JP3621739B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3621739B2
JP3621739B2 JP05432995A JP5432995A JP3621739B2 JP 3621739 B2 JP3621739 B2 JP 3621739B2 JP 05432995 A JP05432995 A JP 05432995A JP 5432995 A JP5432995 A JP 5432995A JP 3621739 B2 JP3621739 B2 JP 3621739B2
Authority
JP
Japan
Prior art keywords
defrosting
evaporator
compressor
condenser
defrost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05432995A
Other languages
Japanese (ja)
Other versions
JPH08247616A (en
Inventor
義人 木村
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP05432995A priority Critical patent/JP3621739B2/en
Publication of JPH08247616A publication Critical patent/JPH08247616A/en
Application granted granted Critical
Publication of JP3621739B2 publication Critical patent/JP3621739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、冷蔵庫に関し、特に除霜後の圧縮機起動の過渡運転時に生じる低圧運転防止に関する。
【0002】
【従来の技術】
従来の冷蔵庫は、実開平3−83791号公報にて知られるような構成を持っている。以下、図2を参考に従来の冷蔵庫の構成について説明を行う。
【0003】
1は高圧容器型の圧縮機、2は凝縮器、3は毛細管、4は蒸発器であり、圧縮機1、凝縮器2、減圧装置3、蒸発器4は順次環状に接続し、冷凍サイクルを形成している。5は冷蔵庫の本体で内部を区画し、それぞれ冷凍室6と冷蔵室7の2室を形成している。8は除霜用ヒータで、蒸発器4の近傍に設けられている。
【0004】
9は除霜検知手段であらかじめ設定した時間間隔や、蒸発器4の温度、着霜状態を検知し、また除霜運転時には、除霜の終了を検知する。除霜検知手段9の検知出力により図示しない除霜制御手段で、圧縮機1の運転、停止、除霜用ヒータ8の運転停止を制御する。
【0005】
10は除霜水を蒸発皿11に導く水パイプであり、蒸発皿11は機械室12内にあって凝縮器2の一部を蒸発皿11に配設してある。凝縮器2の一部は蒸発の効率向上のため圧縮機1の吐出に近い部分が通常使われる。
【0006】
次に上記従来の構成の動作について説明する。
圧縮機1の運転により、圧縮機1より吐出された高温高圧の冷媒は、凝縮器2により凝縮液化し、さらに、毛細管3にて減圧され、蒸発器4で蒸発気化し図示しない熱搬送手段により冷凍室6、冷蔵室7を冷却する。蒸発器4で気化した冷媒は、再び、圧縮機1に吸入される。
【0007】
この様な冷却運転を行うことにより、冷凍室6、冷蔵室7内の空気に含まれる水分が、蒸発器4で熱交換される際に霜として、蒸発器4の表面に付着する。この着霜が進むと、蒸発器4の熱交換効率が減少し、充分な冷却運転が不可能となってくる。
【0008】
この状態を除霜検知手段9が検知し、除霜制御手段に除霜開始信号を出力する。この信号を受け除霜検知手段は、除霜を開始する。
除霜制御手段は、圧縮機1を停止し除霜用ヒータ8を運転し、除霜を開始する。除霜用ヒータ8の運転により、蒸発器4の表面の霜を発熱により融解する。
【0009】
蒸発器4の表面の霜が融解すると、除霜検知手段9は除霜が完了したことを通常蒸発器4の温度が所定温度(一般的には10から20℃)以上になることで検知し、除霜制御手段へ除霜終了信号を出力する。除霜制御手段はこの信号を受けて、除霜運転を終了するため、除霜用ヒータ8を停止し、その後、圧縮機1を起動する。この操作により冷凍サイクルは再び冷却運転を開始する。
【0010】
除霜により発生する除霜水は水パイプ10を通じて蒸発皿11へと送られる。蒸発皿に一旦貯留された除霜水は圧縮機1が運転を始めると高温の凝縮器2の一部分と熱交換することで徐々に蒸発していく。
【0011】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、低周囲温度時において、除霜開始直前に蒸発器4内に保持される冷媒に加え、圧縮機1停止と同時に、凝縮器2及び圧縮機1の周囲温度と蒸発器4の周囲温度の差から生じる冷媒の飽和圧力差により、圧縮機1、凝縮器2から蒸発器4へ冷媒が移動を始める。そして、除霜の進行により蒸発器4の温度が上昇し、圧縮機1、凝縮器2の周囲温度より蒸発器4及びその周囲温度が高くなると、除霜運転初期とは逆に、冷媒の飽和圧力が蒸発器4内の方が高くなり、冷媒は蒸発器4から圧縮機1、凝縮器2へと移動を行う。
【0012】
除霜終了時においては蒸発器4内の冷媒はほとんどなくなり、冷凍サイクル中最も温度の低い凝縮器2内で遍在して滞留する。特に低温の除霜水により冷却される凝縮器の一部等に遍在する。
【0013】
このため、除霜後の圧縮機1起動時には、通常の運転安定状態における凝縮器2内の冷媒分布状態、つまり圧縮機1から毛細管3方向へと気相から液相へといった状態でなく冷媒が滞留し、かつ蒸発器4内にほとんど冷媒がない。
【0014】
このため、圧縮機1が起動すると蒸発器4内にほとんど冷媒が存在しないので吸込みガスの比体積は小さく、十分に加圧する事ができない。と同時に凝縮器2内で冷媒が遍在しているので、安定して毛細管3入口部に液冷媒が到達せず、毛細管3に多量のガスが噛み込み、冷媒の循環を阻害する。この悪循環によって、除霜後の運転過渡期における冷凍サイクルのバランスが崩れた低圧運転状態が起こる。
【0015】
起動過渡期に液戻り等により圧縮機1の摺動部の油膜が切れた状態でさらに冷媒も、冷媒とともに巡回している潤滑油も少ししか戻ってこない低圧運転が続く圧縮機1の摺動部は乾燥摩擦となり異常磨耗が発生し圧縮機1の信頼性の面から非常に大きな課題であった。
【0016】
さらに、起動後冷凍サイクルが安定するまで時間がかかり、運転時間の増加から、消費電力の増加につながる。
【0017】
本発明の冷蔵庫は従来の課題を解決するもので、除霜後の圧縮機起動時における低圧運転を防止できる冷蔵庫を提供することを目的とする。
【0018】
【課題を解決するための手段】
高圧容器型の圧縮機と、凝縮器と、減圧手段である毛細管と、蒸発器とを順次環状に接続してなる冷凍サイクルを設置し、前記毛細管と前記凝縮器との間にチャンバーを設け、前記蒸発器近傍に設けた除霜用ヒータと、前記蒸発器の除霜終了を検知する除霜検知手段と、除霜水を貯留する除霜水皿と、除霜水を除霜水皿に導く水パイプと、前記除霜水皿内下方に位置し、前記毛細管との接続部が下方となるように前記チャンバーを配設することを備えるものである。
【0019】
【作用】
上記構成により、本発明の冷蔵庫は、除霜により生じた除霜水が水パイプを通じて除霜水皿に貯留される。このとき除霜水皿内下方に位置するチャンバーと毛細管の入口部の一部は除霜水中に浸積し、冷却される。
【0020】
これによって、除霜中の蒸発器温度の上昇によって前記蒸発器内の冷媒が、冷却された前記チャンバーに移動し、除霜終了時には前記チャンバーと前記毛細管入口部に冷媒が存在しており、さらに前記チャンバーと前記毛細管との接続部が下方にあるので、毛細管入口が液封状態となっている。
【0021】
従って除霜後の圧縮機の起動時に前記毛細管より前記蒸発器へと液冷媒が流入し、ガスが噛み込むこと無く運転するので冷凍サイクルの安定状態への移行がスムーズに行え、低圧運転が起こらない。
【0022】
【実施例】
本発明の一実施例について図1を参考に説明する。但し、従来と同一構成については、同一の符号を付し、詳細な説明を省略する。
【0023】
1は高圧容器型の圧縮機、2は凝縮器、3は毛細管、4は蒸発器であり、圧縮機1、凝縮器2、減圧装置3、蒸発器4は順次環状に接続し、冷凍サイクルを形成している。毛細管3と凝縮器2との間にチャンバー13を設けてある。5は冷蔵庫の本体で内部を区画し、それぞれ冷凍室6と冷蔵室7の2室を形成している。8は除霜用ヒータで、蒸発器4の近傍に設けられている。
【0024】
9は除霜検知手段であらかじめ設定した時間間隔や、蒸発器4の温度、着霜状態を検知し、また除霜運転時には、除霜の終了を検知する。除霜検知手段9の検知出力により図示しない除霜制御手段で、圧縮機1の運転、停止、除霜用ヒータ8の運転停止を制御する。
【0025】
14は除霜時に生じる除霜水を貯留する除霜水皿であり、除霜水を除霜水皿14に導く水パイプ10と、除霜水皿14内下方に位置し、毛細管3との接続部が下方となるようにチャンバー13を配設してある。
【0026】
次に上記従来の構成の動作について説明する。
圧縮機1の運転による冷却運転が行われ、蒸発器4で着霜が進む。これにより、蒸発器4の熱交換効率が減少し、充分な冷却運転が不可能となってくる。
【0027】
この状態を除霜検知手段9が検知し、除霜制御手段に除霜開始信号を出力する。この信号を受け除霜検知手段は、除霜を開始する。
除霜制御手段は、圧縮機1を停止し除霜用ヒータ8を運転し、除霜を開始する。除霜用ヒータ8の運転により、蒸発器4の表面の霜を発熱により融解する。
【0028】
蒸発器4の表面の霜が融解すると、除霜検知手段9は除霜が完了したことを通常蒸発器4の温度が所定温度(一般的には10から20℃)以上になることで検知し、除霜制御手段へ除霜終了信号を出力する。除霜制御手段はこの信号を受けて、除霜運転を終了するため、除霜用ヒータ8を停止し、その後、圧縮機1を起動する。この操作により冷凍サイクルは再び冷却運転を開始する。
【0029】
除霜により発生する除霜水は水パイプ10を通じて除霜水皿14へと送られ貯留される。このとき除霜水皿14内下方に位置するチャンバー13と毛細管3の入口部の一部は低温の除霜水中に浸積し、冷却される。
【0030】
これによって、除霜中の蒸発器温度に従い蒸発器4内の冷媒が、冷却されたチャンバー13に移動し、除霜終了時にはチャンバー13と毛細管3入口部に冷媒が存在しており、さらにチャンバー13と毛細管3との接続部が下方にあるので、毛細管3入口が液封状態となっている。
【0031】
従って除霜後の圧縮機1の起動時に毛細管3より蒸発器4へと液冷媒が流入し、ガスが噛み込むこと無く運転するので冷凍サイクルの安定状態への移行がスムーズに行え、低圧運転が起こらない。
【0032】
起動過渡期に低圧運転がないので、冷媒とともに巡回している潤滑油が戻ってくるので圧縮機1の摺動部は乾燥摩擦とはならないので圧縮機1の摺動部異常磨耗が発生することなく圧縮機1の信頼性を確保することができる。
【0033】
さらに、起動後冷凍サイクルが安定するまで時間がかからないので、運転時間が短縮され、消費電力の低減となる。
【0034】
なお、凝縮器2と毛細管3の間にドライヤを設けてある場合には、ドライヤをチャンバー13と兼用させても同様の効果が期待でき、さらには部品代の合理化ができる。
【0035】
またなお、除霜検知手段9は例えばバイメタルを用いた温度検知装置や光センサーであっても良いし、所定時間経過毎や、所定の圧縮機1積算運転時間経過毎に除霜開始信号を出力するタイマーであっても良い。
【0036】
【発明の効果】
以上の説明から明らかなように本発明の冷蔵庫は、高圧容器型の圧縮機と、凝縮器と、減圧手段である毛細管と、蒸発器とを順次環状に接続してなる冷凍サイクルを設置し、前記毛細管と前記凝縮器との間にチャンバーを設け、前記蒸発器近傍に設けた除霜用ヒータと、前記蒸発器の除霜終了を検知する除霜検知手段と、除霜水を貯留する除霜水皿と、除霜水を除霜水皿に導く水パイプと、前記除霜水皿内下方に位置し、前記毛細管との接続部が下方となるように前記チャンバーを配設したことを備えたので、除霜後の前記圧縮機の起動時に前記毛細管より前記蒸発器へと液冷媒が流入し、ガスが噛み込むこと無く運転するので冷凍サイクルの安定状態への移行がスムーズに行え、低圧運転が起こらない。
【0037】
起動過渡期に低圧運転がないので、冷媒とともに巡回している潤滑油がすぐに戻り、圧縮機1の摺動部は乾燥摩擦とはならないので圧縮機1の摺動部異常磨耗が発生することなく圧縮機1の信頼性を確保することができる。
【0038】
さらに、起動後冷凍サイクルが安定するまで時間がかからないので、運転時間が短縮され、消費電力の低減となる。
【図面の簡単な説明】
【図1】本発明の一実施例の冷蔵庫の断面図
【図2】従来の冷蔵庫の断面図
【符号の説明】
1 圧縮機
2 凝縮器
3 毛細管
4 蒸発器
8 除霜用ヒータ
9 除霜検知手段
13 チャンバー
14 除霜水皿
[0001]
[Industrial application fields]
The present invention relates to a refrigerator, and more particularly to prevention of low-pressure operation that occurs during transient operation of starting a compressor after defrosting.
[0002]
[Prior art]
The conventional refrigerator has a structure as known in Japanese Utility Model Laid-Open No. 3-83791. Hereinafter, the configuration of a conventional refrigerator will be described with reference to FIG.
[0003]
1 is a high-pressure vessel type compressor, 2 is a condenser, 3 is a capillary tube, 4 is an evaporator, and the compressor 1, the condenser 2, the decompression device 3, and the evaporator 4 are sequentially connected in an annular manner, and the refrigeration cycle is performed. Forming. Reference numeral 5 denotes a main body of the refrigerator, which divides the inside and forms two rooms, a freezer compartment 6 and a refrigerator compartment 7, respectively. A defrosting heater 8 is provided in the vicinity of the evaporator 4.
[0004]
9 detects the time interval set in advance by the defrosting detecting means, the temperature of the evaporator 4 and the frosting state, and detects the end of defrosting during the defrosting operation. The defrost control means (not shown) controls the operation and stop of the compressor 1 and the operation stop of the defrost heater 8 by the detection output of the defrost detection means 9.
[0005]
Reference numeral 10 denotes a water pipe that guides the defrost water to the evaporating dish 11. The evaporating dish 11 is in the machine chamber 12, and a part of the condenser 2 is disposed in the evaporating dish 11. A part near the discharge of the compressor 1 is usually used as a part of the condenser 2 in order to improve the evaporation efficiency.
[0006]
Next, the operation of the conventional configuration will be described.
The high-temperature and high-pressure refrigerant discharged from the compressor 1 by the operation of the compressor 1 is condensed and liquefied by the condenser 2, further depressurized by the capillary 3, evaporated by the evaporator 4, and heated by heat transfer means (not shown). The freezer compartment 6 and the refrigerator compartment 7 are cooled. The refrigerant vaporized by the evaporator 4 is again sucked into the compressor 1.
[0007]
By performing such a cooling operation, moisture contained in the air in the freezer compartment 6 and the refrigerator compartment 7 adheres to the surface of the evaporator 4 as frost when heat is exchanged in the evaporator 4. As this frosting progresses, the heat exchange efficiency of the evaporator 4 decreases, and sufficient cooling operation becomes impossible.
[0008]
This state is detected by the defrost detection means 9 and outputs a defrost start signal to the defrost control means. Upon receiving this signal, the defrost detection means starts defrosting.
The defrosting control means stops the compressor 1, operates the defrosting heater 8, and starts defrosting. By operating the defrosting heater 8, the frost on the surface of the evaporator 4 is melted by heat generation.
[0009]
When the frost on the surface of the evaporator 4 is melted, the defrosting detecting means 9 detects that the defrosting is completed when the temperature of the normal evaporator 4 is equal to or higher than a predetermined temperature (generally 10 to 20 ° C.). The defrosting end signal is output to the defrosting control means. In response to this signal, the defrosting control means stops the defrosting heater 8 in order to end the defrosting operation, and then starts the compressor 1. By this operation, the refrigeration cycle starts the cooling operation again.
[0010]
The defrost water generated by the defrosting is sent to the evaporating dish 11 through the water pipe 10. The defrost water once stored in the evaporating dish is gradually evaporated by exchanging heat with a part of the high-temperature condenser 2 when the compressor 1 starts operation.
[0011]
[Problems to be solved by the invention]
However, in the above conventional configuration, at the low ambient temperature, in addition to the refrigerant held in the evaporator 4 immediately before the start of defrosting, at the same time as the compressor 1 is stopped, the ambient temperature of the condenser 2 and the compressor 1 and the evaporator The refrigerant starts to move from the compressor 1 and the condenser 2 to the evaporator 4 due to the refrigerant saturation pressure difference resulting from the difference in the ambient temperature of 4. When the temperature of the evaporator 4 rises due to the progress of defrosting, and the evaporator 4 and its ambient temperature become higher than the ambient temperature of the compressor 1 and the condenser 2, the refrigerant is saturated, contrary to the initial stage of the defrosting operation. The pressure is higher in the evaporator 4, and the refrigerant moves from the evaporator 4 to the compressor 1 and the condenser 2.
[0012]
At the end of defrosting, the refrigerant in the evaporator 4 almost disappears and remains ubiquitously in the condenser 2 having the lowest temperature during the refrigeration cycle. In particular, it is ubiquitous in some condensers cooled by low-temperature defrost water.
[0013]
For this reason, at the time of starting the compressor 1 after defrosting, the refrigerant is not the refrigerant distribution state in the condenser 2 in the normal operation stable state, that is, the state from the gas phase to the liquid phase from the compressor 1 toward the capillary 3. It stays and there is almost no refrigerant in the evaporator 4.
[0014]
For this reason, when the compressor 1 is started, since there is almost no refrigerant in the evaporator 4, the specific volume of the suction gas is small and it cannot be pressurized sufficiently. At the same time, since the refrigerant is ubiquitous in the condenser 2, the liquid refrigerant does not reach the inlet of the capillary tube 3 stably, and a large amount of gas is caught in the capillary tube 3, thereby inhibiting the circulation of the refrigerant. Due to this vicious cycle, a low-pressure operation state occurs in which the balance of the refrigeration cycle is lost in the operation transition period after defrosting.
[0015]
The sliding of the compressor 1 continues in a low pressure operation in which the refrigerant and the lubricating oil circulating with the refrigerant return little while the oil film of the sliding portion of the compressor 1 is cut off due to liquid return or the like in the startup transition period. The part became dry friction and abnormal wear occurred, which was a very big problem from the viewpoint of the reliability of the compressor 1.
[0016]
Furthermore, it takes time until the refrigeration cycle is stabilized after startup, leading to an increase in power consumption due to an increase in operating time.
[0017]
The refrigerator of this invention solves the conventional subject, and it aims at providing the refrigerator which can prevent the low voltage | pressure operation at the time of the compressor starting after a defrost.
[0018]
[Means for Solving the Problems]
A high-pressure vessel type compressor, a condenser, a capillary that is a decompression means, and a refrigeration cycle in which an evaporator is sequentially connected in an annular manner are installed, and a chamber is provided between the capillary and the condenser. A defrosting heater provided in the vicinity of the evaporator, a defrosting detecting means for detecting completion of defrosting of the evaporator, a defrosting water tray for storing defrosted water, and the defrosting water in the defrosting water dish The chamber is arranged such that the water pipe to be led and the defrosting water tray are located in the lower part of the defrosting water dish so that the connection part with the capillary is on the lower part.
[0019]
[Action]
With the above configuration, in the refrigerator of the present invention, defrost water generated by defrosting is stored in a defrost water tray through a water pipe. At this time, the chamber located below the defrost water tray and a part of the capillary inlet are immersed in the defrost water and cooled.
[0020]
Thereby, the refrigerant in the evaporator moves to the cooled chamber due to the rise of the evaporator temperature during defrosting, and at the end of the defrosting, the refrigerant exists in the chamber and the capillary inlet, Since the connecting portion between the chamber and the capillary is located below, the capillary inlet is in a liquid-sealed state.
[0021]
Therefore, when the compressor is started after defrosting, liquid refrigerant flows from the capillary into the evaporator, and the operation is performed without gas being caught, so that the transition to the stable state of the refrigeration cycle can be performed smoothly, and the low pressure operation occurs. Absent.
[0022]
【Example】
An embodiment of the present invention will be described with reference to FIG. However, the same reference numerals are given to the same components as those in the prior art, and detailed description thereof is omitted.
[0023]
1 is a high-pressure vessel type compressor, 2 is a condenser, 3 is a capillary tube, 4 is an evaporator, and the compressor 1, the condenser 2, the decompression device 3, and the evaporator 4 are sequentially connected in an annular manner, and the refrigeration cycle is performed. Forming. A chamber 13 is provided between the capillary tube 3 and the condenser 2. Reference numeral 5 denotes a main body of the refrigerator, which divides the inside and forms two rooms, a freezer compartment 6 and a refrigerator compartment 7, respectively. A defrosting heater 8 is provided in the vicinity of the evaporator 4.
[0024]
9 detects the time interval set in advance by the defrosting detecting means, the temperature of the evaporator 4 and the frosting state, and detects the end of defrosting during the defrosting operation. The defrost control means (not shown) controls the operation and stop of the compressor 1 and the operation stop of the defrost heater 8 by the detection output of the defrost detection means 9.
[0025]
Reference numeral 14 denotes a defrosting water tray for storing defrosted water generated at the time of defrosting. The water pipe 10 guides the defrosted water to the defrosting water dish 14, and the capillary tube 3 is positioned below the defrosting water dish 14. The chamber 13 is disposed so that the connecting portion is on the lower side.
[0026]
Next, the operation of the conventional configuration will be described.
The cooling operation by the operation of the compressor 1 is performed, and frosting proceeds in the evaporator 4. Thereby, the heat exchange efficiency of the evaporator 4 decreases, and sufficient cooling operation becomes impossible.
[0027]
This state is detected by the defrost detection means 9 and outputs a defrost start signal to the defrost control means. Upon receiving this signal, the defrost detection means starts defrosting.
The defrosting control means stops the compressor 1, operates the defrosting heater 8, and starts defrosting. By operating the defrosting heater 8, the frost on the surface of the evaporator 4 is melted by heat generation.
[0028]
When the frost on the surface of the evaporator 4 is melted, the defrosting detecting means 9 detects that the defrosting is completed when the temperature of the normal evaporator 4 is equal to or higher than a predetermined temperature (generally 10 to 20 ° C.). The defrosting end signal is output to the defrosting control means. In response to this signal, the defrosting control means stops the defrosting heater 8 in order to end the defrosting operation, and then starts the compressor 1. By this operation, the refrigeration cycle starts the cooling operation again.
[0029]
The defrost water generated by the defrost is sent to the defrost water tray 14 through the water pipe 10 and stored. At this time, the chamber 13 located below the defrosting water tray 14 and a part of the inlet of the capillary tube 3 are immersed in the low-temperature defrosting water and cooled.
[0030]
As a result, the refrigerant in the evaporator 4 moves to the cooled chamber 13 according to the evaporator temperature during defrosting, and at the end of the defrosting, the refrigerant exists at the inlet of the chamber 13 and the capillary tube 3. And the capillary 3 are located below, so that the capillary 3 inlet is in a liquid-sealed state.
[0031]
Therefore, when the compressor 1 after defrosting is started, the liquid refrigerant flows from the capillary tube 3 to the evaporator 4 and operates without the gas being caught, so that the transition to the stable state of the refrigeration cycle can be performed smoothly, and the low pressure operation can be performed. Does not happen.
[0032]
Since there is no low-pressure operation in the start-up transition period, the lubricating oil circulating with the refrigerant returns, so the sliding portion of the compressor 1 does not become dry friction, and abnormal sliding of the compressor 1 occurs. Therefore, the reliability of the compressor 1 can be ensured.
[0033]
Furthermore, since it takes no time until the refrigeration cycle is stabilized after startup, the operation time is shortened and the power consumption is reduced.
[0034]
In the case where a dryer is provided between the condenser 2 and the capillary tube 3, the same effect can be expected even if the dryer is also used as the chamber 13, and the parts cost can be rationalized.
[0035]
In addition, the defrosting detection means 9 may be, for example, a temperature detection device or an optical sensor using bimetal, and outputs a defrosting start signal every time a predetermined time elapses or every time the predetermined compressor 1 accumulated operation time elapses. It may be a timer.
[0036]
【The invention's effect】
As apparent from the above description, the refrigerator of the present invention is provided with a refrigeration cycle in which a high-pressure container compressor, a condenser, a capillary tube as a decompression means, and an evaporator are sequentially connected in an annular manner, A chamber is provided between the capillary tube and the condenser, a defrosting heater provided in the vicinity of the evaporator, a defrosting detecting means for detecting completion of defrosting of the evaporator, and a defrosting water storage unit. A frost water tray, a water pipe that guides defrost water to the defrost water tray, and the chamber disposed so as to be positioned below the defrost water tray and connected to the capillary. Since equipped with, liquid refrigerant flows into the evaporator from the capillary when starting the compressor after defrosting, so that the operation without gas biting can smoothly transition to the stable state of the refrigeration cycle, Low pressure operation does not occur.
[0037]
Since there is no low-pressure operation in the start-up transition period, the lubricating oil circulating with the refrigerant returns immediately, and the sliding part of the compressor 1 does not become dry friction, so that abnormal sliding of the sliding part of the compressor 1 occurs. Therefore, the reliability of the compressor 1 can be ensured.
[0038]
Furthermore, since it takes no time until the refrigeration cycle is stabilized after startup, the operation time is shortened and the power consumption is reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view of a refrigerator according to an embodiment of the present invention. FIG. 2 is a sectional view of a conventional refrigerator.
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Capillary 4 Evaporator 8 Defroster heater 9 Defrost detection means 13 Chamber 14 Defrost water dish

Claims (1)

高圧容器型の圧縮機と、凝縮器と、減圧手段である毛細管と、蒸発器とを順次環状に接続してなる冷凍サイクルを設置し、前記毛細管と前記凝縮器との間にチャンバーを設け、前記蒸発器近傍に設けた除霜用ヒータと、前記蒸発器の除霜終了を検知する除霜検知手段と、除霜水を貯留する除霜水皿と、除霜水を除霜水皿に導く水パイプと、前記除霜水皿内下方に位置し、前記毛細管との接続部が下方となるように前記チャンバーを配設したことを備えた冷蔵庫。A refrigeration cycle in which a high-pressure vessel type compressor, a condenser, a capillary as a decompression means, and an evaporator are sequentially connected in an annular manner is installed, and a chamber is provided between the capillary and the condenser. The defrosting heater provided in the vicinity of the evaporator, the defrosting detecting means for detecting the end of the defrosting of the evaporator, the defrosting water dish for storing the defrosting water, and the defrosting water for the defrosting water dish A refrigerator comprising: a water pipe to be led and a lower part in the defrosting water tray, wherein the chamber is disposed so that a connection portion with the capillary tube is downward.
JP05432995A 1995-03-14 1995-03-14 refrigerator Expired - Fee Related JP3621739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05432995A JP3621739B2 (en) 1995-03-14 1995-03-14 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05432995A JP3621739B2 (en) 1995-03-14 1995-03-14 refrigerator

Publications (2)

Publication Number Publication Date
JPH08247616A JPH08247616A (en) 1996-09-27
JP3621739B2 true JP3621739B2 (en) 2005-02-16

Family

ID=12967561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05432995A Expired - Fee Related JP3621739B2 (en) 1995-03-14 1995-03-14 refrigerator

Country Status (1)

Country Link
JP (1) JP3621739B2 (en)

Also Published As

Publication number Publication date
JPH08247616A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
CN102652245B (en) Air conditioner, method for controlling aperture of expansion valve, and computer readable storage medium for storing program for controlling aperture of expansion valve
US6883339B2 (en) Method for controlling power saving operation of refrigerator with two evaporator
US3950961A (en) Cooling system for a two-temperature refrigerator
US6449980B1 (en) Refrigeration systems
KR101275182B1 (en) Control method of refrigerating system
WO2015043678A1 (en) Refrigerator with an improved defrost circuit and method of controlling the refrigerator
JP3621739B2 (en) refrigerator
US5758510A (en) Time shared dual evaporator cycle refrigerator
US2805555A (en) Hot gas defrost system
JP2008232530A (en) Refrigerator
JP3606943B2 (en) refrigerator
JPH102640A (en) Refrigerator
US2745255A (en) Defrosting refrigerating apparatus
CN110749144B (en) Refrigeration device
JP2008057835A (en) Refrigerating apparatus
KR100347895B1 (en) Control method of refrigerator system
JPH08285387A (en) Refrigerator
US20240361064A1 (en) Transport refrigeration unit and refrigeration circuit with refrigerant-based defrost control and a method thereof
US2895306A (en) Hot gas defrost system including bypass-suction line heat exchange
JPS6130128Y2 (en)
CN115111842A (en) Refrigerator and control method thereof
JPH07103581A (en) Refrigerating system
CN113915870A (en) Refrigerator and control method thereof
CN118208869A (en) Refrigerating system, control method of refrigerating system and cold chain equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees