界に針状のセメンタイトやマルテンサイトとオーステナイトの混成物(Martesite Austenite Constituent、MA)が生成され、下部ベイナイトと大きく組織はことなる。フェライトはベイナイトのようなラス状ではなく、塊状である点が異なる。パーライトは粒界に板状のセメンタイトが析出するので、粒内に析出する下部ベイナイトと明らかに異なる。   Self-tempered martensite and lower bainite can be distinguished by observing them at 2000 to 50000 times using SEM. The self-tempered martensite and the lower bainite are both in a lath-like form and can be classified by the cementite precipitation form in the lath. Self-tempered martensite has multiple cementite major axis directions, and lower bainite has one major axis direction of cementite. The upper bainite forms acicular cementite or martensite and austenite (Martesite Austenite Constituent, MA) at the lath boundary, and the structure differs greatly from the lower bainite. Ferrite differs in that it is not a lath like bainite but a lump. Since pearlite precipitates plate-like cementite at grain boundaries, it is clearly different from lower bainite that precipitates within grains.

また、方位差15°以上の大角粒界で囲まれる領域の平均粒径(有効結晶粒径)は、破壊が発生した際の、き裂の伝播に影響を及ぼす。有効結晶粒径が10μmを超えるようになると−60℃の靭性が低下するため、強度−靭性バランスの観点から有効結晶粒径を10μm以下とすることが好ましい。なお、有効結晶粒径が小さいほど強度−靭性バランスに優れるが、現状の製造設備では3μm程度が下限である。   In addition, the average grain size (effective crystal grain size) of the region surrounded by the large-angle grain boundaries having an orientation difference of 15 ° or more affects the propagation of cracks when fracture occurs. Since the toughness at −60 ° C. decreases when the effective crystal grain size exceeds 10 μm, the effective crystal grain size is preferably set to 10 μm or less from the viewpoint of strength-toughness balance. In addition, although the strength-toughness balance is excellent as the effective crystal grain size is small, about 3 μm is the lower limit in the current production equipment.

また、有効結晶粒径が10μm以下であれば、酸化物を生成核とした粒内変態が生じていると考えて良い。粒内変態の生成を促進するためには、Al、Ti及びOの添加量を制御し、Ti酸化物を分散させることが必要である。更に、粒内変態の促進には鋼の焼き入れ性を高めることも重要である。これは、鋼の焼き入れ性が低下して冷却時に粒界からフェライトが生成するためである。粒界からのフェライト変態と、粒内変態とは競合するため、粒界からのフェライト変態が生じると、粒内変態が抑制される。   In addition, if the effective crystal grain size is 10 μm or less, it can be considered that intragranular transformation using oxide as a production nucleus occurs. In order to promote the formation of intragranular transformation, it is necessary to control the amount of Al, Ti and O added and to disperse the Ti oxide. Furthermore, it is important to enhance the hardenability of the steel in order to promote intragranular transformation. This is because the hardenability of the steel is lowered and ferrite is generated from the grain boundaries during cooling. Since the ferrite transformation from the grain boundary competes with the intragranular transformation, when the ferrite transformation from the grain boundary occurs, the intragranular transformation is suppressed.

本発明の金属組織において、セメンタイトの平均粒径は400nm以下であることが好ましい。これは、セメンタイトの平均粒径を400nm以下とすることにより、低温靭性が著しく向上するためである。また、セメンタイトの密度は2.0×105個/mm2以上であれば、粗大なセメンタイトがほとんど生成せず、極めて良好な強度−靭性バランスが得られる。 In the metal structure of the present invention, the average particle size of cementite is preferably 400 nm or less. This is because the low temperature toughness is remarkably improved by setting the average particle diameter of cementite to 400 nm or less. Moreover, if the density of cementite is 2.0 × 10 5 pieces / mm 2 or more, coarse cementite is hardly generated, and an extremely good strength-toughness balance is obtained.

セメンタイトは、抽出レプリカを用いて透過型電子顕微鏡(TEMという。)で観察することが可能であり、倍率を10000倍程度にしてサイズ及び密度を測定する。セメンタイトの平均粒径は小さいほど好ましいが、30nmよりも微細なセメンタイトは観察が困難である。そのため、本発明では、粒径が30nm以上のセメンタイトの平均粒径及び密度を測定する。セメンタイトの密度の上限は特に限定しないが、C添加量と平均粒径によって必然的に決まる。   Cementite can be observed with a transmission electron microscope (referred to as TEM) using an extracted replica, and the size and density are measured at a magnification of about 10,000 times. The average particle size of cementite is preferably as small as possible, but cementite finer than 30 nm is difficult to observe. Therefore, in this invention, the average particle diameter and density of a cementite whose particle size is 30 nm or more are measured. The upper limit of the density of cementite is not particularly limited, but is necessarily determined by the amount of C added and the average particle size.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

本発明の鋼管は、熱間で鋼片を穿孔し、圧延して製造されるシームレス鋼管であり、シームレス圧延後に延伸工程を経ることもある。シームレス圧延後、加工組織を再結晶させるために、そのまま850〜1050℃の温度域で1〜30分保持するか、仕上圧延温度が低い場合や850℃未満に冷却される場合は、850〜1050℃の温度域に再加熱し、1〜30分保持することが必要である。圧延後、鋼管が850℃未満に冷却されるのは、例えば、加速冷却を行うための冷却装置に搬送される間や、特に、延伸工程後に加速冷却を行う場合である。   The steel pipe of the present invention is a seamless steel pipe that is manufactured by punching and rolling a steel slab, and may undergo a drawing process after seamless rolling. After seamless rolling, in order to recrystallize the processed structure, it is kept for 1 to 30 minutes in the temperature range of 850 to 1050 ° C., or when the finish rolling temperature is low or cooled to less than 850 ° C., 850 to 1050 It is necessary to reheat to a temperature range of ° C. and hold for 1 to 30 minutes. The steel pipe is cooled to less than 850 ° C. after rolling, for example, when it is transported to a cooling device for performing accelerated cooling, and particularly when accelerated cooling is performed after the stretching step.

シームレス圧延後の保持温度の下限は、加工組織を再結晶させるために850℃以上とすることが必要である。一方、保持温度が1050℃を超えると結晶粒径が粗大になり、粒内変態を活用しても有効結晶粒径を10μm以下にすることが困難になる。また保持時間の下限は、加工組織を再結晶させるために1分以上とすることが必要である。なお、保持時間は、850〜1050℃の温度範囲内で1〜30分を経過させれば良い。例えば、加熱炉等の加熱手段を用いて一定温度で保持しても良く、断熱材等を利用した保熱カバーを使用して徐冷しても良い。しかし、保持時間が長いと生産性を損なうので、30分を上限とする。   The lower limit of the holding temperature after seamless rolling is required to be 850 ° C. or higher in order to recrystallize the processed structure. On the other hand, if the holding temperature exceeds 1050 ° C., the crystal grain size becomes coarse, and it is difficult to make the effective crystal grain size 10 μm or less even if intragranular transformation is utilized. Further, the lower limit of the holding time needs to be 1 minute or longer in order to recrystallize the processed structure. In addition, what is necessary is just to pass 1 to 30 minutes for the holding time within the temperature range of 850-1050 degreeC. For example, it may be held at a constant temperature using a heating means such as a heating furnace, or may be gradually cooled using a heat insulating cover using a heat insulating material or the like. However, if the holding time is long, productivity is impaired, so the upper limit is 30 minutes.

鋼管が冷却され、再加熱を施す場合は、鋼管の温度が650℃未満になるまで冷却されると、部分的に変態が生じ、再加熱後、異常粒成長によって、局所的に粗大な結晶粒を生じることがある。また、冷却時に析出物を生じ、焼き入れ性を高める元素の固溶量が減少して焼入れ性が低下する。特に、Bを含有する場合は、Bの析出物の生成による焼入れ性の低下が顕著になる。その結果、粒内変態と競合する粒界からの変態が促進され、有効結晶粒径を微細化することが困難になる。したがって、異常粒成長を抑制し、更に、十分な焼入れ性を確保して粒界からの変態を抑制し、粒内変態を促進するために、650℃未満に冷却されることなく再加熱する必要がある。   When the steel pipe is cooled and reheated, when it is cooled until the temperature of the steel pipe is less than 650 ° C., partial transformation occurs, and after reheating, locally coarse crystal grains are formed by abnormal grain growth. May occur. In addition, precipitates are generated during cooling, and the solid solution amount of the element that enhances the hardenability is reduced, thereby reducing the hardenability. In particular, when B is contained, the decrease in hardenability due to the formation of B precipitates becomes significant. As a result, transformation from grain boundaries competing with intragranular transformation is promoted, making it difficult to refine the effective crystal grain size. Therefore, it is necessary to reheat without cooling to below 650 ° C. in order to suppress abnormal grain growth, further to ensure sufficient hardenability, to suppress transformation from grain boundaries, and to promote intragranular transformation. There is.

また、鋼管が650℃以上850℃未満に冷却された場合、再加熱温度が850℃未満である場合や、保持時間が1分未満である場合は、析出物が再固溶せず、焼き入れ性が低下することがある。これにより、上部ベイナイトが生成したり、結晶粒界からのフェライト変態が生じ、粒内変態が抑制されることがある。   In addition, when the steel pipe is cooled to 650 ° C. or more and less than 850 ° C., when the reheating temperature is less than 850 ° C. or when the holding time is less than 1 minute, the precipitate does not re-dissolve and is quenched. May decrease. As a result, upper bainite may be generated, or ferrite transformation from the grain boundaries may occur, and intragranular transformation may be suppressed.

再加熱後に、鋼管の形状を調整するための延伸加工を施しても良い。なお、鋼管の長さを変化させずに外径を縮径する加工も延伸加工に含まれる。延伸加工は、板厚の変化が小さく、圧下率で15%程度が上限であるため、導入される歪みに起因して靭性が低下することはない。   You may perform the extending | stretching process for adjusting the shape of a steel pipe after reheating. In addition, the process of reducing the outer diameter without changing the length of the steel pipe is also included in the drawing process. In the drawing process, the change in the plate thickness is small and the upper limit is about 15% in terms of the rolling reduction, so that the toughness is not lowered due to the strain introduced.

また、本発明では鋼管の外面から加速冷却を施すため、鋼管の長さを外径の5倍以上にすることが好ましい。これは、鋼管の長さが外径の5倍未満の場合、外面からの加速冷却を行う際、水等の冷却剤が内面側にまわりこみ冷却が不均一となって鋼管が曲がることがあるためである。なお、確実に均一に加速冷却するためには、鋼管の長さを外径の10倍以上とするのがより好ましい。   Moreover, in this invention, since accelerated cooling is performed from the outer surface of a steel pipe, it is preferable to make the length of a steel pipe 5 times or more of an outer diameter. This is because when the length of the steel pipe is less than 5 times the outer diameter, when performing accelerated cooling from the outer surface, a coolant such as water wraps around the inner surface and the cooling becomes uneven and the steel pipe may bend. It is. In order to ensure uniform and accelerated cooling, it is more preferable that the length of the steel pipe is 10 times or more the outer diameter.

シームレス圧延後、850〜1050℃の温度範囲で1〜30分保持し、又は更に延伸工程を経て、加速冷却を行う。本発明では、加速冷却は、鋼管を円周方向に回転させながら外表面のみから冷却する方法に限定した。これにより、円周方向、長手方向に渡って均一に冷却することができる。一方、鋼管を回転させなければ鋼管下面が過剰に冷え、また内面側から冷却すると下面に水が貯まり冷却速度が均一にならないという問題がある。冷却方法については、水を鋼管の外表面に直接当てる方法、鋼管外周の接線方向に当てる方法、ミスト冷却など任意に選定できる。   After the seamless rolling, it is held at a temperature range of 850 to 1050 ° C. for 1 to 30 minutes, or further subjected to accelerated cooling through a stretching step. In the present invention, the accelerated cooling is limited to the method of cooling only from the outer surface while rotating the steel pipe in the circumferential direction. Thereby, it can cool uniformly over the circumferential direction and a longitudinal direction. On the other hand, if the steel pipe is not rotated, there is a problem that the lower surface of the steel pipe is excessively cooled, and when cooling from the inner surface side, water is accumulated on the lower surface and the cooling rate is not uniform. The cooling method can be arbitrarily selected, for example, a method in which water is directly applied to the outer surface of the steel pipe, a method in which water is applied in the tangential direction of the outer periphery of the steel pipe, or mist cooling.

本発明では、加速冷却を2段階で行う。一次冷却では粒内変態を促進する。引き続き、二次冷却では金属組織を、自己焼き戻しマルテンサイト単独組織、又は自己焼き戻しマルテンサイトと下部ベイナイトの複合組織とする。   In the present invention, accelerated cooling is performed in two stages. Primary cooling promotes intragranular transformation. Subsequently, in the secondary cooling, the metal structure is a self-tempered martensite single structure or a composite structure of self-tempered martensite and lower bainite.

一次冷却は、粒内変態を促進するため、結晶粒界からのフェライト変態を抑制することが重要である。そのため、一次冷却を開始する温度を750℃以上とし、加速冷却開始時の金属組織をオーステナイト単相とする。粒内変態は、フェライト変態が生じる750℃未満から、450〜550℃の範囲までの温度域で顕著に生じるため、一次冷却の下限を450〜550℃の温度域とする。550℃超で一次冷却を停止して二次冷却を開始すると粒内変態の生成が不十分になる。一方、450℃未満まで一次冷却を行うと、上部ベイナイトが生じ易くなり、自己焼き戻しマルテンサイト単独組織、又は自己焼き戻しマルテンサイトと下部ベイナイトの複合組織を得ることが困難になる。一次冷却の冷却速度は、2℃/s未満ではフェライトが生成し、一方、30℃/sを超えると粒内変態が生じ難くなる。   Since primary cooling promotes intragranular transformation, it is important to suppress ferrite transformation from grain boundaries. Therefore, the temperature at which primary cooling is started is set to 750 ° C. or higher, and the metal structure at the start of accelerated cooling is set to an austenite single phase. Intragranular transformation occurs remarkably in a temperature range from less than 750 ° C. at which ferrite transformation occurs to a range of 450 to 550 ° C., so the lower limit of primary cooling is set to a temperature range of 450 to 550 ° C. When primary cooling is stopped at over 550 ° C. and secondary cooling is started, generation of intragranular transformation becomes insufficient. On the other hand, when primary cooling is performed to less than 450 ° C., upper bainite is likely to be generated, and it becomes difficult to obtain a self-tempered martensite single structure or a composite structure of self-tempered martensite and lower bainite. When the cooling rate of the primary cooling is less than 2 ° C./s, ferrite is generated, whereas when it exceeds 30 ° C./s, intragranular transformation is difficult to occur.

一次冷却に続き、一次冷却よりも速い冷却速度で二次冷却を行い、金属組織を、自己焼き戻しマルテンサイト単独組織、又は自己焼き戻しマルテンサイトと下部ベイナイトの複合組織とする。二次冷却の冷却速度は、10℃/s未満では上部ベイナイトが生じ、50℃/s超では、鋼管が変形する。したがって、二次冷却速度は10〜50℃/sに限定する。   Subsequent to the primary cooling, secondary cooling is performed at a cooling rate faster than the primary cooling, and the metal structure is made into a self-tempered martensite single structure or a composite structure of self-tempered martensite and lower bainite. When the cooling rate of the secondary cooling is less than 10 ° C./s, upper bainite is generated, and when it exceeds 50 ° C./s, the steel pipe is deformed. Therefore, the secondary cooling rate is limited to 10 to 50 ° C./s.

二次冷却の停止温度は、上述のように本発明においては極めて重要であり、二次冷却速度V[℃/s]と二次冷却停止温度T[℃]が、
150≦T≦821.34×V-0.3112 (式1)
を満足する温度とする。二次冷却の停止後、空冷すると、微細な鉄系炭化物が金属組織に析出し、自己焼き戻しマルテンサイト単独組織、又は自己焼き戻しマルテンサイトと下部ベイナイトの複合組織を得ることができ、低温靭性が向上する。
As described above, the secondary cooling stop temperature is extremely important in the present invention, and the secondary cooling rate V [° C./s] and the secondary cooling stop temperature T [° C.]
150 ≦ T ≦ 821.34 × V −0.3112 (Formula 1)
Is satisfied. When the secondary cooling is stopped and air-cooled, fine iron carbide precipitates in the metal structure, and a self-tempered martensite single structure or a composite structure of self-tempered martensite and lower bainite can be obtained. Will improve.

表1に示す化学成分の鋼を溶製し、転炉−連続鋳造プロセスにより直径170mmの鋼片を鋳造した。これらの鋼片を1240℃に加熱し、マンネスマン−プラグミル方式により穿孔−圧延し、表2に示す条件で、そのまま加速冷却するか、又は、再加熱し、延伸工程で縮径圧延した後、加速冷却を行った。加速冷却はリング状の冷却装置を用いて鋼管の外面側から水冷を行った。   Steels having chemical components shown in Table 1 were melted, and steel pieces having a diameter of 170 mm were cast by a converter-continuous casting process. These steel slabs are heated to 1240 ° C., pierced and rolled by the Mannesmann-plug mill method, accelerated and cooled as they are under the conditions shown in Table 2, or reheated and reduced in diameter in the stretching process, and then accelerated. Cooling was performed. Accelerated cooling was performed by water cooling from the outer surface side of the steel pipe using a ring-shaped cooling device.

鋼管サイズは、外径126mm、肉厚12.2mmか、外径138mm、肉厚16.4mm又は外径146mm、肉厚20.6mmの何れかであった。鋼管の長さは6.5mである。なお、鋼管の形状は、6.5m長さの鋼管の片側の端面から0.5mmおきに3点を平面板に固定し、反対側の端面の平面板からの浮き高さで曲がり量を判定した。浮き量が10mm以下のものを鋼管形状として合格(○)と評価し、10mm超のものを不合格(×)とした。   The steel pipe size was either an outer diameter of 126 mm and a wall thickness of 12.2 mm, an outer diameter of 138 mm, a wall thickness of 16.4 mm, an outer diameter of 146 mm, and a wall thickness of 20.6 mm. The length of the steel pipe is 6.5 m. The shape of the steel pipe is fixed at 3 points to the flat plate every 0.5mm from the end face on one side of the 6.5m long steel pipe, and the bending amount is judged by the floating height from the flat face on the opposite end face. did. A steel sheet having a floating amount of 10 mm or less was evaluated as a pass (◯), and a sample with a lift of 10 mm or more was rejected (x).

製造した鋼管の長手方向及び肉厚方向の中央部近傍から試料を採取し、JIS Z 2244に準拠して試験力98.07Nでビッカース硬度を測定した。金属組織はSEM及び光学顕微鏡を用い、SEM観察では倍率を最大50000倍まで拡大し、金属組織をフェライト、自己焼き戻しマルテンサイト、上部ベイナイト、下部ベイナイトに分類し、粒内ベイナイトの確認も併せて行った。粒内ベイナイトは、Ti酸化物を中心として放射状に生成したベイナイトであり、形態は花弁状である。   A sample was taken from the vicinity of the center in the longitudinal direction and the thickness direction of the manufactured steel pipe, and the Vickers hardness was measured with a test force of 98.07 N in accordance with JIS Z 2244. SEM and optical microscope are used for the metal structure. In SEM observation, the magnification is increased up to 50000 times. went. The intragranular bainite is a bainite that is generated radially with a Ti oxide as a center, and has a petal shape.

次に、SEMに搭載されたEBSPを用い、結晶方位測定を行い15°以上の方位差を有する粒界を同定し、その粒界で覆われる領域の円相当半径を粒径としてその平均値を求めた。更に、抽出レプリカを作製し、TEMを用いて10000倍〜50000倍に拡大した組織写真10枚から、セメンタイトの円相当半径の平均値及び単位面積(mm2)の個数を求めた。 Next, using EBSP mounted on the SEM, crystal orientation measurement is performed to identify a grain boundary having an orientation difference of 15 ° or more, and the average value is obtained by setting the equivalent circle radius of the region covered by the grain boundary as the grain size. Asked. Further, extracted replicas were prepared, and the average value of the equivalent circle radius and the number of unit areas (mm 2 ) of cementite were determined from 10 structure photographs enlarged 10000 times to 50000 times using TEM.

引張試験はJIS Z 2201の11号引張試験片を用いて、JIS Z2241に準拠して行い、降伏強度と引張強度を測定した。靭性の評価は、JIS Z 2242のVノッチフルサイズ試験片を用いて−60℃にてシャルピー衝撃試験を実施し、吸収エネルギー(vE-60)を測定した。 The tensile test was performed according to JIS Z2241 using a JIS Z 2201 No. 11 tensile test piece, and the yield strength and tensile strength were measured. The toughness was evaluated by performing a Charpy impact test at −60 ° C. using a JIS Z 2242 V-notch full-size test piece and measuring the absorbed energy (vE- 60 ).

溶接性は、2本の鋼管の端部を突き合わせて溶接し、鋼管継ぎ手を作製して、割れの有無により評価した。溶接ワイヤーは、780MPa級の強度を有するものとし、炭酸ガス溶接により鋼管継ぎ手を作製した。溶接後、24時間以上を経過した後に目視検査を行い、割れの有無を検査し、割れの無いものを合格(○)とし、割れが見られたものを不合格(×)とした。   Weldability was evaluated by checking the presence or absence of cracks by welding the ends of two steel pipes while butting them together. The welding wire had a strength of 780 MPa class, and a steel pipe joint was produced by carbon dioxide gas welding. After welding, after a lapse of 24 hours or more, a visual inspection was performed to inspect for cracks, and those without cracks were determined to be acceptable (O), and those with cracks were determined to be unacceptable (X).

結果を表3に示す。表3の下線は本発明の範囲外又は好ましい範囲外であることを意味する。表3に示したように、本発明例であるNo.1〜13は、粒内変態を含む適正な金属組織と機械構造用鋼管として必要な強度を有し、−60℃での靭性も優れている。一方、製造No.14〜25は比較例であり、成分組成や製造条件が本発明の範囲外になっている。   The results are shown in Table 3. The underline in Table 3 means outside the scope of the present invention or outside the preferred range. As shown in Table 3, the No. Nos. 1 to 13 have an appropriate metal structure including intragranular transformation and strength necessary as a steel pipe for machine structure, and are excellent in toughness at -60 ° C. On the other hand, production No. 14 to 25 are comparative examples, and the component composition and production conditions are outside the scope of the present invention.

No.14は、Al量が高く、粒内変態起点となるTi酸化物がほとんど生成しなかったため、粒内変態が認められず、−60℃の靭性が低下した例である。No.15は、C量が低く、また二次冷却の停止温度が高いため、上部ベイナイト組織が生成し、靭性が低下した例である。更に、No.15は二次冷却の冷却速度が速すぎるため、形状も悪化している。   No. No. 14 is an example in which the amount of Al is high, and Ti oxide that becomes the starting point of intragranular transformation is hardly generated, so intragranular transformation is not observed, and the toughness at −60 ° C. is lowered. No. No. 15 is an example in which the amount of C is low and the secondary cooling stop temperature is high, so that the upper bainite structure is generated and the toughness is lowered. Furthermore, no. No. 15 has a deteriorated shape because the cooling rate of the secondary cooling is too fast.

No.16は、P量が過剰であり、またMn量が少なく焼き入れ性が不十分であり、一次冷却の冷却速度が速すぎたため、粒内変態が不十分になり、靭性が低下している。更に、No.16はP量に起因して溶接性も低下している。No.17は、Si量が過剰であるため上部ベイナイトが生成し、Ti量が少ないため有効結晶粒径が粗大化し、靭性が低下した例である。No.18は、不純物であるS及びNを過剰に含有しているため靭性及び溶接性が低下しており、また、Al量及びO量も過剰であるため、粒内変態が不十分になっている。No.19はAl量及びNb量が過剰であり、靭性及び溶接性が低下した例である。   No. In No. 16, the amount of P is excessive, the amount of Mn is small and the hardenability is insufficient, and the cooling rate of primary cooling is too fast, so the intragranular transformation becomes insufficient and the toughness is reduced. Furthermore, no. No. 16 also has poor weldability due to the amount of P. No. No. 17 is an example in which the upper bainite is generated because the Si amount is excessive, and the effective crystal grain size is coarsened and the toughness is decreased because the Ti amount is small. No. No. 18 contains impurities S and N excessively, resulting in poor toughness and weldability, and Al and O amounts are also excessive, resulting in insufficient intragranular transformation. . No. No. 19 is an example in which the Al amount and the Nb amount are excessive, and the toughness and weldability are lowered.

No.20〜25は、成分組成が本発明の範囲内であり、製造条件が本発明の範囲外である比較例である。No.20は、再加熱温度が高すぎ、保持時間が長すぎたため、結晶粒が粗大化し、また、焼き入れ性が低下し、粒内変態が顕著でなくかつ上部ベイナイトが生成し、靭性が低かった例である。   No. 20 to 25 are comparative examples in which the component composition is within the scope of the present invention and the production conditions are outside the scope of the present invention. No. No. 20, because the reheating temperature was too high and the holding time was too long, the crystal grains became coarse, the hardenability was lowered, the intragranular transformation was not remarkable, and the upper bainite was formed, and the toughness was low. It is an example.

No.21は、再加熱時間が短すぎ、焼き入れ性が低下して、粒内変態が顕著でなく、また二次冷却の停止温度が高すぎて、上部ベイナイトが生成し、強度及び靭性が低下した例である。No.22は、圧延後、650℃未満に冷却されたため、焼き入れ性が低下して、粒内変態が顕著でなく、焼き戻しマルテンサイトと上部ベイナイトの混合組織となり、靭性が低下した例である。更に、No.22は二次冷却の冷却速度が速すぎるため、形状も悪化している。   No. No. 21, reheating time is too short, hardenability is reduced, intragranular transformation is not remarkable, secondary cooling stop temperature is too high, upper bainite is generated, strength and toughness are reduced. It is an example. No. No. 22 is an example in which, after rolling, the steel was cooled to less than 650 ° C., so that the hardenability was lowered, the intragranular transformation was not remarkable, and a mixed structure of tempered martensite and upper bainite was formed. Furthermore, no. No. 22 has a deteriorated shape because the cooling rate of the secondary cooling is too fast.

No.23は、再加熱温度が低すぎて、焼き入れ性が低下し、一次冷却の開始温度が低く、一次冷却の冷却速度が遅すぎてフェライトが生成し、粒内変態が顕著でなく、靭性が低下した例である。   No. No. 23, the reheating temperature is too low, the hardenability is lowered, the primary cooling start temperature is low, the cooling rate of the primary cooling is too slow, ferrite is generated, the intragranular transformation is not remarkable, and the toughness is This is an example of a decline.

No.24は、一次冷却及二次冷却の冷却速度が速すぎ、二次冷却の停止温度が高すぎる例であり、粒内変態が生じず、焼き戻しマルテンサイトと粗大なセメンタイトを有する上部ベイナイトの混合組織となり、靭性が低下し、形状も悪化している。No.25は、二次冷却の停止温度が高すぎるため、上部ベイナイトが生成し、靭性が低下した例である。   No. No. 24 is an example in which the cooling rate of primary cooling and secondary cooling is too high, and the stop temperature of secondary cooling is too high, and no intragranular transformation occurs, and mixing of tempered martensite and coarse bainite having coarse cementite It becomes a structure, toughness is reduced, and the shape is also deteriorated. No. No. 25 is an example in which the upper bainite was generated and the toughness was lowered because the secondary cooling stop temperature was too high.

Figure 2009052106
Figure 2009052106

Figure 2009052106
Figure 2009052106

Figure 2009052106
Figure 2009052106

Al/Tiと有効結晶粒径の間の関係を示す図である。It is a figure which shows the relationship between Al / Ti and an effective crystal grain size. 二次冷却速度及び二次冷却停止温度と脆性破面の有無との関係を示す図である。It is a figure which shows the relationship between a secondary cooling rate, a secondary cooling stop temperature, and the presence or absence of a brittle fracture surface.

Claims (5)

質量%で、
C :0.030〜0.100%、
Mn:0.80〜3.00%、
Ti:0.005〜0.045%、
Nb:0.003〜0.040%、
O :0.0010〜0.0050%
を含有し、
Si:0.50%以下、
P :0.020%以下、
S :0.008%以下、
Al:0.010%以下、
N :0.0080%以下
に制限し、
Al/Ti≦0.75
を満足し、さらに、
B :0.0030%以下、
Ni:1.50%以下、
Cr:1.50%以下、
Cu:1.00%以下、
Mo:0.50%以下
の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、金属組織が自己焼き戻しマルテンサイト単独組織または自己焼き戻しマルテンサイトと下部ベイナイトとの混合組織であって、方位差が15°以上の大角粒界で囲われる領域の平均径が10μm以下であることを特徴とする靭性に優れた機械構造用高強度シームレス鋼管。
% By mass
C: 0.030 to 0.100%,
Mn: 0.80 to 3.00%,
Ti: 0.005 to 0.045%,
Nb: 0.003-0.040%,
O: 0.0010 to 0.0050%
Containing
Si: 0.50% or less,
P: 0.020% or less,
S: 0.008% or less,
Al: 0.010% or less,
N: limited to 0.0080% or less,
Al / Ti ≦ 0.75
Satisfied,
B: 0.0030% or less,
Ni: 1.50% or less,
Cr: 1.50% or less,
Cu: 1.00% or less,
Mo: Contains one or more of 0.50% or less, the balance is Fe and inevitable impurities, and the metal structure is a self-tempered martensite single structure or a mixture of self-tempered martensite and lower bainite. A high-strength seamless steel pipe for machine structures excellent in toughness, characterized in that the average diameter of a region surrounded by large grain boundaries having a misorientation of 15 ° or more is 10 μm or less.
金属組織中の鉄系炭化物の平均粒径が400nm以下であり、該鉄系炭化物の密度が2.0×105個/mm2以上であることを特徴とする請求項1に記載の靭性に優れた機械構造用高強度シームレス鋼管。 2. The toughness according to claim 1, wherein the average grain size of the iron-based carbide in the metal structure is 400 nm or less, and the density of the iron-based carbide is 2.0 × 10 5 pieces / mm 2 or more. High strength seamless steel pipe for mechanical structure. 請求項1に記載の化学成分を有する鋼片に熱間での穿孔及び圧延を施し、そのまま又は650℃未満の温度域に冷却することなく再加熱し、850〜1050℃の温度域に1〜30分保持した後、750℃以上の温度域から、鋼管を円周方向に回転させながら、鋼管の外表面から2〜30℃/sの冷却速度で450〜550℃の温度域まで一次冷却を施し、引き続き、10〜50℃/sの範囲内であり、かつ一次冷却の冷却速度よりも速い二次冷却速度V[℃/s]で、下記(式1)で求まる範囲の二次冷却停止温度T[℃]まで二次冷却を施すことを特徴とする靭性に優れた機械構造用高強度シームレス鋼管の製造方法。
150≦T≦821.34×V-0.3112 ・・・ (式1)
The steel slab having the chemical component according to claim 1 is subjected to hot piercing and rolling, reheated as it is or without cooling to a temperature range of less than 650 ° C, and 1 to 850 to 1050 ° C. After holding for 30 minutes, primary cooling is performed from the outer surface of the steel pipe to a temperature range of 450 to 550 ° C. at a cooling rate of 2 to 30 ° C./s while rotating the steel pipe in the circumferential direction from a temperature range of 750 ° C. or higher. The secondary cooling is stopped within the range obtained by the following (formula 1) at the secondary cooling rate V [° C./s] that is within the range of 10 to 50 ° C./s and faster than the cooling rate of the primary cooling. A method for producing a high-strength seamless steel pipe for machine structure excellent in toughness, characterized by performing secondary cooling to a temperature T [° C].
150 ≦ T ≦ 821.34 × V −0.3112 (Formula 1)
請求項3に記載の850〜1050℃の温度域での1〜30分の保持の後、延伸工程により造管し、750℃以上の温度域から、鋼管を円周方向に回転させながら、一次冷却及び二次冷却を施すことを特徴とする請求項3に記載の靭性に優れた機械構造用高強度シームレス鋼管の製造方法。   After holding for 1 to 30 minutes in the temperature range of 850 to 1050 ° C. according to claim 3, the tube is formed by a stretching process, and the steel tube is rotated in the circumferential direction from the temperature range of 750 ° C. or higher, while being primary. Cooling and secondary cooling are performed, The manufacturing method of the high strength seamless steel pipe for machine structures excellent in toughness of Claim 3 characterized by the above-mentioned. シームレス圧延後又は延伸工程後、加速冷却前の鋼管の長さを外径の5倍以上とすることを特徴とする請求項3又は4に記載の靭性に優れた機械構造用高強度シームレス鋼管の製造方法。   5. The high-strength seamless steel pipe for machine structures having excellent toughness according to claim 3, wherein the length of the steel pipe after the seamless rolling or after the stretching process is 5 times or more of the outer diameter before accelerated cooling. Production method.
JP2007221170A 2007-08-28 2007-08-28 High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof Active JP4959471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221170A JP4959471B2 (en) 2007-08-28 2007-08-28 High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221170A JP4959471B2 (en) 2007-08-28 2007-08-28 High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009052106A true JP2009052106A (en) 2009-03-12
JP4959471B2 JP4959471B2 (en) 2012-06-20

Family

ID=40503434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221170A Active JP4959471B2 (en) 2007-08-28 2007-08-28 High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4959471B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096510A1 (en) * 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
WO2014185405A1 (en) 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
WO2014188966A1 (en) 2013-05-21 2014-11-27 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
KR101471730B1 (en) * 2010-03-05 2014-12-10 신닛테츠스미킨 카부시키카이샤 High-strength seamless steel pipe for mechanical structure which has excellent toughness, and process for production of same
US20160312326A1 (en) * 2013-12-11 2016-10-27 Arcelormittal High strength steel and manufacturing method
JP2020117796A (en) * 2019-01-28 2020-08-06 Jfeスチール株式会社 Super low yield ratio high tensile strength thick steel sheet and manufacturing method therefor
JP7513888B2 (en) 2020-10-16 2024-07-10 日本製鉄株式会社 Seamless Steel Pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324950A (en) * 1997-03-26 1998-12-08 Sumitomo Metal Ind Ltd High-strength welded steel structure, and its manufacture
JP2003201543A (en) * 2001-10-25 2003-07-18 Jfe Steel Kk Steel pipe having excellent workability and production method therefor
WO2007023806A1 (en) * 2005-08-22 2007-03-01 Sumitomo Metal Industries, Ltd. Seamless steel pipe for line pipe and method for producing same
JP2007262468A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp High-strength seamless steel pipe for machine structure superior in toughness and weldability, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324950A (en) * 1997-03-26 1998-12-08 Sumitomo Metal Ind Ltd High-strength welded steel structure, and its manufacture
JP2003201543A (en) * 2001-10-25 2003-07-18 Jfe Steel Kk Steel pipe having excellent workability and production method therefor
WO2007023806A1 (en) * 2005-08-22 2007-03-01 Sumitomo Metal Industries, Ltd. Seamless steel pipe for line pipe and method for producing same
JP2007262468A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp High-strength seamless steel pipe for machine structure superior in toughness and weldability, and manufacturing method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837807B2 (en) * 2010-02-04 2011-12-14 新日本製鐵株式会社 High strength welded steel pipe and manufacturing method thereof
KR101456345B1 (en) 2010-02-04 2014-11-03 신닛테츠스미킨 카부시키카이샤 High-strength welded steel pipe and method for producing the same
WO2011096510A1 (en) * 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
US8974610B2 (en) 2010-02-04 2015-03-10 Nippon Steel & Sumitomo Metal Corporation High-strength welded steel pipe and method for producing the same
KR101471730B1 (en) * 2010-03-05 2014-12-10 신닛테츠스미킨 카부시키카이샤 High-strength seamless steel pipe for mechanical structure which has excellent toughness, and process for production of same
US10260124B2 (en) 2013-05-14 2019-04-16 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
WO2014185405A1 (en) 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
KR20150126683A (en) 2013-05-14 2015-11-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and production method therefor
US11208702B2 (en) 2013-05-14 2021-12-28 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method thereof
WO2014188966A1 (en) 2013-05-21 2014-11-27 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
EP3000905A4 (en) * 2013-05-21 2016-11-02 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet and method for manufacturing same
US10023929B2 (en) 2013-05-21 2018-07-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
CN105143488A (en) * 2013-05-21 2015-12-09 新日铁住金株式会社 Hot-rolled steel sheet and method for manufacturing same
US20160312326A1 (en) * 2013-12-11 2016-10-27 Arcelormittal High strength steel and manufacturing method
US10597745B2 (en) * 2013-12-11 2020-03-24 Arcelormittal High strength steel and manufacturing method
JP2020117796A (en) * 2019-01-28 2020-08-06 Jfeスチール株式会社 Super low yield ratio high tensile strength thick steel sheet and manufacturing method therefor
JP7513888B2 (en) 2020-10-16 2024-07-10 日本製鉄株式会社 Seamless Steel Pipe

Also Published As

Publication number Publication date
JP4959471B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
JP4751224B2 (en) High strength seamless steel pipe for machine structure with excellent toughness and weldability and method for producing the same
CN104561831A (en) Steel plate with high anti-crack property and manufacturing method of steel plate
RU2270873C1 (en) Method of production of skelp steel for pipes of underwater sea gas pipe lines of high parameters
JP4959471B2 (en) High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
JP2016186099A (en) Wire for bolt excellent in acid cleaning property and delayed fracture resistance after quenching and tempering, and bolt
US20220025493A1 (en) Steel material
JP5783014B2 (en) Steel bar for bearing
JP4860786B2 (en) High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method
JP2020125538A (en) Steel for cold working machine structures, and method for producing same
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
KR102575803B1 (en) Steel for bolts, and method of manufacturing same
JP2010163666A (en) Case hardening steel having excellent coarse grain preventing property on carburizing and fatigue property, and production method thereof
CN106929774A (en) A kind of normalizing state X52 sulfur resistive seamless line pipes and preparation method thereof
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
US11162454B2 (en) Steel piston
JP5679440B2 (en) Induction hardening steel with excellent cold forgeability and excellent torsional strength after induction hardening, and method for producing the same
JP5020690B2 (en) High strength steel pipe for machine structure and manufacturing method thereof
JP6614349B2 (en) Rolled wire rod
JP7534595B2 (en) Manufacturing method of wear-resistant steel
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP5385661B2 (en) Steel with improved impact deformation resistance
JP2007002292A (en) Non-heat-treated steel to be nitrocarburized
JP2007204789A (en) High-strength seamless steel pipe and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350