JPH08285414A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH08285414A JPH08285414A JP9332295A JP9332295A JPH08285414A JP H08285414 A JPH08285414 A JP H08285414A JP 9332295 A JP9332295 A JP 9332295A JP 9332295 A JP9332295 A JP 9332295A JP H08285414 A JPH08285414 A JP H08285414A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- solenoid valve
- electromagnetic valve
- condenser
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷蔵庫に関し、特に除
霜後の圧縮機起動の過渡運転時に生じる低圧運転防止に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to prevention of low pressure operation that occurs during transient operation of starting a compressor after defrosting.
【0002】[0002]
【従来の技術】従来の冷蔵庫は、実開平3−83791
号公報にて知られるような構成を持っている。以下、図
7を参考に従来の冷蔵庫の構成について説明を行う。2. Description of the Related Art A conventional refrigerator is a fully open 3-83791.
It has a configuration as known from the publication. Hereinafter, the configuration of the conventional refrigerator will be described with reference to FIG. 7.
【0003】1は高圧容器型の圧縮機、2は凝縮器、3
は減圧装置である毛細管、4は蒸発器であり、圧縮機
1、凝縮器2、毛細管3、蒸発器4は順次環状に接続
し、冷凍サイクルを形成している。5は冷蔵庫の本体で
内部を区画し、それぞれ冷凍室6と冷蔵室7の2室を形
成している。8は除霜用ヒータで、蒸発器4の近傍に設
けてある。1 is a high-pressure container type compressor, 2 is a condenser, 3
Is a decompression device such as a capillary tube, 4 is an evaporator, and the compressor 1, the condenser 2, the capillary tube 3, and the evaporator 4 are sequentially connected in an annular shape to form a refrigeration cycle. Reference numeral 5 is a main body of the refrigerator, which divides the inside thereof to form two chambers, a freezing chamber 6 and a refrigerating chamber 7, respectively. A defrosting heater 8 is provided near the evaporator 4.
【0004】9は除霜検知手段であらかじめ設定した時
間間隔や、蒸発器4の温度、着霜状態を検知し、また除
霜運転時には、除霜の終了を検知する。除霜検知手段9
の検知出力により図示しない除霜制御手段で、圧縮機1
の運転、停止、除霜用ヒータ8の運転停止を制御する。Reference numeral 9 is a defrost detecting means for detecting a preset time interval, the temperature of the evaporator 4 and a frosting state, and detecting the end of defrosting during a defrosting operation. Defrost detection means 9
Based on the detection output of the compressor 1,
The operation, stop, and operation stop of the defrosting heater 8 are controlled.
【0005】10は除霜水を蒸発皿11に導く水パイプ
であり、蒸発皿11は機械室12内にあって凝縮器2の
一部を蒸発皿11に配設してある。凝縮器2の一部は蒸
発の効率向上のため圧縮機1の吐出に近い部分が通常使
われる。Reference numeral 10 is a water pipe for guiding defrosted water to the evaporation dish 11, and the evaporation dish 11 is in the machine room 12 and a part of the condenser 2 is arranged in the evaporation dish 11. A part of the condenser 2 is usually used near the discharge of the compressor 1 in order to improve the efficiency of evaporation.
【0006】次に上記従来の構成の動作について説明す
る。圧縮機1の運転により、圧縮機1より吐出された高
温高圧の冷媒は、凝縮器2により凝縮液化し、さらに、
毛細管3にて減圧され、蒸発器4で蒸発気化し図示しな
い熱搬送手段により冷凍室6、冷蔵室7を冷却する。蒸
発器4で気化した冷媒は、再び、圧縮機1に吸入され
る。Next, the operation of the above conventional configuration will be described. Due to the operation of the compressor 1, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is condensed and liquefied by the condenser 2, and further,
The pressure is reduced by the capillary tube 3, evaporated and vaporized by the evaporator 4, and the freezing chamber 6 and the refrigerating chamber 7 are cooled by a heat transfer means (not shown). The refrigerant vaporized in the evaporator 4 is again sucked into the compressor 1.
【0007】この様な冷却運転を行うことにより、冷凍
室6、冷蔵室7内の空気に含まれる水分が、蒸発器4で
熱交換される際に霜として、蒸発器4の表面に付着す
る。この着霜が進むと、蒸発器4の熱交換効率が減少
し、充分な冷却運転が不可能となってくる。By performing such a cooling operation, the moisture contained in the air in the freezing compartment 6 and the refrigerating compartment 7 adheres to the surface of the evaporator 4 as frost when heat is exchanged in the evaporator 4. . When this frost formation progresses, the heat exchange efficiency of the evaporator 4 decreases, and it becomes impossible to perform a sufficient cooling operation.
【0008】この状態を除霜検知手段9が検知し、除霜
制御手段に除霜開始信号を出力する。この信号を受け除
霜検知手段は、除霜を開始する。The defrost detecting means 9 detects this state and outputs a defrost start signal to the defrost control means. Upon receiving this signal, the defrost detecting means starts defrosting.
【0009】除霜制御手段は、圧縮機1を停止し除霜用
ヒータ8を運転し、除霜を開始する。除霜用ヒータ8の
運転により、蒸発器4の表面の霜を発熱により融解す
る。The defrost control means stops the compressor 1 and operates the defrost heater 8 to start defrost. By operating the defrosting heater 8, the frost on the surface of the evaporator 4 is melted by heat generation.
【0010】蒸発器4の表面の霜が融解すると、除霜検
知手段9は除霜が完了したことを通常蒸発器4の温度が
所定温度(一般的には10から20℃)以上になること
で検知し、除霜制御手段へ除霜終了信号を出力する。除
霜制御手段はこの信号を受けて、除霜運転を終了するた
め、除霜用ヒータ8を停止し、その後、圧縮機1を起動
する。この操作により冷凍サイクルは再び冷却運転を開
始する。When the frost on the surface of the evaporator 4 is melted, the defrost detecting means 9 indicates that the defrosting is completed and the temperature of the evaporator 4 is usually higher than a predetermined temperature (generally 10 to 20 ° C.). And outputs a defrosting end signal to the defrosting control means. Upon receiving this signal, the defrost control means stops the defrosting heater 8 to end the defrosting operation, and then starts the compressor 1. By this operation, the refrigeration cycle starts the cooling operation again.
【0011】除霜により発生する除霜水は水パイプ10
を通じて蒸発皿11へと送られる。蒸発皿に一旦貯留さ
れた除霜水は圧縮機1が運転を始めると高温の凝縮器2
の一部分と熱交換することで徐々に蒸発していく。Defrosting water generated by defrosting is the water pipe 10.
To the evaporating dish 11. The defrost water once stored in the evaporating dish is heated by the high temperature condenser 2 when the compressor 1 starts to operate.
It gradually evaporates by exchanging heat with a part of.
【0012】[0012]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、低周囲温度時において、除霜開始直前に蒸
発器4内に保持される冷媒に加え、圧縮機1停止と同時
に、凝縮器2及び圧縮機1の周囲温度と蒸発器4の周囲
温度の差から生じる冷媒の飽和圧力差により、圧縮機
1、凝縮器2から蒸発器4へ冷媒が移動を始める。However, in the above-mentioned conventional configuration, at the time of low ambient temperature, in addition to the refrigerant held in the evaporator 4 immediately before the start of defrosting, at the same time as the compressor 1 is stopped, the condenser 2 and The refrigerant starts to move from the compressor 1 and the condenser 2 to the evaporator 4 due to the difference in the saturated pressure of the refrigerant caused by the difference between the ambient temperature of the compressor 1 and the ambient temperature of the evaporator 4.
【0013】そして、除霜の進行により蒸発器4の温度
が上昇し、圧縮機1、凝縮器2の周囲温度より蒸発器4
及びその周囲温度が高くなると、除霜運転初期とは逆
に、冷媒の飽和圧力が蒸発器4内の方が高くなり、冷媒
は蒸発器4から圧縮機1、凝縮器2へと移動を行う。The temperature of the evaporator 4 rises due to the progress of defrosting, and the temperature of the evaporator 4 becomes higher than the ambient temperature of the compressor 1 and the condenser 2.
And when the ambient temperature becomes higher, the saturation pressure of the refrigerant becomes higher inside the evaporator 4 contrary to the initial stage of the defrosting operation, and the refrigerant moves from the evaporator 4 to the compressor 1 and the condenser 2. .
【0014】除霜終了時においては蒸発器4内の冷媒は
ほとんどなくなり、冷凍サイクル中最も温度の低い凝縮
器2内で遍在して滞留する。特に低温の除霜水により冷
却される凝縮器の一部等に遍在する。At the end of defrosting, the refrigerant in the evaporator 4 almost disappears and stays ubiquitously in the condenser 2 having the lowest temperature during the refrigeration cycle. Especially, it is ubiquitous in a part of a condenser that is cooled by low-temperature defrost water.
【0015】このため、除霜後の圧縮機1起動時には、
通常の運転安定状態における凝縮器2内の冷媒分布状
態、つまり圧縮機1から毛細管3方向へと気相から液相
へといった状態でなく冷媒が滞留し、かつ蒸発器4内に
ほとんど冷媒がない。Therefore, at the time of starting the compressor 1 after defrosting,
Refrigerant is distributed in the condenser 2 in a normal operation stable state, that is, in a state from the compressor 1 to the capillaries 3 in the direction from the gas phase to the liquid phase. .
【0016】このため、圧縮機1が起動すると蒸発器4
内にほとんど冷媒が存在しないので吸込みガスの比体積
は小さく、十分に加圧する事ができない。と同時に凝縮
器2内で冷媒が遍在しているので、安定して毛細管3入
口部に液冷媒が到達せず、毛細管3に多量のガスが噛み
込み、冷媒の循環を阻害する。Therefore, when the compressor 1 is started, the evaporator 4 is
Since there is almost no refrigerant inside, the suction gas has a small specific volume and cannot be sufficiently pressurized. At the same time, since the refrigerant is omnipresent in the condenser 2, the liquid refrigerant does not reach the inlet of the capillary tube 3 stably, and a large amount of gas is trapped in the capillary tube 3 to hinder the circulation of the refrigerant.
【0017】この悪循環によって、除霜後の運転過渡期
における冷凍サイクルのバランスが崩れた低圧運転状態
が起こる。This vicious circle causes a low-pressure operation state in which the balance of the refrigeration cycle is lost during the operation transition period after defrosting.
【0018】起動過渡期に液戻り等により圧縮機1の摺
動部の油膜が切れた状態でさらに冷媒も、冷媒とともに
巡回している潤滑油も少ししか戻ってこない低圧運転が
続く圧縮機1の摺動部は乾燥摩擦となり異常磨耗が発生
し圧縮機1の信頼性の面から非常に大きな課題であっ
た。In a state where the oil film on the sliding portion of the compressor 1 is cut off due to liquid return during the transition period of startup, the refrigerant and the lubricating oil circulating with the refrigerant are returned only to a small extent, and the low pressure operation continues. The sliding part of the above became dry friction and abnormal wear occurred, which was a very big problem from the aspect of reliability of the compressor 1.
【0019】さらに、起動後冷凍サイクルが安定するま
で時間がかかり、運転時間の増加から、消費電力の増加
につながる。Furthermore, it takes time for the refrigeration cycle after starting to stabilize, which leads to an increase in operating time and power consumption.
【0020】本発明の冷蔵庫は従来の課題を解決するも
ので、除霜後の圧縮機起動時における低圧運転を防止で
きる冷蔵庫を提供することを目的とする。The refrigerator of the present invention solves the conventional problems, and an object thereof is to provide a refrigerator capable of preventing low-pressure operation at the time of starting the compressor after defrosting.
【0021】[0021]
【課題を解決するための手段】この目的を達成するため
に本発明の冷蔵庫は、高圧容器型の圧縮機と、凝縮器
と、毛細管と、蒸発器とを順次環状に接続してなる冷凍
サイクルを設置し、前記蒸発機近傍に除霜用ヒータと、
前記凝縮器と、前記蒸発器入口部との間に絞りを有する
バイパス回路と、前記凝縮器と、前記バイパス回路との
接続部に電磁弁と、前記電磁弁の開閉タイミング検知手
段と、前記電磁弁の開閉を行う電磁弁制御手段とを備え
るものである。In order to achieve this object, a refrigerator according to the present invention is a refrigeration cycle in which a high-pressure container type compressor, a condenser, a capillary tube, and an evaporator are sequentially connected in an annular shape. And a heater for defrosting in the vicinity of the evaporator,
A bypass circuit having a constriction between the condenser and the evaporator inlet section; a solenoid valve at a connection section between the condenser and the bypass circuit; an opening / closing timing detection means for the solenoid valve; And a solenoid valve control means for opening and closing the valve.
【0022】また、電磁弁の開閉タイミング検知手段が
前記高圧容器型圧縮機と前記蒸発器との接続部に設けた
吸入圧力検知手段であり、電磁弁制御手段がタイマーを
有し、前記吸入圧力検知手段の検知した吸入圧力が所定
の圧力以下となった時に前記電磁弁を開放し、次に前記
タイマーが所定の時間を経過した時に前記電磁弁を閉鎖
することを備えるものである。Further, the opening / closing timing detection means of the solenoid valve is suction pressure detection means provided at the connecting portion between the high-pressure container compressor and the evaporator, and the solenoid valve control means has a timer, and the suction pressure is The electromagnetic valve is opened when the suction pressure detected by the detection means becomes equal to or lower than a predetermined pressure, and the electromagnetic valve is closed when the timer next passes a predetermined time.
【0023】また、電磁弁の開閉タイミング検知手段が
蒸発器近傍に設けた除霜検知手段であり、電磁弁制御手
段がタイマーを有し、前記除霜検知手段が除霜終了を検
知した時に前記電磁弁を開放し、前記タイマーが所定の
時間を経過した時に前記電磁弁を閉鎖することを備える
ものである。Further, the opening / closing timing detecting means of the electromagnetic valve is a defrost detecting means provided in the vicinity of the evaporator, the electromagnetic valve control means has a timer, and the defrost detecting means detects the end of the defrost. The electromagnetic valve is opened, and the electromagnetic valve is closed when the timer has passed a predetermined time.
【0024】また、さらに、電磁弁の開閉タイミング検
知手段が前記毛細管と前記蒸発器との接続部に設けた温
度検知手段であり、電磁弁制御手段がタイマーを有し、
前記温度検知手段の検知した温度が所定の温度以下とな
った時に前記電磁弁を開放し、前記タイマーが所定の時
間を経過した時に前記電磁弁を閉鎖することを備えるも
のである。Further, the opening / closing timing detecting means of the solenoid valve is a temperature detecting means provided at the connecting portion between the capillary tube and the evaporator, and the solenoid valve control means has a timer,
It is provided that the electromagnetic valve is opened when the temperature detected by the temperature detecting means becomes equal to or lower than a predetermined temperature, and the electromagnetic valve is closed when the timer elapses a predetermined time.
【0025】[0025]
【作用】上記構成により、本発明の冷蔵庫は、低圧運転
が生じると、電磁弁開閉タイミング検知手段である吸入
圧力検知手段により検知される圧力が所定の圧力以下と
なり、電磁弁制御手段によって信号が送られ、凝縮器と
バイパス回路との接続部に設けられた電磁弁が開放さ
れ、前記凝縮器から前記蒸発器入口部へ直接冷媒が循環
し、蒸発圧力が上昇するので吸入圧力も上昇し、さらに
は高圧圧力が上昇する。With the above construction, in the refrigerator of the present invention, when low pressure operation occurs, the pressure detected by the suction pressure detecting means, which is the electromagnetic valve opening / closing timing detecting means, becomes equal to or lower than a predetermined pressure, and the electromagnetic valve controlling means outputs a signal. Sent, the solenoid valve provided at the connection between the condenser and the bypass circuit is opened, the refrigerant directly circulates from the condenser to the evaporator inlet, the evaporation pressure rises, the suction pressure also rises, Further, the high pressure rises.
【0026】高圧圧力の上昇によって冷媒の循環が促進
され、冷凍サイクルのバランスの崩れた状態が修正され
る。The rise of the high pressure promotes the circulation of the refrigerant and corrects the unbalanced state of the refrigeration cycle.
【0027】前記電磁弁制御手段が有するタイマーが所
定時間を経過すると前記電磁弁が閉鎖されるので、低圧
運転が起こらず安定状態への移行がスムーズに行える。When the timer of the solenoid valve control means has passed a predetermined time, the solenoid valve is closed, so that the low pressure operation does not occur and the transition to the stable state can be smoothly performed.
【0028】また、電磁弁開閉タイミング検知手段であ
る除霜検知手段が除霜終了を検知すると、電磁弁制御手
段によって信号が送られ、電磁弁が開放される。高圧容
器型圧縮機が起動すると、前記凝縮器から前記蒸発器入
口部へ直接冷媒が循環し、蒸発圧力が上昇するので吸入
圧力も上昇し、さらには高圧圧力が上昇する。When the defrosting detecting means, which is the electromagnetic valve opening / closing timing detecting means, detects the end of defrosting, the electromagnetic valve control means sends a signal to open the electromagnetic valve. When the high-pressure container compressor is activated, the refrigerant directly circulates from the condenser to the evaporator inlet portion, and the evaporation pressure rises, so the suction pressure also rises, and further the high-pressure pressure rises.
【0029】高圧圧力の上昇によって冷媒の循環が促進
され、冷凍サイクルのバランスの崩れた状態が修正され
る。The rise of the high pressure promotes the circulation of the refrigerant and corrects the unbalanced state of the refrigeration cycle.
【0030】前記電磁弁制御手段が有するタイマーが所
定時間を経過すると前記電磁弁が閉鎖されるので、低圧
運転が起こらず安定状態への移行がスムーズに行える。When the timer of the solenoid valve control means has passed the predetermined time, the solenoid valve is closed, so that the low pressure operation does not occur and the transition to the stable state can be performed smoothly.
【0031】また、低圧運転が生じると、冷媒の蒸発温
度が低下し、蒸発器入口の配管温度が急激に低下する。
これにより電磁弁開閉タイミング検知手段である毛細管
と蒸発器との接続部に設けた温度検知手段の検知する温
度が所定温度以下となり、電磁弁が開放され、前記凝縮
器から前記蒸発器入口部へ直接冷媒が循環する。これに
よって蒸発圧力が上昇するので吸入圧力も上昇し、さら
には高圧圧力が上昇する。Further, when the low-pressure operation occurs, the evaporation temperature of the refrigerant decreases, and the piping temperature at the evaporator inlet sharply decreases.
As a result, the temperature detected by the temperature detecting means provided at the connecting portion between the capillary and the evaporator, which is the electromagnetic valve opening / closing timing detecting means, becomes equal to or lower than the predetermined temperature, the electromagnetic valve is opened, and from the condenser to the evaporator inlet portion. The refrigerant circulates directly. As a result, the evaporation pressure rises, the suction pressure also rises, and further the high pressure rises.
【0032】高圧圧力の上昇によって冷媒の循環が促進
され、冷凍サイクルのバランスの崩れた状態が修正され
る。前記電磁弁制御手段が有するタイマーが所定時間を
経過すると前記電磁弁が閉鎖されるので、低圧運転が起
こらず安定状態への移行がスムーズに行える。The rise of the high pressure promotes the circulation of the refrigerant and corrects the unbalanced state of the refrigeration cycle. When the timer of the solenoid valve control means has passed a predetermined time, the solenoid valve is closed, so that low-pressure operation does not occur and a smooth transition to a stable state can be performed.
【0033】[0033]
【実施例】本発明による冷蔵庫の一実施例について図1
〜図6を参考に説明する。但し、従来と同一構成につい
ては、同一の符号を付し、詳細な説明を省略する。FIG. 1 shows an embodiment of a refrigerator according to the present invention.
~ It demonstrates with reference to FIG. However, the same components as those of the related art will be designated by the same reference numerals and detailed description thereof will be omitted.
【0034】1は高圧容器型の圧縮機、2は凝縮器、3
は毛細管、4は蒸発器であり、圧縮機1、凝縮器2、毛
細管3、蒸発器4は順次環状に接続し、冷凍サイクルを
形成している。1 is a high-pressure container type compressor, 2 is a condenser, 3
Is a capillary tube, and 4 is an evaporator, and the compressor 1, the condenser 2, the capillary tube 3, and the evaporator 4 are sequentially connected in an annular shape to form a refrigeration cycle.
【0035】13は絞り14を有するバイパス回路であ
り、凝縮器2と、蒸発器4の入口部とを接続してなる。
バイパス回路13と凝縮器2の接続部に電磁弁15を設
けてある。16はタイマー17を有する電磁弁制御手段
であり、18は電磁弁の開閉タイミング検知手段である
吸入圧力検知手段である。Reference numeral 13 is a bypass circuit having a throttle 14, which connects the condenser 2 and the inlet of the evaporator 4.
An electromagnetic valve 15 is provided at the connecting portion between the bypass circuit 13 and the condenser 2. Reference numeral 16 is an electromagnetic valve control means having a timer 17, and 18 is suction pressure detection means which is an opening / closing timing detection means of the electromagnetic valve.
【0036】5は冷蔵庫の本体で内部を区画し、それぞ
れ少なくとも1室の冷凍室6と少なくとも1室の冷蔵室
7により少なくとも2室を形成している。8は除霜用ヒ
ータで、蒸発器4の近傍に設けてある。Reference numeral 5 denotes a main body of the refrigerator, which defines the inside thereof, and at least two rooms are formed by at least one freezing room 6 and at least one refrigerating room 7. A defrosting heater 8 is provided near the evaporator 4.
【0037】9は除霜検知手段であらかじめ設定した時
間間隔や、蒸発器4の温度、着霜状態を検知し、また除
霜運転時には、除霜の終了を検知する。除霜検知手段9
の検知出力により図示しない除霜制御手段で、圧縮機1
の運転、停止、除霜用ヒータ8の運転停止を制御する。Reference numeral 9 is a defrosting detecting means which detects a preset time interval, the temperature of the evaporator 4 and a frosting state, and also detects the end of defrosting during the defrosting operation. Defrost detection means 9
Based on the detection output of the compressor 1,
The operation, stop, and operation stop of the defrosting heater 8 are controlled.
【0038】次に上記従来の構成の動作について説明す
る。圧縮機1の運転による冷却運転が行われ、蒸発器4
で着霜が進む。これにより、蒸発器4の熱交換効率が減
少し、充分な冷却運転が不可能となってくる。Next, the operation of the above conventional configuration will be described. The cooling operation is performed by the operation of the compressor 1, and the evaporator 4
And frost formation progresses. As a result, the heat exchange efficiency of the evaporator 4 decreases, and it becomes impossible to perform a sufficient cooling operation.
【0039】この状態を除霜検知手段9が検知し、除霜
制御手段に除霜開始信号を出力する。この信号を受け除
霜検知手段は、除霜を開始する。The defrosting detecting means 9 detects this state and outputs a defrosting start signal to the defrosting controlling means. Upon receiving this signal, the defrost detecting means starts defrosting.
【0040】除霜制御手段は、圧縮機1を停止し除霜用
ヒータ8を運転し、除霜を開始する。除霜用ヒータ8の
運転により、蒸発器4の表面の霜を発熱により融解す
る。The defrost control means stops the compressor 1 and operates the defrost heater 8 to start defrost. By operating the defrosting heater 8, the frost on the surface of the evaporator 4 is melted by heat generation.
【0041】蒸発器4の表面の霜が融解すると、除霜検
知手段9は除霜が完了したことを通常蒸発器4の温度が
所定温度(一般的には10から20℃)以上になること
で検知し、除霜制御手段へ除霜終了信号を出力する。除
霜制御手段はこの信号を受けて、除霜運転を終了するた
め、除霜用ヒータ8を停止し、その後、圧縮機1を起動
する。この操作により冷凍サイクルは再び冷却運転を開
始する。When the frost on the surface of the evaporator 4 is melted, the defrost detecting means 9 indicates that the defrosting is completed, and the temperature of the evaporator 4 is usually higher than a predetermined temperature (generally 10 to 20 ° C.). And outputs a defrosting end signal to the defrosting control means. Upon receiving this signal, the defrost control means stops the defrosting heater 8 to end the defrosting operation, and then starts the compressor 1. By this operation, the refrigeration cycle starts the cooling operation again.
【0042】低周囲温度時において、除霜中に蒸発器4
の温度が上昇し、圧縮機1、凝縮器2の周囲温度より蒸
発器4及びその周囲温度が高くなると、冷媒の飽和圧力
が蒸発器4内の方が高くなり、冷媒は蒸発器4から圧縮
機1、凝縮器2へと移動を行う。The evaporator 4 is operated during defrosting at low ambient temperature.
Rises and the evaporator 4 and its ambient temperature become higher than the ambient temperature of the compressor 1 and the condenser 2, the saturated pressure of the refrigerant becomes higher in the evaporator 4, and the refrigerant is compressed from the evaporator 4. Transfer to machine 1 and condenser 2.
【0043】除霜終了時においては蒸発器4内の冷媒は
ほとんどなくなり、冷凍サイクル中最も温度の低い凝縮
器2内で遍在して滞留する。At the end of defrosting, the refrigerant in the evaporator 4 almost disappears and stays ubiquitously in the condenser 2 having the lowest temperature during the refrigeration cycle.
【0044】このため、除霜後の圧縮機1起動時には、
通常の運転安定状態における凝縮器2内の冷媒分布状
態、つまり圧縮機1から毛細管3方向へと気相から液相
へといった状態でなく冷媒が滞留し、かつ蒸発器4内に
ほとんど冷媒が存在しないので吸込みガスの比体積は小
さく、十分に加圧する事ができない。Therefore, when the compressor 1 is started after defrosting,
Refrigerant is distributed in the condenser 2 in a normal operation stable state, that is, in a state from the compressor 1 to the capillaries 3 in the direction from the gas phase to the liquid phase, and the refrigerant is retained, and almost all the refrigerant is present in the evaporator 4. Since it does not do so, the specific volume of the suction gas is small and it is not possible to pressurize it sufficiently.
【0045】同時に凝縮器2内で冷媒が遍在しているの
で、安定して毛細管3入口部に液冷媒が到達せず、毛細
管3に多量のガスが噛み込み、冷媒の循環を阻害する。
これにより圧縮機1の吸入圧力が低下する。At the same time, since the refrigerant is ubiquitous in the condenser 2, the liquid refrigerant does not reach the inlet of the capillary tube 3 stably, and a large amount of gas is trapped in the capillary tube 3 to hinder the circulation of the refrigerant.
This reduces the suction pressure of the compressor 1.
【0046】図2に示すように、ステップ1で吸入圧力
検知手段18により検知された圧力値が電磁弁制御手段
16に入力され、ステップ2で検知圧力値が所定の圧力
以下であるならば、ステップ3へ進みタイマー17をス
タートさせ、高い場合はステップ1へと戻る。As shown in FIG. 2, if the pressure value detected by the suction pressure detecting means 18 in step 1 is input to the solenoid valve control means 16 and the detected pressure value is below a predetermined pressure in step 2, The process proceeds to step 3 to start the timer 17, and if it is higher, the process returns to step 1.
【0047】ステップ3でタイマー17をスタートさせ
た後、ステップ4で電磁弁15を開放する。そしてステ
ップ5でタイマー17がカウントアップしているか調
べ、カウントアップしていなければステップ4へ戻り、
カウントアップしていればステップ6へ進み電磁弁15
を閉鎖する。After the timer 17 is started in step 3, the solenoid valve 15 is opened in step 4. Then, in step 5, it is checked whether the timer 17 is counting up. If it is not counting up, the process returns to step 4,
If the count is up, proceed to step 6 and solenoid valve 15
To close.
【0048】こうして圧縮機1の吸入圧力が低下する
と、バイバス回路13が開放されて、凝縮器2内に偏在
して存在する冷媒が絞り14を経て、蒸発器4の入口部
へ吸入され、蒸発圧力が絞り14の絞り量に応じて上昇
し、吸入圧力も上昇するので高圧圧力も同時に上昇す
る。When the suction pressure of the compressor 1 is lowered in this way, the bypass circuit 13 is opened, and the refrigerant unevenly distributed in the condenser 2 is sucked into the inlet of the evaporator 4 through the throttle 14 and evaporated. Since the pressure rises in accordance with the throttle amount of the throttle 14 and the suction pressure also rises, the high pressure also rises at the same time.
【0049】電磁弁15が閉鎖されバイパス回路13が
遮断されると、高圧圧力の上昇により、冷媒の循環が促
進され、冷凍サイクルのバランスの崩れた状態が修正さ
れる。When the solenoid valve 15 is closed and the bypass circuit 13 is shut off, the high pressure increases the circulation of the refrigerant to correct the unbalanced state of the refrigeration cycle.
【0050】起動過渡期に低圧運転がないので、冷媒と
ともに巡回している潤滑油が戻ってくるので圧縮機1の
摺動部は乾燥摩擦とはならないので圧縮機1の摺動部異
常磨耗が発生することなく圧縮機1の信頼性を確保する
ことができる。Since there is no low-pressure operation during the start-up transition period, the lubricating oil circulating with the refrigerant returns, so the sliding part of the compressor 1 does not become dry friction, and therefore abnormal wear of the sliding part of the compressor 1 occurs. The reliability of the compressor 1 can be ensured without any occurrence.
【0051】さらに、除霜後の起動後に、冷凍サイクル
が速やかに安定するので、運転時間が短縮され、消費電
力の低減となる。Further, since the refrigeration cycle is quickly stabilized after the start after defrosting, the operating time is shortened and the power consumption is reduced.
【0052】また、図3、図4に示すように、電磁弁の
開閉タイミング検知手段である吸入圧力検知手段18の
代わりに除霜検知手段9を用いて、ステップ1で除霜検
知手段9から除霜終了の信号を取り込み、ステップ2で
除霜が終了したならステップ3へ進み、未終了であるな
らステップ1へ戻る電磁弁制御手段16であっても良
い。Further, as shown in FIGS. 3 and 4, the defrost detecting means 9 is used in place of the suction pressure detecting means 18 which is the opening / closing timing detecting means of the solenoid valve, and in step 1, the defrost detecting means 9 The electromagnetic valve control means 16 may take in a signal for ending defrosting and proceed to step 3 if defrosting is completed in step 2 and return to step 1 if it is not completed.
【0053】これにより圧力検知手段分の低コスト化が
図れる。さらに、また、図5、図6に示すように、電磁
弁の開閉タイミング検知手段である吸入圧力検知手段1
8の代わりに毛細管3と蒸発器4との接続部に設けた温
度検知手段19を用いて、ステップ1で例えばサーミス
タである温度検知手段19から配管温度を取り込み、ス
テップ2で検知温度値が所定の温度以下であるならば、
ステップ3へ進みタイマー17をスタートさせ、高い場
合はステップ1へと戻る電磁弁制御手段16であっても
良い。As a result, the cost of the pressure detecting means can be reduced. Further, as shown in FIGS. 5 and 6, the suction pressure detection means 1 which is the opening / closing timing detection means of the solenoid valve.
In place of 8, the temperature detecting means 19 provided at the connecting portion between the capillary tube 3 and the evaporator 4 is used to take in the pipe temperature from the temperature detecting means 19 which is, for example, a thermistor in step 1, and the detected temperature value is predetermined in step 2. Below the temperature of
Alternatively, the solenoid valve control means 16 may proceed to step 3 to start the timer 17 and return to step 1 if the timer 17 is high.
【0054】なお、温度検知手段19はバイメタルであ
っても同様の効果が得られる。なお、電磁弁15は通電
により閉鎖、停電により開放としても良いし、逆でもよ
いが、望ましくは大部分の時間をしめる通常の冷蔵庫運
転時には閉鎖状態であるため電力消費量が低減できるた
め、通電により開放がよい。また、通電により開放状態
と閉鎖状態を切り替えるもので有ればなお良い。Even if the temperature detecting means 19 is a bimetal, the same effect can be obtained. The solenoid valve 15 may be closed by energization and opened by a power failure, or vice versa. However, it is desirable that the solenoid valve 15 is closed during normal refrigerator operation, which consumes most of the time, so that power consumption can be reduced. Open up better. Further, it is more preferable that it can switch between an open state and a closed state by energization.
【0055】[0055]
【発明の効果】以上の説明から明らかなように本発明の
冷蔵庫は、高圧容器型の圧縮機と、凝縮器と、毛細管
と、蒸発器とを順次環状に接続してなる冷凍サイクルを
設置し、前記蒸発機近傍に除霜用ヒータと、前記凝縮器
と、前記蒸発器入口部との間に絞りを有するバイパス回
路と、前記凝縮器と、前記バイパス回路との接続部に電
磁弁と、前記電磁弁の開閉タイミング検知手段と、前記
電磁弁の開閉を行う電磁弁制御手段とを備えたので、前
記高圧容器型圧縮機の吸入圧力が所定の圧力以下となる
と、所定のタイミングで前記バイパス回路が開放とな
り、高圧圧力が上昇した後、バイパス回路が閉鎖するの
で、冷凍サイクルの安定状態への移行がスムーズに行
え、低圧運転が起こらない。As is apparent from the above description, the refrigerator of the present invention is provided with a refrigeration cycle in which a high-pressure container type compressor, a condenser, a capillary tube, and an evaporator are sequentially connected in an annular shape. A defrosting heater in the vicinity of the evaporator, the condenser, and a bypass circuit having a throttle between the evaporator inlet portion, the condenser, and a solenoid valve at a connection portion between the bypass circuit and the condenser. Since the solenoid valve opening / closing timing detection means and the solenoid valve control means for opening / closing the solenoid valve are provided, when the suction pressure of the high-pressure container compressor becomes equal to or lower than a predetermined pressure, the bypass is performed at a predetermined timing. After the circuit is opened and the high pressure is increased, the bypass circuit is closed, so that the refrigeration cycle can be smoothly shifted to a stable state and low pressure operation does not occur.
【0056】また、電磁弁の開閉タイミング検知手段が
前記高圧容器型圧縮機と前記蒸発器との接続部に設けた
吸入圧力検知手段であり、電磁弁制御手段がタイマーを
有し、前記吸入圧力検知手段の検知した吸入圧力が所定
の圧力以下となった時に前記電磁弁を開放し、次に前記
タイマーが所定の時間を経過した時に前記電磁弁を閉鎖
することを備えたので、前記高圧容器型圧縮機の吸入圧
力が所定の圧力以下となると、前記バイパス回路が開放
され、所定時間経過後前記バイパス回路が閉鎖されるの
で低圧運転が回避される。Further, the opening / closing timing detection means of the solenoid valve is suction pressure detection means provided at the connecting portion between the high-pressure container compressor and the evaporator, and the solenoid valve control means has a timer, and the suction pressure is Since the solenoid valve is opened when the suction pressure detected by the detection means becomes equal to or lower than a predetermined pressure, and the solenoid valve is closed when the timer has passed a predetermined time, the high pressure container is provided. When the suction pressure of the die compressor becomes equal to or lower than a predetermined pressure, the bypass circuit is opened, and the bypass circuit is closed after a lapse of a predetermined time, so that the low pressure operation is avoided.
【0057】また、電磁弁の開閉タイミング検知手段が
蒸発器近傍に設けた除霜検知手段であり、電磁弁制御手
段がタイマーを有し、前記除霜検知手段が除霜終了を検
知した時に前記電磁弁を開放し、前記タイマーが所定の
時間を経過した時に前記電磁弁を閉鎖することを備えた
ので、除霜後に前記バイパス回路が開放され、所定時間
経過後前記バイパス回路が閉鎖されるので低圧運転が起
こらない。Further, the opening / closing timing detecting means of the solenoid valve is a defrosting detecting means provided in the vicinity of the evaporator, the solenoid valve controlling means has a timer, and when the defrosting detecting means detects the defrosting completion, Since the solenoid valve is opened and the solenoid valve is closed when the timer has passed a predetermined time, the bypass circuit is opened after defrosting and the bypass circuit is closed after the predetermined time has passed. Low pressure operation does not occur.
【0058】また、さらに、電磁弁の開閉タイミング検
知手段が前記毛細管と前記蒸発器との接続部に設けた温
度検知手段であり、電磁弁制御手段がタイマーを有し、
前記温度検知手段の検知した温度が所定の温度以下とな
った時に前記電磁弁を開放し、前記タイマーが所定の時
間を経過した時に前記電磁弁を閉鎖することを備えたの
で、前記毛細管の冷媒流量が低下して、蒸発器入口温度
が低下するのを検知し、所定の温度以下になった時にバ
イパス回路が開放され、所定時間経過後前記バイパス回
路が閉鎖されるので低圧運転が回避される。Further, the opening / closing timing detection means of the solenoid valve is a temperature detection means provided at the connecting portion between the capillary tube and the evaporator, and the solenoid valve control means has a timer,
Since the electromagnetic valve is opened when the temperature detected by the temperature detecting means becomes equal to or lower than a predetermined temperature, and the electromagnetic valve is closed when the timer elapses a predetermined time, the refrigerant of the capillary tube is provided. It is detected that the flow rate drops and the evaporator inlet temperature drops, and when the temperature falls below a predetermined temperature, the bypass circuit is opened, and after the lapse of a predetermined time, the bypass circuit is closed, so low-pressure operation is avoided. .
【0059】以上のように起動過渡期に低圧運転が起こ
らないので、冷媒とともに巡回している潤滑油がすぐに
戻り、前記高圧容器型圧縮機の摺動部は乾燥摩擦とはな
らないので、前記高圧容器型圧縮機の摺動部異常磨耗が
発生することなく前記高圧容器型圧縮機の信頼性を確保
することができる。As described above, since low-pressure operation does not occur during the transition period of startup, the lubricating oil circulating with the refrigerant immediately returns, and the sliding portion of the high-pressure container type compressor does not have dry friction. The reliability of the high-pressure container compressor can be ensured without abnormal wear of the sliding parts of the high-pressure container compressor.
【0060】さらに、起動後前記冷凍サイクルのバラン
スの崩れた状態が続かないので、前記高圧容器型圧縮機
の運転時間が短縮され、消費電力の低減となる。Furthermore, since the unbalanced state of the refrigeration cycle does not continue after startup, the operating time of the high-pressure container compressor is shortened and the power consumption is reduced.
【図1】本発明による冷蔵庫の一実施例の断面図FIG. 1 is a sectional view of an embodiment of a refrigerator according to the present invention.
【図2】本発明による冷蔵庫の一実施例の電磁弁の動作
を示すフローチャートFIG. 2 is a flowchart showing the operation of a solenoid valve of an embodiment of the refrigerator according to the present invention.
【図3】本発明による冷蔵庫の一実施例の断面図FIG. 3 is a sectional view of an embodiment of a refrigerator according to the present invention.
【図4】本発明による冷蔵庫の一実施例の電磁弁の動作
を示すフローチャートFIG. 4 is a flowchart showing the operation of the solenoid valve of the embodiment of the refrigerator according to the present invention.
【図5】本発明による冷蔵庫の一実施例の断面図FIG. 5 is a sectional view of an embodiment of the refrigerator according to the present invention.
【図6】本発明による冷蔵庫の一実施例の電磁弁の動作
を示すフローチャートFIG. 6 is a flowchart showing the operation of a solenoid valve of an embodiment of the refrigerator according to the present invention.
【図7】従来の冷蔵庫の断面図FIG. 7 is a sectional view of a conventional refrigerator.
1 圧縮機 2 凝縮器 3 毛細管 4 蒸発器 8 除霜用ヒータ 9 除霜検知手段 13 バイパス回路 15 電磁弁 16 電磁弁制御手段 17 タイマー 18 吸入圧力検知手段 19 温度検知手段 1 Compressor 2 Condenser 3 Capillary tube 4 Evaporator 8 Defrost heater 9 Defrost detecting means 13 Bypass circuit 15 Solenoid valve 16 Solenoid valve control means 17 Timer 18 Suction pressure detecting means 19 Temperature detecting means
Claims (4)
管と、蒸発器とを順次環状に接続してなる冷凍サイクル
を設置し、前記蒸発器近傍に除霜用ヒータと、前記凝縮
器と、前記蒸発器入口部との間に絞りを有するバイパス
回路と、前記凝縮器と前記バイパス回路との接続部に配
設した電磁弁と、前記電磁弁の開閉タイミング検知手段
と、前記電磁弁の開閉を行う電磁弁制御手段とを備えた
冷蔵庫。1. A refrigeration cycle in which a high-pressure container type compressor, a condenser, a capillary tube, and an evaporator are sequentially connected in an annular shape is installed, and a defrosting heater and the condenser are provided near the evaporator. Circuit, a bypass circuit having a throttle between the evaporator inlet section, an electromagnetic valve disposed at a connection section between the condenser and the bypass circuit, an opening / closing timing detection means for the electromagnetic valve, and the electromagnetic valve. A refrigerator provided with a solenoid valve control means for opening and closing a valve.
高圧容器型圧縮機と前記蒸発器との接続部に設けた吸入
圧力検知手段であり、電磁弁制御手段がタイマーを有
し、前記吸入圧力検知手段の検知した吸入圧力が所定の
圧力以下となった時に前記電磁弁を開放し、次に前記タ
イマーが所定の時間を経過した時に前記電磁弁を閉鎖す
ることを備えた請求項1記載の冷蔵庫。2. A solenoid valve opening / closing timing detection means is suction pressure detection means provided at a connection portion between the high-pressure container compressor and the evaporator, and a solenoid valve control means has a timer, 2. The electromagnetic valve according to claim 1, further comprising: opening the solenoid valve when the suction pressure detected by the detection means becomes equal to or lower than a predetermined pressure, and then closing the solenoid valve when the timer elapses a predetermined time. refrigerator.
器近傍に設けた除霜検知手段であり、電磁弁制御手段が
タイマーを有し、前記除霜検知手段が除霜終了を検知し
た時に前記電磁弁を開放し、前記タイマーが所定の時間
を経過した時に前記電磁弁を閉鎖することを備えた請求
項1記載の冷蔵庫。3. An electromagnetic valve opening / closing timing detecting means is a defrost detecting means provided in the vicinity of an evaporator, the electromagnetic valve control means has a timer, and the defrost detecting means detects the end of defrost. The refrigerator according to claim 1, further comprising: opening a solenoid valve, and closing the solenoid valve when the timer has elapsed a predetermined time.
毛細管と前記蒸発器との接続部に設けた温度検知手段で
あり、電磁弁制御手段がタイマーを有し、前記温度検知
手段の検知した温度が所定の温度以下となった時に前記
電磁弁を開放し、前記タイマーが所定の時間を経過した
時に前記電磁弁を閉鎖することを備えた請求項1記載の
冷蔵庫。4. An electromagnetic valve opening / closing timing detecting means is a temperature detecting means provided at a connecting portion between the capillary tube and the evaporator, and an electromagnetic valve controlling means has a timer, and a temperature detected by the temperature detecting means. The refrigerator according to claim 1, further comprising: opening the electromagnetic valve when the temperature reaches a predetermined temperature or lower, and closing the electromagnetic valve when the timer elapses a predetermined time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09332295A JP3606943B2 (en) | 1995-04-19 | 1995-04-19 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09332295A JP3606943B2 (en) | 1995-04-19 | 1995-04-19 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08285414A true JPH08285414A (en) | 1996-11-01 |
JP3606943B2 JP3606943B2 (en) | 2005-01-05 |
Family
ID=14079058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09332295A Expired - Fee Related JP3606943B2 (en) | 1995-04-19 | 1995-04-19 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3606943B2 (en) |
-
1995
- 1995-04-19 JP JP09332295A patent/JP3606943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3606943B2 (en) | 2005-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6883339B2 (en) | Method for controlling power saving operation of refrigerator with two evaporator | |
KR20110072441A (en) | Refrigerator and method for controlling operation thereof | |
JP2005214575A (en) | Refrigerator | |
JP2000346526A (en) | Cooling system | |
WO2020047757A1 (en) | Food storage device control method and apparatus, and storage medium | |
JP2008232530A (en) | Refrigerator | |
JP2002364937A (en) | Refrigerator | |
JP4984770B2 (en) | refrigerator | |
JPH08285387A (en) | Refrigerator | |
JPH08285414A (en) | Refrigerator | |
JPH102640A (en) | Refrigerator | |
JPH09210515A (en) | Refrigerating device | |
KR100394008B1 (en) | Refrigerating cycle for refrigerator and method for controlling the same | |
JPH08136112A (en) | Refrigerator | |
JP2003139459A (en) | Refrigerator | |
WO2024148686A1 (en) | Air supplement control method for air conditioner, and air conditioner, controller and storage medium | |
KR100370091B1 (en) | Methode for controlling working of refrigerator | |
KR20080048818A (en) | Refrigerator and control method thereof | |
KR0161949B1 (en) | Refrigeration cycle apparatus of refrigerator having two evaporators | |
JP3621739B2 (en) | refrigerator | |
JPH08240348A (en) | Refrigerator | |
KR100442381B1 (en) | Cycle loss depreciation method of refrigerator using linear compressor | |
JP2002107034A (en) | Refrigerator | |
KR950004396Y1 (en) | Arrangement for vaporising residuum of liquid refrigerant | |
JPH11230623A (en) | Freezer and its operation control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040609 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040615 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20040804 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20040921 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041006 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20091015 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20091015 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20101015 |
|
LAPS | Cancellation because of no payment of annual fees |