JP3146530B2 - Non-contact height measuring device - Google Patents
Non-contact height measuring deviceInfo
- Publication number
- JP3146530B2 JP3146530B2 JP18989491A JP18989491A JP3146530B2 JP 3146530 B2 JP3146530 B2 JP 3146530B2 JP 18989491 A JP18989491 A JP 18989491A JP 18989491 A JP18989491 A JP 18989491A JP 3146530 B2 JP3146530 B2 JP 3146530B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens system
- photoelectric conversion
- reflected
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は測定対象物に微小ビーム
光を照射し、その反射光を用いて測定対象物の高さを測
る非接触高さ計測装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact height measuring device which irradiates a measuring object with a minute beam of light and measures the height of the measuring object using the reflected light.
【0002】[0002]
【従来の技術】近年、高さ計測においては微小ビーム光
を用いた非接触方式が用いられている。以下に従来の技
術について説明する。図6は従来の非接触高さ計測装置
の原理を示すものである。図6において、1は微小ビー
ム光を発生するための光源であり、その微小ビーム光
は、測定対象物3の近傍、例えばその測定対象物3の載
置されている基板9上に集高するように光学系2により
スポット照射される。測定対象物3からの垂直方向の反
射光は、ハーフミラー4により偏向され、偏向された反
射光はレンズ系6により集光される。7はレンズ系6に
より生成された像の焦点ずれを、その像の半径方向の光
量分布重心位置を測ることにより検出する光電変換素子
である。この光電変換素子7の出力値からレンズ系6と
測定対象物3との距離を計測することで、測定対象物3
の高さが求められる。また、ハーフミラー4とレンズ6
系の間にS/N比を向上させるためのリング状の遮光板
が設けられている場合もある。2. Description of the Related Art In recent years, a non-contact method using minute beam light has been used for height measurement. The conventional technique will be described below. FIG. 6 shows the principle of a conventional non-contact height measuring device. In FIG. 6, reference numeral 1 denotes a light source for generating a minute light beam, and the minute light beam is focused on the vicinity of the measuring object 3, for example, on a substrate 9 on which the measuring object 3 is mounted. Spot irradiation by the optical system 2 as described above. The vertically reflected light from the measurement target 3 is deflected by the half mirror 4, and the deflected reflected light is collected by the lens system 6. Reference numeral 7 denotes a photoelectric conversion element that detects the defocus of the image generated by the lens system 6 by measuring the center of gravity of the light amount distribution in the radial direction of the image. By measuring the distance between the lens system 6 and the measurement target 3 from the output value of the photoelectric conversion element 7, the measurement target 3
Height is required. The half mirror 4 and the lens 6
In some cases, a ring-shaped light shielding plate for improving the S / N ratio is provided between the systems.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、円状パターンの反射光の半径方向の光量分
布重心位置を検出しなければならないため、焦点ずれを
検出する光電変換素子に、例えば、特開昭64−499
03号公報に示されるような特殊な円形フォトダイオー
ドを用いなければならずコスト高になる。また、光電変
換素子上のビーム光の光強度分布が測定対象物の表面状
態の影響によりばらつくと測定誤差が生じてしまう。さ
らに、同時に測定範囲と分解能を変えて測定するために
は、上記公報に示されるように、焦点距離の異なった反
射光を集光するレンズ系を複数個用いなければならず、
構造が複雑になるなどの問題点を有していた。However, in the above-described conventional configuration, the center of gravity of the light quantity distribution in the radial direction of the reflected light of the circular pattern must be detected. JP-A-64-499
In this case, a special circular photodiode as disclosed in Japanese Patent Publication No. 03-2003 has to be used, which increases the cost. Further, if the light intensity distribution of the beam light on the photoelectric conversion element varies due to the influence of the surface condition of the measurement object, a measurement error occurs. Furthermore, in order to simultaneously measure and change the measurement range and resolution, as shown in the above-mentioned publication, a plurality of lens systems for condensing reflected lights having different focal lengths must be used.
There were problems such as a complicated structure.
【0004】本発明は上記従来の問題点を解決するもの
で、測定対象物の高さを非接触により、高精度かつ高速
に測定する計測装置を提供することを目的とする。An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a measuring device for measuring the height of an object to be measured with high accuracy and high speed without contact.
【0005】[0005]
【課題を解決するための手段】この目的を発生するため
に本発明の非接触高さ計測装置は、微小ビーム光を発生
する光源と、測定対象物に前記微小ビーム光をスポット
照射する光学系と、前記測定対象物により反射された反
射光が照射され、その反射光の光軸を中心とした円周上
に複数のスリット光の形成されたスクリーンと、前記ス
クリーンの各スリット孔を通過したそれぞれの反射光の
光束を前記反射光の光軸上に収束させるためのレンズ系
と、前記レンズ系を通過したそれぞれの光束に対応して
配置され、前記光束を受光した位置に応じた電気的出力
を発生する複数個の1次元の位置検出素子とを備え、前
記1次元の位置検出素子の出力から、所定の演算を行っ
て、前記測定対象物の高さを算出するものである。 In order to achieve this object, a non-contact height measuring apparatus according to the present invention comprises a light source for generating a minute beam light, and an optical system for spot-irradiating an object to be measured with the minute beam light. The reflected light reflected by the object to be measured is irradiated, and passes through a screen on which a plurality of slit lights are formed on a circumference around the optical axis of the reflected light and each slit hole of the screen. of each of the reflected light
Corresponding to each of the light beam passed through the lens system, the lens system for converging the light beam on the optical axis of the reflected light
Electrical output according to the position where the light beam is received
And a plurality of one-dimensional position detecting elements for generating
Performs a predetermined operation from the output of the one-dimensional position detecting element.
Thus, the height of the measurement object is calculated.
【0006】[0006]
【作用】この構成では、光電変換素子はスクリーンを通
過後の光束の各々を受光できるものであればよいので、
一次元方向の光の受光位置を検出する一般的なものでよ
い。また、スクリーンを通過後のそれぞれの光束に対応
した位置に光電変換素子を配置するため、多方向からの
高さの検出が可能となり、これらの測定値に対してデー
タの選択と平均化などの処理を行うことで、測定対象物
の表面状態のむらによる反射光のばらつきの影響を受け
にくく、高精度に測定することができる。さらに、透過
スクリーンパターンのスリット孔を直径の異なる同心円
の周上にそれぞれ配置すれば、半径方向に距離の異なる
スリット孔を通過する反射光を測定することで、分解能
と測定レンジを選択することができる。つまり、同時に
多種の測定レンジ、分解能で高さを測定することができ
る。In this configuration, the photoelectric conversion element only needs to be able to receive each of the light beams after passing through the screen.
It may be a general one that detects a light receiving position of light in one-dimensional direction. In addition, since the photoelectric conversion elements are arranged at positions corresponding to the respective luminous fluxes after passing through the screen, it is possible to detect heights from multiple directions, and data selection and averaging of these measured values can be performed. By performing the process, it is hard to be affected by the variation of the reflected light due to the unevenness of the surface state of the measurement object, and the measurement can be performed with high accuracy. Furthermore, by arranging the slit holes of the transmission screen pattern on the circumference of concentric circles having different diameters, it is possible to select the resolution and measurement range by measuring the reflected light passing through the slit holes having different distances in the radial direction. it can. That is, the height can be measured simultaneously with various measurement ranges and resolutions.
【0007】[0007]
(実施例1)以下本発明の第一の実施例について、図面
を参照しながら説明する。(Embodiment 1) A first embodiment of the present invention will be described below with reference to the drawings.
【0008】図1において、1は微小ビーム光を発生す
るための光源である。2は測定対象物3に前記微小ビー
ム光をスポット照射するための光学系である。4は測定
対象物3からの垂直方向への反射光を集光するためのレ
ンズ系6の方向へ反射光を偏向するハーフミラーであ
る。5はレンズ系6の直前に置かれた透過スクリーンパ
ターンであり、反射光の光軸を中心とする円周上に複数
個のスリット孔Lが形成されている。7は透過スクリー
ンパターン5のそれぞれのスリット孔Lを通過しレンズ
系6により集光される各光束の光路上に直角方向に位置
し、光束の受光位置に応じた電気的出力を発生する光電
変換素子である。この光電変換素子7はある所定の長さ
を有し、ビームスポットの照射位置に応じて複数の出力
端子の出力が相対的に変化する1次元の位置検出素子で
あり、これにはCCDラインセンサーなどを代用するこ
とも可能である。In FIG. 1, reference numeral 1 denotes a light source for generating a minute light beam. Reference numeral 2 denotes an optical system for irradiating the measurement object 3 with the small beam light. Reference numeral 4 denotes a half mirror for deflecting the reflected light in the direction of the lens system 6 for condensing the reflected light from the measurement target 3 in the vertical direction. Reference numeral 5 denotes a transmissive screen pattern placed immediately before the lens system 6, in which a plurality of slit holes L are formed on a circumference centered on the optical axis of the reflected light. Reference numeral 7 denotes a photoelectric converter that passes through each slit hole L of the transmissive screen pattern 5 and is positioned on the optical path of each light flux condensed by the lens system 6 in a direction perpendicular to the light path, and generates an electrical output corresponding to the light receiving position of the light flux. Element. The photoelectric conversion element 7 is a one-dimensional position detection element having a certain length and having a plurality of output terminals that relatively change in output according to the irradiation position of the beam spot. It is also possible to substitute such as.
【0009】上記のように構成された非接触高さ計測装
置について、その動作を説明する。まず、光源1及び光
学系2により測定対象物3にスポット照射された微小ビ
ーム光の垂直方向への反射光はハーフミラー4によって
透過スクリーンパターン5に導かれ、この透過スクリー
ンパターン5により4つに分割されたパターン光に変え
られる。そして、透過スクリーンパターン5のそれぞれ
のスリット孔Lを通過したパターン光はレンズ系6によ
り集光され、それぞれのパターン光の光路上に置かれた
光電変換素子7に照射され、各光電変換素子7はその受
光位置に応じた出力を発生する。つまり、図2に示すよ
うに、測定対象物3の高さがA,B,Cと変化すると、
各光電変換素子7の反射光の受光位置がa,b,cと変
化して光電変換素子7の出力に違いが生じ、あらかじめ
調べておいた対象物高さと光電変換素子の出力値との較
正曲線から、測定対象物3の高さを知ることができる。The operation of the non-contact height measuring device configured as described above will be described. First, the reflected light in the vertical direction of the minute beam light, which is spot-irradiated on the measurement target 3 by the light source 1 and the optical system 2, is guided to the transmission screen pattern 5 by the half mirror 4, and the transmission screen pattern 5 converts the reflected light into four light beams. It can be converted into split pattern light. The pattern light that has passed through each slit hole L of the transmission screen pattern 5 is condensed by the lens system 6 and irradiates the photoelectric conversion element 7 placed on the optical path of each pattern light. Generates an output corresponding to the light receiving position. That is, as shown in FIG. 2, when the height of the measuring object 3 changes to A, B, and C,
The light receiving position of the reflected light of each photoelectric conversion element 7 changes to a, b, and c, causing a difference in the output of the photoelectric conversion element 7 and calibrating the object height and the output value of the photoelectric conversion element, which have been checked in advance. The height of the measuring object 3 can be known from the curve.
【0010】このとき、透過スクリーンパターン5には
同一円周上に複数のスリット孔Lを設け、各スリット孔
を透過した反射光に対して多方向から光電変換素子7に
よって検出しているので、各光電変換素子の出力値に対
してデータの選択や平均化などの処理を行うことで測定
対象面のむらによる反射光のばらつきの影響を受けにく
くなり、高精度に測定することができる。At this time, a plurality of slits L are provided on the same circumference in the transmission screen pattern 5, and the reflected light transmitted through each slit is detected by the photoelectric conversion element 7 from multiple directions. By performing processing such as data selection and averaging on the output value of each photoelectric conversion element, it is less likely to be affected by variations in reflected light due to unevenness of the surface to be measured, and measurement can be performed with high accuracy.
【0011】図3(a)は透過スクリーンパターン5の
他の一例であり、半径の異なった同心円上に複数のスリ
ット孔L1及びL2を設けてある。それぞれのスリット
孔Lに対応して光電変換素子7を同図(b)に示すよう
に配置することで、半径の小さい同心円上のスリット孔
L2を通過した反射光は分解能が小さく測定レンジが大
きく、半径の大きい同心円上のスリット孔L1を通過し
た反射光は分解能が大きく測定レンジが小さくなり、測
定時にスリット孔L1とL2のどちらかを選択すること
で異なった分解能と測定レンジで計測が可能となる。FIG. 3A shows another example of the transmission screen pattern 5, in which a plurality of slit holes L1 and L2 are provided on concentric circles having different radii. By arranging the photoelectric conversion elements 7 corresponding to the respective slit holes L as shown in FIG. 3B, the reflected light passing through the slit hole L2 on the concentric circle having a small radius has a small resolution and a large measurement range. The reflected light that has passed through the slit hole L1 on a concentric circle with a large radius has a large resolution and a small measurement range. By selecting one of the slit holes L1 and L2 during measurement, measurement can be performed with different resolutions and measurement ranges. Becomes
【0012】(実施例2)以下本発明の第二の実施例に
ついて、図面を参照しながら説明する。第二の実施例を
示す図4において、第一の実施例と同一の構成部分には
同一符号を付して説明を略し、異なる部分について説明
する。第一の実施例の構成と異なるのは、反射板8をレ
ンズ系6と光電変換素子7との間にレンズ系6の光軸に
平行するように配置し、かつ光電変換素子7の配置方向
を略90゜異にし、光電変換素子7の受光方向をレンズ
系6の光軸に平行なx軸方向に、かつそのx軸方向に沿
って配置した点である。なお、光電変換素子7とレンズ
系6の光軸との距離は、光電変換素子7がx軸方向の受
光位置を検出しやすいように、反射板8と光軸との距離
の倍になるように配置している。(Embodiment 2) Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In FIG. 4 showing the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and different portions will be described. The difference from the configuration of the first embodiment is that the reflection plate 8 is arranged between the lens system 6 and the photoelectric conversion element 7 so as to be parallel to the optical axis of the lens system 6 and the arrangement direction of the photoelectric conversion element 7 And the light receiving direction of the photoelectric conversion element 7 is arranged in the x-axis direction parallel to the optical axis of the lens system 6 and along the x-axis direction. The distance between the photoelectric conversion element 7 and the optical axis of the lens system 6 is set to be twice the distance between the reflection plate 8 and the optical axis so that the photoelectric conversion element 7 can easily detect the light receiving position in the x-axis direction. Has been placed.
【0013】上記のように構成された非接触高さ計測装
置について、その動作を説明する。まず、測定対象物3
に光源1及び光学系2より微小ビーム光をスポット照射
し、そのスポット位置より垂直方向への反射光をハーフ
ミラー4で透過スクリーンパターン5方向へ偏向する。
そして、スリット孔Lを通過後の光束をレンズ系6によ
り集光し反射板8で偏向した後、光電変換素子7で受光
しx軸方向の受光位置を検出する。The operation of the non-contact height measuring device configured as described above will be described. First, the measurement object 3
The light source 1 and the optical system 2 irradiate a spot beam with a small beam, and the half mirror 4 deflects the reflected light in the vertical direction from the spot position toward the transmission screen pattern 5.
Then, the light beam after passing through the slit hole L is condensed by the lens system 6 and deflected by the reflection plate 8, and then received by the photoelectric conversion element 7 to detect the light receiving position in the x-axis direction.
【0014】このように、反射板8により透過スクリー
ンパターン5のスリット孔Lを通過した光束を互いに離
反する方向に反射させて、測定対象物3の高さの変化に
応じてx軸方向に配置した光電変換素子7のx方向の受
光位置の検出を行うことで、光電変換素子7は常に反射
光の焦点に近い光束を受光することができる。このた
め、より高精度に測定対象物の高さを測定することがで
きる。As described above, the light beams passing through the slit holes L of the transmission screen pattern 5 are reflected in the directions away from each other by the reflection plate 8, and are arranged in the x-axis direction according to the change in the height of the measurement object 3. By detecting the light receiving position of the photoelectric conversion element 7 in the x direction, the photoelectric conversion element 7 can always receive a light flux close to the focal point of the reflected light. For this reason, the height of the measuring object can be measured with higher accuracy.
【0015】(実施例3)以下本発明の第三の実施例に
ついて、図面を参照しながら説明する。図5は本発明の
第三の実施例の説明図であり、第二の実施例と同一の構
成部分には同一符号を付して説明を略し、異なる部分に
ついて説明をする。第二の実施例の構成と異なるのは、
光電変換素子7をゲインが最大となるような角度で配置
していることである。Embodiment 3 Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. FIG. 5 is an explanatory view of the third embodiment of the present invention. The same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The different portions will be described. The difference from the configuration of the second embodiment is that
This means that the photoelectric conversion elements 7 are arranged at an angle at which the gain is maximized.
【0016】以上のように構成された非接触高さ計測装
置について、その動作を説明する。まず、測定対象物3
に光源1及び光学系2より微小ビーム光をスポット照射
し、そのスポット位置より垂直方向への反射光をハーフ
ミラー4で透過スクリーンパターン5方向へ偏向する。
そして、レンズ系6により集光して、反射板8で偏向し
て、光電変換素子7で受光する。このように、ゲインが
最大となるような角度で光電変換素子を配置すること
で、測定対象物の反射率が低くても光量不足とはならず
測定が可能であり、測定精度は測定対象物の反射率に影
響を受けない。なお、光電変換素子7のゲインが最大と
なるような角度で反射板8を配置しても差し支えないこ
とは言うまでもない。The operation of the non-contact height measuring device configured as described above will be described. First, the measurement object 3
The light source 1 and the optical system 2 irradiate a spot beam with a small beam, and the half mirror 4 deflects the reflected light in the vertical direction from the spot position toward the transmission screen pattern 5.
The light is condensed by the lens system 6, deflected by the reflection plate 8, and received by the photoelectric conversion element 7. In this way, by arranging the photoelectric conversion element at an angle at which the gain is maximized, even if the reflectance of the measurement target is low, the measurement can be performed without causing a light quantity shortage, and the measurement accuracy is high. It is not affected by the reflectance. It goes without saying that the reflector 8 may be arranged at an angle at which the gain of the photoelectric conversion element 7 is maximized.
【0017】[0017]
【発明の効果】以上のように本発明の非接触高さ計測装
置によれば、光量分布重心位置を検出する特殊な受光素
子を用いる必要がなく、一次元方向の受光位置を検出で
きる一般的な光電変換素子で計測が可能となるため安価
にすることができる。また、円周上に複数個のスリット
孔の形成された透過スクリーンパターンを使用すること
により、多方向からの光電変換素子による測定が可能と
なり、測定対象物の表面状態のむらによる反射のばらつ
きの影響を受けにくくなる。このため、いろいろな方向
から検査を繰り返さなくともよく、高速にかつ高精度に
測定することができる。さらに、透過スクリーンパター
ンの半径の異なるスリット孔を通過する反射光を測定す
ることで、簡単な構成で分解能と測定レンジを選択する
ことができ、同時に異なった分解能と測定レンジで測定
することも可能である。As described above, according to the non-contact height measuring apparatus of the present invention, it is not necessary to use a special light receiving element for detecting the position of the center of gravity of the light quantity distribution, and it is possible to detect the light receiving position in the one-dimensional direction. Since measurement can be performed with a simple photoelectric conversion element, the cost can be reduced. In addition, by using a transmission screen pattern in which a plurality of slit holes are formed on the circumference, it is possible to perform measurement by a photoelectric conversion element from multiple directions, and the influence of unevenness in the reflection of the surface due to uneven surface conditions of the measurement object. Hard to receive. Therefore, it is not necessary to repeat the inspection from various directions, and the measurement can be performed at high speed and with high accuracy. Furthermore, by measuring the reflected light passing through the slit holes with different radii of the transmission screen pattern, the resolution and measurement range can be selected with a simple configuration, and it is also possible to measure at different resolutions and measurement ranges at the same time. It is.
【0018】また、レンズ系を通過後の光束を反射させ
るとともに、光電変換素子の受光角度をレンズ系の光軸
に平行または反射したそれぞれの光束に垂直にすること
により、さらに高精度に測定することができる。Further, the light beam after passing through the lens system is reflected, and the light receiving angle of the photoelectric conversion element is made parallel or perpendicular to the optical axis of the lens system to make the measurement more accurate. be able to.
【図1】本発明の第一の実施例における非接触高さ計測
装置の構成図FIG. 1 is a configuration diagram of a non-contact height measuring device according to a first embodiment of the present invention.
【図2】同装置の側面図FIG. 2 is a side view of the apparatus.
【図3】(a)同装置に使用される他の透過スクリーン
パターンの正面図 (b)同透過スクリーンパターンに対応する光電変換素
子の配置図FIG. 3A is a front view of another transmission screen pattern used in the apparatus. FIG. 3B is a layout view of photoelectric conversion elements corresponding to the transmission screen pattern.
【図4】本発明の第二の実施例における非接触高さ計測
装置の側面図FIG. 4 is a side view of a non-contact height measuring device according to a second embodiment of the present invention.
【図5】本発明の第三の実施例における非接触高さ計測
装置の側面図FIG. 5 is a side view of a non-contact height measuring device according to a third embodiment of the present invention.
【図6】従来の非接触高さ計測装置の構成図FIG. 6 is a configuration diagram of a conventional non-contact height measuring device.
1 光源 2 光学系 3 測定対象物 4 ハーフミラー 5 透過スクリーンパターン 6 レンズ系 7 光電変換素子 8 反射板 DESCRIPTION OF SYMBOLS 1 Light source 2 Optical system 3 Object to be measured 4 Half mirror 5 Transmission screen pattern 6 Lens system 7 Photoelectric conversion element 8 Reflector
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 知博 香川県高松市寿町2丁目2番10号 松下 寿電子工業株式会社内 (56)参考文献 特開 昭63−153419(JP,A) 特開 昭63−316432(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 G01C 3/00 - 3/32 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohiro Kimura 2-10-10 Kotobukicho, Takamatsu City, Kagawa Prefecture Inside Matsushita Hisashi Electronics Co., Ltd. (56) References JP-A-63-153419 (JP, A) JP-A-63-316432 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102 G01C 3/00-3/32
Claims (4)
系と、 前記測定対象物により反射された反射光が照射され、そ
の反射光の光軸を中心とした円周上に複数のスリット光
の形成されたスクリーンと、 前記スクリーンの各スリット孔を通過したそれぞれの反
射光の光束を前記反射光の光軸上に収束させるためのレ
ンズ系と、 前記レンズ系を通過したそれぞれの光束に対応して配置
され、前記光束を受光した位置に応じた電気的出力を発
生する複数個の1次元の位置検出素子とを備え、 前記1次元の位置検出素子の出力から、所定の演算を行
って、前記測定対象物の高さを算出する ことを特徴とす
る非接触高さ計測装置。A light source for generating a minute beam light; an optical system for spot-irradiating the object to be measured with the minute beam light; an optical axis of the reflected light reflected by the object to be measured; A screen in which a plurality of slit lights are formed on the circumference around the center, and a lens system for converging the luminous flux of each reflected light passing through each slit hole of the screen on the optical axis of the reflected light. , Arranged corresponding to each light beam passing through the lens system
And outputs an electrical output corresponding to the position where the light beam is received.
A plurality of one-dimensional position detecting elements that are generated, and perform a predetermined operation from the output of the one-dimensional position detecting element.
A non-contact height measuring device for calculating the height of the object to be measured.
数の同心円の周上にスリット孔がそれぞれ形成されたス
クリーンを有することを特徴とする請求項1記載の非接
触高さ計測装置。2. A non-contact height measuring apparatus according to claim 1, further comprising a screen having slit holes formed on the circumference of a plurality of concentric circles having different radii about the optical axis of the reflected light. .
束を、前記レンズ系の光軸に平行に配置された反射板に
より反射せしめるとともに、光電変換素子をそれぞれ前
記光軸に沿って、その光軸に平行に配置したことを特徴
とする請求項1記載の非接触高さ計測装置。3. A luminous flux of each reflected light passing through the lens system is reflected by a reflector disposed in parallel with the optical axis of the lens system, and the photoelectric conversion elements are respectively moved along the optical axis. The non-contact height measuring device according to claim 1, wherein the non-contact height measuring device is arranged parallel to the optical axis.
束を、前記レンズ系と光電変換素子との間に配置された
反射板により反射せしめるとともに、光電変換素子がそ
れぞれの光束を垂直に受光するようにしたことを特徴と
する請求項1記載の非接触高さ計測装置。4. A light beam of each reflected light that has passed through the lens system is reflected by a reflector disposed between the lens system and the photoelectric conversion element, and the photoelectric conversion element receives each light beam vertically. 2. The non-contact height measuring device according to claim 1, wherein the height is measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18989491A JP3146530B2 (en) | 1991-07-30 | 1991-07-30 | Non-contact height measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18989491A JP3146530B2 (en) | 1991-07-30 | 1991-07-30 | Non-contact height measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0534147A JPH0534147A (en) | 1993-02-09 |
JP3146530B2 true JP3146530B2 (en) | 2001-03-19 |
Family
ID=16248970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18989491A Expired - Fee Related JP3146530B2 (en) | 1991-07-30 | 1991-07-30 | Non-contact height measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3146530B2 (en) |
-
1991
- 1991-07-30 JP JP18989491A patent/JP3146530B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0534147A (en) | 1993-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4070116A (en) | Gap measuring device for defining the distance between two or more surfaces | |
EP0279347B1 (en) | Optical axis displacement sensor | |
JPH0314124B2 (en) | ||
US5070237A (en) | Optical measurement and detection system | |
JP4269393B2 (en) | Alignment mark and alignment method | |
JPH04319615A (en) | Optical height measuring apparatus | |
JP3146530B2 (en) | Non-contact height measuring device | |
KR0170783B1 (en) | Scanning device for optically scanning a surface along the line | |
JP2987540B2 (en) | 3D scanner | |
JP2603317B2 (en) | Laser distance meter and calibration method for thickness gauge using laser distance meter | |
JP2910151B2 (en) | Position detection device | |
JP2543585B2 (en) | Pattern inspection device | |
JPH07190735A (en) | Optical measuring device and its measuring method | |
JP2003097924A (en) | Shape measuring system and method using the same | |
JPH04162337A (en) | Electron beam device | |
JPS5836032Y2 (en) | level detection device | |
JP3399468B2 (en) | Inspection device for mounted printed circuit boards | |
JPH05288688A (en) | Method and apparatus for inspecting foreign matter | |
KR970004476B1 (en) | Measurement apparatus of wafer position in altgner | |
JP2522880B2 (en) | Particle size distribution measuring device | |
KR0117212Y1 (en) | Solder Inspection Equipment | |
JP2675051B2 (en) | Optical non-contact position measuring device | |
JP3479515B2 (en) | Displacement measuring device and method | |
JPS5999216A (en) | Measuring device of surface height of body | |
JPH0672776B2 (en) | Inspection device for mounted printed circuit boards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |