JPH08285540A - Measuring instrument of object dimension - Google Patents

Measuring instrument of object dimension

Info

Publication number
JPH08285540A
JPH08285540A JP8990095A JP8990095A JPH08285540A JP H08285540 A JPH08285540 A JP H08285540A JP 8990095 A JP8990095 A JP 8990095A JP 8990095 A JP8990095 A JP 8990095A JP H08285540 A JPH08285540 A JP H08285540A
Authority
JP
Japan
Prior art keywords
light
light emitting
pitch
light receiving
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8990095A
Other languages
Japanese (ja)
Inventor
Yukihiro Terada
幸博 寺田
Masao Kinoshita
正生 木下
Toshio Takitani
俊夫 滝谷
Hideki Endo
英樹 遠藤
Haruhiko Yoshida
晴彦 吉田
Goro Yamamoto
吾朗 山本
Kenichi Tanaka
健一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP8990095A priority Critical patent/JPH08285540A/en
Publication of JPH08285540A publication Critical patent/JPH08285540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure the external dimensions of an object to be measured with a resolution which is equal to or less than one pitch of the layout pitch of a light emitter, and easily measure dimensions regardless of the size of the object to be measured by increasing the number of light emitters and receivers to be laid out. CONSTITUTION: A light emission part 2 is constituted of a plurality of light emitters 11 which are arranged with a specific pitch P, and further a light emission part 3 is constituted of a plurality of light receivers 12 which are arranged with a same pitch corresponding to each light emitter 11, and the light emission part 2 is constituted to move at right angle to the emission direction within the range of one pitch of the layout pitch of the light emitter 11. A rotary encoder 16 for detecting the amount of travel of the light emission part 2 is provided a measuring instrument is provided with an operation processor 17 for calculating the external dimensions of the object B to be measured by inputting a light reception signal from the light receiver 3, and at the same time detecting the stage change of the light reception signal and inputting a detection signal from a rotary encoder 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体、例えば圧延設
備、鍛造設備などで生産される生産部材の寸法測定方法
および寸法測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dimension measuring method and a dimension measuring apparatus for an object, for example, a production member produced in a rolling facility, a forging facility or the like.

【0002】[0002]

【従来の技術】通常、鍛造設備で生産される丸型の鍛造
品は、作業者が外径パスを使用して、その外形寸法が測
定されているが、例えば圧延設備で圧延された圧延品な
どについては、作業者が、直接、その外形寸法を測定す
るのは危険である。このため、光学式の測定装置が使用
されている。
2. Description of the Related Art Usually, a round forged product produced in a forging facility has its outer dimensions measured by an operator using an outer diameter pass. For example, a rolled product rolled in a rolling facility. For such cases, it is dangerous for the operator to directly measure the external dimensions. For this reason, an optical measuring device is used.

【0003】従来、図3に示すように、この測定装置
は、光を発射する光源51と、この光源51から発射さ
れた光をシート状の平行光線にする投光レンズ52と、
このシート状の平行光線を受光レンズ53を介して受光
してその受光範囲を検出するCCD素子などで構成され
た受光器54とから構成されている。
Conventionally, as shown in FIG. 3, this measuring apparatus includes a light source 51 for emitting light, and a light projecting lens 52 for converting the light emitted from the light source 51 into sheet-like parallel rays.
The sheet-like parallel light beam is received by the light-receiving lens 53 and the light-receiving device 54 is formed of a CCD element or the like for detecting the light-receiving range.

【0004】そして、この測定装置により、断面が円形
の圧延品55の外形寸法を測定する場合、投光レンズ5
2と受光レンズ53との間に圧延品55を配置し、この
圧延品55により遮光された範囲を受光器54にて検出
することにより、その外形寸法が測定されていた。
When the external dimensions of the rolled product 55 having a circular cross section are measured by this measuring device, the projection lens 5 is used.
The rolled product 55 is arranged between the light receiving lens 53 and the light receiving lens 53, and the light-shielding device 54 detects the range shielded by the rolled product 55 to measure the outer dimensions thereof.

【0005】[0005]

【発明が解決しようとする課題】上記従来のシート状光
線を使用したいわゆる透過型の測定装置の場合、このシ
ート状の平行光線の幅が測定可能な寸法幅となるため、
比較的小さいもの(例えば、百数十mm程度のもの)しか
測定することができないという問題があった。
In the case of a so-called transmission type measuring device using the above-mentioned conventional sheet-like light beam, the width of the sheet-like parallel light beam becomes a measurable width.
There has been a problem that only a relatively small object (for example, a thing of a hundred and a few tens mm) can be measured.

【0006】そこで、本発明は上記問題を解消し得る物
体の寸法測定装置を提供することを目的とする。
Therefore, an object of the present invention is to provide an object size measuring apparatus which can solve the above problems.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第1の手段は、発光部から平行光線を受光
部側に照射して、発光部と受光部との間に配置された物
体の外形寸法を測定する寸法測定装置であって、発光部
を、所定ピッチでもって配置された複数個の発光器によ
り構成するとともに、受光部を、上記各発光器に対応し
て同一ピッチで配置された複数個の受光器により構成
し、上記発光部を、少なくとも発光器の配置ピッチの1
ピッチ分の範囲内で発光方向と直角方向に移動させるよ
うに構成するとともに、発光部の移動量を検出する移動
量検出器を設け、上記受光器からの受光信号を入力する
とともにこの受光信号の状態変化を検出しかつ上記移動
量検出器からの検出信号を入力して、被測定物の外形寸
法を演算する演算処理装置を具備した物体の寸法測定装
置である。
In order to solve the above-mentioned problems, the first means of the present invention is to arrange a parallel light beam from a light emitting portion to a light receiving portion side and to arrange the light beam between the light emitting portion and the light receiving portion. A dimension measuring device for measuring the external dimensions of an object, wherein the light emitting section is composed of a plurality of light emitting elements arranged at a predetermined pitch, and the light receiving section has the same pitch corresponding to each of the light emitting elements. A plurality of light receivers arranged in the light emitting unit, and the light emitting unit is at least one of the arrangement pitches of the light emitters.
It is configured to move in the direction perpendicular to the light emission direction within the pitch range, and a movement amount detector for detecting the movement amount of the light emitting unit is provided, and the light reception signal from the light receiver is input and It is an apparatus for measuring a size of an object, which is equipped with an arithmetic processing unit for detecting a state change and inputting a detection signal from the movement amount detector to calculate an outer dimension of an object to be measured.

【0008】また、上記課題を解決するため、本発明の
第2の手段は、発光部から平行光線を受光部側に照射し
て、発光部と受光部との間に配置された物体の外形寸法
を測定する寸法測定装置であって、所定ピッチでもって
配置された複数個の発光器により構成された発光部を第
1分割発光部と第2分割発光部とで構成するとともに、
受光部を、上記各分割発光部の発光器に対応して同一ピ
ッチで配置された複数個の受光器により構成し、上記各
分割発光部を、少なくとも受光器の配置ピッチの1ピッ
チ分の範囲内で発光方向と直角方向に移動させるように
構成するとともに、各分割発光部の移動量を検出する移
動量検出器をそれぞれ設け、上記各分割発光部に対応す
る各受光器からの信号状態を入力するとともにこの信号
状態の変化を検出しかつ上記各分割発光部における各移
動量検出器からの検出信号を入力して、被測定物の外形
寸法を演算する演算処理装置を具備した物体の寸法測定
装置である。
In order to solve the above-mentioned problem, the second means of the present invention is to irradiate a parallel light beam from the light emitting portion to the light receiving portion side, and to form the outer shape of an object arranged between the light emitting portion and the light receiving portion. A dimension measuring device for measuring a dimension, wherein a light emitting section composed of a plurality of light emitters arranged at a predetermined pitch comprises a first divided light emitting section and a second divided light emitting section,
The light receiving unit is composed of a plurality of light receiving units arranged at the same pitch corresponding to the light emitting units of the respective divided light emitting units, and each of the divided light emitting units is at least one pitch of the arrangement pitch of the light receiving units. It is configured to move in a direction perpendicular to the light emitting direction inside, and a movement amount detector for detecting the movement amount of each divided light emitting unit is provided respectively, and the signal state from each light receiver corresponding to each divided light emitting unit is set. The size of the object equipped with an arithmetic processing unit for inputting and detecting the change of this signal state and inputting the detection signal from each movement amount detector in each of the divided light emitting parts to calculate the outer dimension of the object to be measured. It is a measuring device.

【0009】[0009]

【作用】上記第1の手段の構成において、発光部と受光
部との間に被測定物を配置して、受光した受光器の個数
により所定ピッチに応じた精度でその外形寸法を測定
し、かつ移動体により発光器側を、その発光器の配置ピ
ッチの1ピッチの範囲内で移動させて、被測定物の1ピ
ッチ以内の端部寸法を移動体の移動量により求めるよう
にしたので、発光器の配置ピッチの1ピッチP以下の分
解能でもって、被測定物の外形寸法を測定することがで
きる。
In the structure of the first means, the object to be measured is arranged between the light emitting portion and the light receiving portion, and the outer dimensions of the light receiving portion are measured with an accuracy according to a predetermined pitch depending on the number of light receiving devices that receive light. Further, since the light emitter side is moved by the moving body within the range of one pitch of the arrangement pitch of the light emitting device, the end dimension within one pitch of the object to be measured is obtained by the moving amount of the moving body. The external dimensions of the object to be measured can be measured with a resolution of 1 pitch P or less of the arrangement pitch of the light emitters.

【0010】また、上記第2の手段の構成においては、
発光部を2分割するとともにこれら各分割発光部を独立
して移動させるようにしたので、両分割発光部を同時に
移動させることにより、被測定物が揺れている場合で
も、正確な寸法測定を行うことができる。
Further, in the configuration of the above-mentioned second means,
Since the light emitting section is divided into two and each of the divided light emitting sections is moved independently, accurate dimension measurement can be performed by moving both of the divided light emitting sections at the same time even when the measured object is shaking. be able to.

【0011】[0011]

【実施例】以下、本発明の第1の実施例を図1に基づき
説明する。図1において、1は発光部2から複数本の平
行光線Aを受光部3側に照射して、発光部2と受光部3
との間に配置された円形の被測定物(例えば、圧延品な
ど)Bの外形寸法を測定する寸法測定装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 1 denotes a light emitting unit 2 which irradiates a plurality of parallel rays A to the light receiving unit 3 side,
It is a size measuring device for measuring the outer size of a circular object to be measured (for example, a rolled product) B arranged between and.

【0012】この寸法測定装置1においては、発光部2
が、所定ピッチPでもって1列に配置された複数個の発
光器11により構成され、また受光部3が、上記各発光
器11に対応してやはり所定ピッチPでもって1列に配
置された複数個(発光器と同一個数)の受光器12によ
り構成されており、さらに上記発光部2は、少なくとも
発光器11の配置ピッチの1ピッチP分の範囲内で発光
方向と直角方向aに移動し得るように構成されている。
In the dimension measuring device 1, the light emitting section 2
Are arranged by a plurality of light emitters 11 arranged in a row with a predetermined pitch P, and the light receiving portions 3 are also arranged in a row with a predetermined pitch P corresponding to each of the light emitters 11. The light emitting unit 2 is composed of a plurality of (same number as the light emitting devices) light receiving devices 12, and the light emitting unit 2 moves in a direction a at a right angle to the light emitting direction at least within a pitch P of the arrangement pitch of the light emitting devices 11. Is configured to be able to.

【0013】すなわち、発光部2は、上述した複数個の
発光器11と、これら各発光器11が所定ピッチPでも
って一列に配置された移動体13と、この移動体13を
ねじ機構14を介して上記直角方向(以下、移動方向と
いう)aに移動させる駆動モータ(例えばステッピング
モータが使用される)15と、この駆動モータ15の回
転量(若しくはねじ機構14におけるねじ棒の回転量)
を検出して移動体13の移動量を検出するためのロータ
リエンコーダ(移動量検出器)16とから構成されてい
る。
That is, the light emitting unit 2 includes a plurality of the light emitters 11 described above, a moving body 13 in which the light emitting units 11 are arranged in a row at a predetermined pitch P, and a screw mechanism 14 for the moving body 13. A drive motor (for example, a stepping motor is used) 15 that is moved in the above-described right-angle direction (hereinafter, referred to as a moving direction) a via a rotation amount of the drive motor 15 (or a rotation amount of a screw rod in the screw mechanism 14).
And a rotary encoder (moving amount detector) 16 for detecting the moving amount of the moving body 13 by detecting the moving amount.

【0014】なお、上記各発光器11から発射される光
としては、発射される光線の平行度が高くかつスポット
径が小さいもの、具体的には、レーザ光線が使用され、
また受光器12としては、例えばフォトダイオードが使
用される。また、隣同士の発光器11から発射されるレ
ーザ光線の波長が互いに異ならされており、受光器12
において、隣同士の内、どちらの発光器11から発射さ
れたレーザ光線であるかを区別し得るようにされてい
る。
As the light emitted from each of the light emitters 11, the emitted light has a high parallelism and a small spot diameter, specifically, a laser beam is used.
A photodiode, for example, is used as the light receiver 12. Further, the wavelengths of the laser beams emitted from the light emitters 11 adjacent to each other are different from each other.
In, it is possible to distinguish which of the light emitters 11 emits the laser beam among the adjacent ones.

【0015】さらに、各受光器12における受光信号、
すなわち受光状態(オン状態)および遮光状態(オフ状
態)並びに受光状態から遮光状態へ、また遮光状態から
受光状態への状態変化を検出するとともに、上記ロータ
リエンコーダ16からの検出信号を入力して、上記発光
部2における移動体13の移動量を演算し、被測定物B
の外形寸法を求める演算処理装置(例えば、コンピュー
タなどからなる)17が具備されている。
Further, a light reception signal in each light receiver 12,
That is, the light receiving state (ON state), the light blocking state (OFF state), the light receiving state to the light blocking state, and the state change from the light blocking state to the light receiving state are detected, and the detection signal from the rotary encoder 16 is input, The moving amount of the moving body 13 in the light emitting unit 2 is calculated, and the measured object B
An arithmetic processing unit (for example, composed of a computer) 17 for determining the external dimensions of is provided.

【0016】上記構成において、断面が円形の被測定物
Bの外形寸法の測定について説明する。すなわち、発光
部2の各発光器11からそれぞれに対応する受光部3の
各受光器12に、線状の光線(レーザ光線)Aが照射さ
れている状態において、発光部2と受光部3との間に、
被測定物Bを配置する。
The measurement of the external dimensions of the object B to be measured having a circular cross section in the above structure will be described. That is, in the state where the linear light beam (laser beam) A is irradiated from each light emitter 11 of the light emitting unit 2 to each light receiver 12 of the corresponding light receiving unit 3, the light emitting unit 2 and the light receiving unit 3 are Between,
The device under test B is placed.

【0017】すると、確実にその光線が遮断される部分
は、例えば図1においては、7本であり、少なくとも、
発光器11が7個配置されている距離b(P×6)以上
の寸法であることが判る。
Then, there are, for example, seven in FIG.
It can be seen that the size is equal to or larger than the distance b (P × 6) where seven light emitters 11 are arranged.

【0018】ところで、被測定物Bの端部が、隣接する
2個の発光器11間に位置している場合、測定分解能が
1ピッチPであるため、被測定物Bの端部の正確な位置
を検出することができない。
When the end of the object to be measured B is located between the two adjacent light emitters 11, the measurement resolution is 1 pitch P, so that the end of the object to be measured B is accurately measured. The position cannot be detected.

【0019】この欠点を解消するために、移動体13を
少なくとも1ピッチP分の範囲内で、駆動モータ15に
より移動させる。すると、例えば図1において、上から
4番目の発光器11aから発射されている光線L4 が被
測定物Bの一端部により遮られると、受光器12a側の
検出信号が、オン状態からオフ状態に変化する。
In order to eliminate this drawback, the moving body 13 is moved by the drive motor 15 within the range of at least 1 pitch P. Then, for example, in FIG. 1, when the light beam L 4 emitted from the fourth light emitter 11a from the top is blocked by one end of the object to be measured B, the detection signal on the light receiver 12a side changes from the on state to the off state. Changes to.

【0020】この受光器12aからの受光信号の変化が
演算処理装置17に入力され、すなわち移動体13の移
動時間と駆動モータ15のロータリエンコーダ16から
の回転量信号とにより移動体13の移動量が演算され
る。すなわち、図1に示すように、被測定物Bの一端部
位置と第4番目の発光器11aの元の位置との距離cが
求められる。
The change in the received light signal from the light receiver 12a is input to the arithmetic processing unit 17, that is, the moving amount of the moving body 13 is determined by the moving time of the moving body 13 and the rotation amount signal from the rotary encoder 16 of the drive motor 15. Is calculated. That is, as shown in FIG. 1, the distance c between the one end position of the device under test B and the original position of the fourth light emitter 11a is obtained.

【0021】そして、被測定物Bの他端部についても、
上記と同様の測定が行われる。すなわち、図1におい
て、下から5番目の発光器11bから発射されている光
線L11が被測定物Bの他端部により遮られた状態から、
受光器12b側に透過する受光状態となり、この受光器
12Bからの受光信号が、オフ状態からオン状態に変化
する。なお、上記光線L11が被測定物Bの他端部から外
れて、受光部3側に届いた際には、それに対応する受光
器12bに確実に受光されるように、各受光器12の前
面に置かれたレンズ18の前面には、光拡散板(図示せ
ず)が配置されている。
The other end of the object to be measured B is also
The same measurement as above is performed. That is, in FIG. 1, from the state where the light beam L 11 emitted from the fifth light emitter 11b from the bottom is blocked by the other end of the measured object B,
The light receiving state is transmitted to the light receiving device 12b side, and the light receiving signal from the light receiving device 12B changes from the off state to the on state. When the light beam L 11 comes off the other end portion of the object to be measured B and reaches the light receiving unit 3 side, the light receiving unit 12b corresponding thereto surely receives the light beam. A light diffusion plate (not shown) is arranged on the front surface of the lens 18 placed on the front surface.

【0022】この受光器12bでの受光信号の変化が演
算処理装置17に入力され、ここで移動体13の移動時
間と駆動モータ15のロータリエンコーダ16からの回
転量信号とにより移動体13の移動量が演算される。す
なわち、図1に示すように、被測定物Bの他端部位置と
第11番目の発光器11bの元の位置との距離dが求め
られる。
The change in the received light signal at the light receiver 12b is input to the arithmetic processing unit 17, where the moving body 13 is moved by the moving time of the moving body 13 and the rotation amount signal from the rotary encoder 16 of the drive motor 15. The quantity is calculated. That is, as shown in FIG. 1, the distance d between the other end position of the device under test B and the original position of the eleventh light emitter 11b is obtained.

【0023】そして、距離cおよびdが求められると、
被測定物Bの外形寸法Dは、下記の式から求めること
ができる。 D=(6+1)×P−c+d・・・・ このように、少なくとも、発光部の発光器11を、移動
体13により、その配置ピッチの1ピッチP分の範囲内
でもって移動させ、この移動時に、発光器11からの光
線を受光する受光器12における受光信号の状態変化を
検出することにより、被測定物Bの両端部位置を求める
ことができる。すなわち、1ピッチP以下の分解能でも
って、被測定物Bの外形寸法を測定することができる。
When the distances c and d are obtained,
The outer dimension D of the measured object B can be obtained from the following formula. D = (6 + 1) × P−c + d ... In this way, at least the light emitter 11 of the light emitting unit is moved by the moving body 13 within the range of one pitch P of the arrangement pitch, and this movement is performed. At some times, the position of both ends of the object to be measured B can be obtained by detecting the state change of the light reception signal in the light receiver 12 that receives the light beam from the light emitter 11. That is, the external dimensions of the object to be measured B can be measured with a resolution of 1 pitch P or less.

【0024】次に、本発明の第2の実施例を図2に基づ
き説明する。上記第1の実施例においては、発光部側の
各発光器を、全て、同一の移動体上に配置したが、本第
2の実施例においては、図2に示すように、発光部22
側を2つに分割して第1分割発光部22Aと第2分割発
光部22Bとを設けるとともに、これら分割発光部22
A,22Bを、それぞれ独立に移動させ得るように構成
したものである。
Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, all the light emitters on the light emitting unit side are arranged on the same moving body, but in the second embodiment, as shown in FIG.
The side is divided into two to provide a first divided light emitting portion 22A and a second divided light emitting portion 22B, and these divided light emitting portions 22 are also provided.
A and 22B are configured to be independently movable.

【0025】すなわち、図2に示すように、移動体33
を2つ設けるとともに、これら各移動体33A,33B
に、発光器31がそれぞれ所定ピッチPでもって一列に
配置されている。
That is, as shown in FIG.
Two moving bodies 33A and 33B are provided.
In addition, the light emitters 31 are arranged in a row with a predetermined pitch P, respectively.

【0026】そして、各移動体33A,33Bは、第1
の実施例と同様に、光線(レーザ光線)の発射方向と直
角方向にかつ互いに接近する方向e,fに移動し得るよ
うに構成されるとともに、ねじ機構34A,34Bを介
して、それぞれ駆動モータ35A,35Bにより駆動さ
れ、またその駆動モータ(例えば、ステッピングモータ
が使用される)35A,35Bの回転量がロータリエン
コーダ36A,36Bにより検出されている。
Each of the moving bodies 33A and 33B has a first
In the same manner as in the first embodiment, the drive motors are configured to be movable in the directions e and f perpendicular to the emission direction of the light beam (laser beam) and close to each other, and through the screw mechanisms 34A and 34B, respectively. The rotary encoders 36A and 36B detect the rotation amounts of the drive motors 35A and 35B, which are driven by the drive motors 35A and 35B (for example, stepping motors are used).

【0027】さらに、各受光器32における受光信号、
すなわち受光状態(オン状態)および遮光状態(オフ状
態)、並びに受光状態から遮光状態へ、また遮光状態か
ら受光状態への状態変化を検出するとともに、上記ロー
タリエンコーダ36A,36Bからの検出信号を入力し
て、上記各分割発光部22A,22Bにおける移動体3
3A,33Bの移動量を演算し、被測定物Bの外形寸法
を求める演算処理装置(例えば、コンピュータなどから
なる)37が具備されている。
Further, a light reception signal in each light receiver 32,
That is, the light receiving state (ON state), the light shielding state (OFF state), the state change from the light receiving state to the light shielding state, and the state change from the light shielding state to the light receiving state are detected, and the detection signals from the rotary encoders 36A and 36B are input. Then, the moving body 3 in each of the divided light emitting units 22A and 22B is
An arithmetic processing unit (comprising, for example, a computer) 37 for calculating the movement amounts of 3A and 33B and obtaining the outer dimensions of the object to be measured B is provided.

【0028】上記構成において、断面が円形の被測定物
Bの外形寸法の測定について説明する。すなわち、各分
割発光部22A,22Bの各発光器31からそれぞれに
対応する受光部23の各受光器32に、線状の光線(レ
ーザ光線)Aが照射されている状態において、発光部2
2と受光部23との間に、被測定物Bを配置する。
The measurement of the outer dimensions of the object B to be measured having a circular cross section in the above structure will be described. That is, in the state where the linear light beam (laser beam) A is irradiated from each light emitter 31 of each divided light emitting unit 22A, 22B to each light receiver 32 of the corresponding light receiving unit 23, the light emitting unit 2
The device under test B is arranged between the light receiving unit 23 and the light receiving unit 23.

【0029】この場合、光線が遮断される部分は、図2
に示すように、各分割発光部22A,22Bにおいて
は、7本であり、少なくとも、発光器31が12個配置
されている距離b(12×P)に両分割発光部22A,
22Bにおける端部位置の発光器31間の距離Qを加え
た以上の寸法であることが判る。
In this case, the part where the light rays are blocked is shown in FIG.
As shown in FIG. 7, each divided light emitting portion 22A, 22B has seven light emitting portions, and at least a distance b (12 × P) in which twelve light emitting devices 31 are arranged is used for both divided light emitting portions 22A, 22B.
It can be seen that the dimension is larger than the distance Q between the light emitters 31 at the end positions in 22B.

【0030】ところが、第1の実施例で説明したよう
に、被測定物Bの端部が、隣接する2個の発光器31間
に位置している場合、測定分解能が1ピッチPであるた
め、被測定物Bの端部の正確な位置を検出することがで
きない。
However, as described in the first embodiment, when the end of the object to be measured B is located between the two adjacent light emitters 31, the measurement resolution is 1 pitch P. However, it is not possible to detect the exact position of the end of the measured object B.

【0031】そこで、上記第1の実施例と同様に、各移
動体33A,33Bを少なくとも1ピッチP分の範囲内
で、駆動モータ35A,35Bにより移動させる。する
と、図2において、上から3番目および下から3番目の
発光器31a,31bから発射されている光線L3 ,L
13が被測定物Bの一端部により遮られると、受光器32
a,32b側の検出信号が、オン状態からオフ状態に変
化する。
Therefore, similar to the first embodiment, the moving bodies 33A and 33B are moved by the drive motors 35A and 35B within a range of at least one pitch P. Then, in FIG. 2, light rays L 3 and L emitted from the third and third light emitters 31a and 31b from the top.
When 13 is blocked by one end of the device under test B, the light receiver 32
The detection signals on the a and 32b sides change from the on state to the off state.

【0032】この受光器32a,32bからの受光信号
の変化が演算処理装置37に入力され、すなわち各移動
体33A,33Bの移動時間と駆動モータ35A,35
Bのロータリエンコーダ36A,36Bからの回転量信
号とにより各移動体33A,33Bの移動量が演算され
る。すなわち、被測定物Bの各端部位置と図1の上から
第3番目の発光器31aおよび下から第3番目の発光器
31bのそれぞれ元の位置との距離g,hが求められ
る。
The changes in the light receiving signals from the light receivers 32a and 32b are input to the arithmetic processing unit 37, that is, the moving time of each moving body 33A and 33B and the drive motors 35A and 35.
Based on the rotation amount signals from the B rotary encoders 36A and 36B, the movement amounts of the moving bodies 33A and 33B are calculated. That is, the distances g and h between the respective end positions of the object to be measured B and the original positions of the third light emitter 31a from the top and the third light emitter 31b from the bottom in FIG. 1 are obtained.

【0033】そして、距離gおよびhが求められると、
被測定物Bの外形寸法Dは、下記の式から求めること
ができる。 D=2×(6+1)×P+Q−(g+h)・・・・ このように、両分割発光部22A,22Bを、同時に互
いに逆方向に移動させることにより、発光器31A,3
1Bの配置ピッチの1ピッチP分の範囲内での寸法を測
定することができる。すなわち、より正確に被測定物の
外形寸法を測定することができる。
When the distances g and h are calculated,
The outer dimension D of the measured object B can be obtained from the following formula. D = 2 × (6 + 1) × P + Q- (g + h) ... In this way, by simultaneously moving the divided light emitting portions 22A and 22B in opposite directions, the light emitters 31A and 3B are generated.
It is possible to measure the dimension within the range of 1 pitch P of the arrangement pitch of 1B. That is, the outer dimensions of the measured object can be measured more accurately.

【0034】この場合、2個の分割発光部を、同時に移
動させるようにしているので、被測定物Bが、移動体の
移動方向に揺れている場合に、正確に測定することがで
きる。例えば、第1の実施例で説明した寸法測定装置で
測定しようとすると、一端部を測定した後、他端部の位
置を測定するため、両端部位置の測定時間に差(タイム
ラグ)が生じ、この差の分だけ被測定物Bが揺れるた
め、誤差が生じてしまう虞があるが、本第2の実施例で
は、このような場合の誤差を除去することができる。
In this case, since the two divided light emitting portions are moved at the same time, accurate measurement can be performed when the object B to be measured sways in the moving direction of the moving body. For example, when attempting to measure with the dimension measuring device described in the first embodiment, after measuring one end and then measuring the position of the other end, a difference (time lag) occurs in the measurement time of both end positions, Since the measured object B shakes by the amount of this difference, an error may occur, but the second embodiment can eliminate the error in such a case.

【0035】なお、上記第2の実施例においては、各移
動体33A,33Bを互いに接近する方向に移動させる
ように説明したが、例えば互いに離間する方向に移動さ
せても、同様に、被測定物Bが揺れている場合でも、正
確な寸法測定を行うことができる。
In the second embodiment described above, the moving bodies 33A and 33B are described as moving in the directions of approaching each other. Even when the object B is shaking, accurate dimension measurement can be performed.

【0036】[0036]

【発明の効果】以上のように本発明の請求項1の構成に
よると、発光部と受光部とに、それぞれ測定用の光線を
発射する受光器および受光器をそれぞれ複数個づつ設
け、しかも発光器側を移動体により、各発光器の配置ピ
ッチの少なくとも1ピッチの範囲内でもって移動させる
とともに、この時、受光器での受光信号の状態変化を検
出して移動体の移動量を求めるようにしたので、発光器
の配置ピッチの1ピッチ以下の分解能でもって、被測定
物の外形寸法を測定することができる。また、発光部お
よび受光部に設けられる発光器および受光器の配置個数
を増やすことにより、被測定物が大きいものであって
も、問題なくかつ正確に、その外形寸法を測定すること
ができる。
As described above, according to the structure of claim 1 of the present invention, the light emitting portion and the light receiving portion are respectively provided with a plurality of light receiving devices and light receiving devices for emitting the measurement light beams, and further, the light emitting device emits light. The moving side is moved by the moving body within a range of at least one pitch of the arrangement of each light emitting device, and at this time, the movement amount of the moving body is obtained by detecting the state change of the light receiving signal in the light receiving device. Therefore, the external dimensions of the object to be measured can be measured with a resolution of one pitch or less of the arrangement pitch of the light emitters. Further, by increasing the number of light emitters and light receivers provided in the light emitting section and the light receiving section, it is possible to accurately and accurately measure the external dimensions of a large object to be measured.

【0037】また、本発明の請求項2の構成によると、
発光部を2分割するとともにこれら各分割発光部を独立
して移動し得るように構成されているので、両分割発光
部を同時に移動させることにより、被測定物が揺れてい
る場合でも、正確に測定することができる。
According to the second aspect of the present invention,
Since the light emitting unit is divided into two and each of the divided light emitting units can be independently moved, by moving both of the divided light emitting units at the same time, even if the object to be measured is shaken, the light emitting unit can be accurately moved. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の寸法測定装置の概略構
成を示す側面図である。
FIG. 1 is a side view showing a schematic configuration of a dimension measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の寸法測定装置の概略構
成を示す側面図である。
FIG. 2 is a side view showing a schematic configuration of a dimension measuring apparatus according to a second embodiment of the present invention.

【図3】従来例の寸法測定装置の概略構成を示す側面図
である。
FIG. 3 is a side view showing a schematic configuration of a conventional dimension measuring device.

【符号の説明】[Explanation of symbols]

1 寸法測定装置 2 発光部 3 受光部 11 発光器 12 受光器 13 移動体 15 駆動モータ 16 ロータリエンコーダ 17 演算処理装置 22A 第1分割発光部 22B 第2分割発光部 23 受光部 31 発光器 32 受光器 33A,33B 移動体 35 駆動モータ 36 ロータリエンコーダ 37 演算処理装置 DESCRIPTION OF SYMBOLS 1 Dimension measuring device 2 Light emitting part 3 Light receiving part 11 Light emitting device 12 Light receiving device 13 Moving body 15 Drive motor 16 Rotary encoder 17 Arithmetic processing device 22A First divided light emitting part 22B Second divided light emitting part 23 Light receiving part 31 Light emitting device 32 Light receiving device 33A, 33B moving body 35 drive motor 36 rotary encoder 37 arithmetic processing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 英樹 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 吉田 晴彦 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 山本 吾朗 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 田中 健一 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hideki Endo 5-3-8 Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Haruhiko Yoshida 5-chome, Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture 3-28 Hitachi Shipbuilding Co., Ltd. (72) Inventor Goro Yamamoto 5-3-28 Nishikujo, Konohana-ku, Osaka-shi, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Kenichi Tanaka Nishikujo, Konohana-ku, Osaka-shi, Osaka 5th-328th Hitachi Shipbuilding Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】発光部から平行光線を受光部側に照射し
て、発光部と受光部との間に配置された物体の外形寸法
を測定する寸法測定装置であって、発光部を、所定ピッ
チでもって配置された複数個の発光器により構成すると
ともに、受光部を、上記各発光器に対応して同一ピッチ
で配置された複数個の受光器により構成し、上記発光部
を、少なくとも発光器の配置ピッチの1ピッチ分の範囲
内で発光方向と直角方向に移動させるように構成すると
ともに、発光部の移動量を検出する移動量検出器を設
け、上記受光器からの受光信号を入力するとともにこの
受光信号の状態変化を検出しかつ上記移動量検出器から
の検出信号を入力して、被測定物の外形寸法を演算する
演算処理装置を具備したことを特徴とする物体の寸法測
定装置。
1. A dimension measuring device for irradiating a parallel light ray from a light emitting portion to a light receiving portion side to measure an outer dimension of an object arranged between the light emitting portion and the light receiving portion, wherein the light emitting portion has a predetermined size. In addition to being composed of a plurality of light emitters arranged at a pitch, the light receiving unit is composed of a plurality of light receivers arranged at the same pitch corresponding to each of the light emitters, and at least the light emitting unit is made to emit light. It is configured to move in the direction perpendicular to the light emitting direction within the range of one pitch of the arrangement pitch of the container, and a moving amount detector for detecting the moving amount of the light emitting portion is provided and the light receiving signal from the above light receiving device is input. In addition, the measurement of the size of the object is characterized by including a processing device for detecting the change in the state of the received light signal and inputting the detection signal from the movement amount detector to calculate the outer dimension of the object to be measured. apparatus.
【請求項2】発光部から平行光線を受光部側に照射し
て、発光部と受光部との間に配置された物体の外形寸法
を測定する寸法測定装置であって、所定ピッチでもって
配置された複数個の発光器により構成された発光部を第
1分割発光部と第2分割発光部とで構成するとともに、
受光部を、上記各分割発光部の発光器に対応して同一ピ
ッチで配置された複数個の受光器により構成し、上記各
分割発光部を、少なくとも受光器の配置ピッチの1ピッ
チ分の範囲内で発光方向と直角方向に移動させるように
構成するとともに、各分割発光部の移動量を検出する移
動量検出器をそれぞれ設け、上記各分割発光部に対応す
る各受光器からの信号状態を入力するとともにこの信号
状態の変化を検出しかつ上記各分割発光部における各移
動量検出器からの検出信号を入力して、被測定物の外形
寸法を演算する演算処理装置を具備したことを特徴とす
る物体の寸法測定装置。
2. A dimension measuring device for irradiating a parallel light ray from a light emitting portion to a light receiving portion side to measure an external dimension of an object arranged between the light emitting portion and the light receiving portion, the dimension measuring device being arranged at a predetermined pitch. The light-emitting portion configured by the plurality of light-emitting devices configured as described above includes the first divided light-emitting portion and the second divided light-emitting portion,
The light receiving unit is composed of a plurality of light receiving units arranged at the same pitch corresponding to the light emitting units of the respective divided light emitting units, and each of the divided light emitting units is at least one pitch of the arrangement pitch of the light receiving units. It is configured to move in a direction perpendicular to the light emitting direction inside, and a movement amount detector for detecting the movement amount of each divided light emitting unit is provided respectively, and the signal state from each light receiver corresponding to each divided light emitting unit is set. It is equipped with an arithmetic processing unit for inputting and detecting a change in this signal state and for inputting a detection signal from each movement amount detector in each of the divided light emitting units to calculate the external dimensions of the object to be measured. Measuring device for objects.
JP8990095A 1995-04-17 1995-04-17 Measuring instrument of object dimension Pending JPH08285540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8990095A JPH08285540A (en) 1995-04-17 1995-04-17 Measuring instrument of object dimension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8990095A JPH08285540A (en) 1995-04-17 1995-04-17 Measuring instrument of object dimension

Publications (1)

Publication Number Publication Date
JPH08285540A true JPH08285540A (en) 1996-11-01

Family

ID=13983617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8990095A Pending JPH08285540A (en) 1995-04-17 1995-04-17 Measuring instrument of object dimension

Country Status (1)

Country Link
JP (1) JPH08285540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670179A (en) * 2021-10-25 2021-11-19 如皋市宏茂重型锻压有限公司 Axle type forging finished product size detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670179A (en) * 2021-10-25 2021-11-19 如皋市宏茂重型锻压有限公司 Axle type forging finished product size detection device
CN113670179B (en) * 2021-10-25 2022-02-08 如皋市宏茂重型锻压有限公司 Axle type forging finished product size detection device

Similar Documents

Publication Publication Date Title
US7825368B2 (en) Absolute position length-measurement type encoder
US8085394B2 (en) Optoelectronic longitudinal measurement method and optoelectronic longitudinal measurement device
US7687765B2 (en) Encoder including a two dimensional photo-detector having two signal processing sections for pixels in a first and a second direction
KR101240792B1 (en) Encoder and light receiving device for encoder
JP3034585B2 (en) Encoder using shadow picture pattern
KR0149741B1 (en) Method and apparatus for measuring position coordinate
JP4425220B2 (en) Absolute encoder
JPH08285540A (en) Measuring instrument of object dimension
JP2614446B2 (en) Distance measuring device
JP2002139353A (en) Optical rotary encoder
JPS62257077A (en) Measuring apparatus
WO2024090412A1 (en) X-ray detector of x-ray imaging system
JP4292569B2 (en) Optical encoder
JP2675051B2 (en) Optical non-contact position measuring device
JP2512871B2 (en) Pattern measuring device
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
WO2019163199A1 (en) Laser scanning device
JPS59164910A (en) Distance measuring apparatus
JP3146530B2 (en) Non-contact height measuring device
JP2006266870A (en) Device for detecting position
JP2988594B2 (en) Wafer center detection device
JPH05288688A (en) Method and apparatus for inspecting foreign matter
JPH034110A (en) Inspection on instrument for straightness of rod-shaped body
JPH02161302A (en) Shape measuring instrument
JPH05296750A (en) Abnormal part detector for long member