JPH08284877A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH08284877A
JPH08284877A JP7087204A JP8720495A JPH08284877A JP H08284877 A JPH08284877 A JP H08284877A JP 7087204 A JP7087204 A JP 7087204A JP 8720495 A JP8720495 A JP 8720495A JP H08284877 A JPH08284877 A JP H08284877A
Authority
JP
Japan
Prior art keywords
pump
rotary pump
rotary
turbo
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7087204A
Other languages
Japanese (ja)
Other versions
JP3558733B2 (en
Inventor
Manabu Nonaka
学 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP08720495A priority Critical patent/JP3558733B2/en
Publication of JPH08284877A publication Critical patent/JPH08284877A/en
Application granted granted Critical
Publication of JP3558733B2 publication Critical patent/JP3558733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/026Units comprising pumps and their driving means with a magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/026Multi-stage pumps with a plurality of shafts rotating at different speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE: To provide a vacuum pump that is able to efficiently exhaust in a wide pressure range, and simple in structure. CONSTITUTION: A magnetic coupling part 9 is installed in space between a turbo-molecular pump part 3 and a thread groove pump part 2 as a sliding mechanism. This magnetic coupling part 9 consists of both first and second magnetic bodies 900 and 901, and both these pump parts 3 and 2 are magnetically joined in noncontact by dint of the magnetic attraction. In the case where excessive load exceeding this joining force (magnetic attraction) acts on the turbo-molecular pump part 3, a slide conformed to the extent of load is produced in an interval between both these pump parts 2 and 3 and thereby the thread groove pump part 2 alone is rotated, so such a nonconformity (a drop in rotational frequency and generation of heat) that the turbo-molecular pump part 3 alone remains rotated as receiving the excessive load is made to be prevented from occurring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は広範な圧力帯域で効率
よく排気することができ、構造も簡単な真空ポンプに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pump which can efficiently exhaust gas in a wide pressure range and has a simple structure.

【0002】[0002]

【従来の技術】従来より、真空ポンプとしてはターボ分
子ポンプ、ねじ溝ポンプ、スクロールポンプおよびドラ
ッグポンプ等があり、特にターボ分子ポンプはロータの
外周面に回転翼を備えるものとして、ねじ溝ポンプはロ
ータの外周面にねじ部を備えるものとして知られてい
る。
2. Description of the Related Art Conventionally, there have been turbo molecular pumps, screw groove pumps, scroll pumps, drag pumps, etc. as vacuum pumps. In particular, turbo molecular pumps have rotor blades on the outer peripheral surface of a rotor. It is known that the outer peripheral surface of the rotor is provided with a threaded portion.

【0003】ターボ分子ポンプは図8に示す如く高真空
側で排気効率がよく、ねじ溝ポンプ、スクロールポンプ
およびドラッグポンプは図9に示す如く低真空側で排気
効率がよいという特性を有する。
As shown in FIG. 8, the turbo molecular pump has a characteristic that the exhaust efficiency is high on the high vacuum side, and the screw groove pump, the scroll pump and the drag pump have a characteristic that the exhaust efficiency is good on the low vacuum side as shown in FIG.

【0004】また、低真空から高真空領域までの幅広い
排気を可能とする観点から開発された真空ポンプとし
て、たとえば上記のようなターボ分子ポンプとねじ溝ポ
ンプを複合した、いわゆる広帯域型複合ポンプも知られ
ている。
Further, as a vacuum pump developed from the viewpoint of enabling a wide range of evacuation from low vacuum to high vacuum region, for example, a so-called wide band type composite pump which is a combination of the above turbo molecular pump and a thread groove pump is also available. Are known.

【0005】この種の広帯域型複合ポンプについては、
図10(a)に示す如く一つの駆動軸50により回転翼
aとねじ部bの双方が同時に回転する構造、同図(b)
に示す如く別個独立に回転する二つの駆動軸51,52
により回転翼aとねじ部bがそれぞれ別々に回転する構
造、または同図(c)に示す如くねじ部b側から回転翼
a側を切り離すための切離機構53を設け、これにより
一つの駆動軸54で回転翼aおよびねじ部bの双方回転
と、ねじ部bのみの回転とを適宜選択可能とした構造が
ある。
Regarding this kind of wide band type composite pump,
As shown in FIG. 10A, a structure in which both the rotary blade a and the screw portion b are simultaneously rotated by one drive shaft 50, FIG.
Two drive shafts 51 and 52 that rotate independently as shown in FIG.
The rotating blade a and the screw portion b are rotated separately by the above, or a separating mechanism 53 for separating the rotating blade a side from the screw portion b side is provided as shown in FIG. There is a structure in which both rotation of the rotary blade a and the screw portion b and rotation of only the screw portion b can be appropriately selected by the shaft 54.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
広帯域型複合ポンプにあっては次のような問題点を有し
ている。
However, the conventional broadband type composite pump has the following problems.

【0007】図10(a)に示す構成によると、回転翼
aおよびねじ部bの双方が同時に回転するものであるた
め、低真空側においてはターボ分子ポンプ部(回転翼a
のある部分)の受ける負荷が過大となることから、図1
1(b)点線で示すように回転数の低下や発熱を招
き、ねじ溝ポンプ部(ねじ部bのある部分)のもつ本来
の性能が発揮されず、排気効率が悪く、排気作動可能な
圧力帯域が狭くなる(図11(a)実線参照)。
According to the configuration shown in FIG. 10 (a), both the rotor blade a and the screw portion b rotate at the same time. Therefore, on the low vacuum side, the turbo molecular pump portion (rotor blade a) is rotated.
1) because the load received by the
As indicated by the dotted line 1 (b), the rotation speed is reduced and heat is generated, the original performance of the thread groove pump section (the section with the thread section b) is not exhibited, exhaust efficiency is poor, and the pressure at which exhaust operation is possible. The band becomes narrower (see the solid line in FIG. 11A).

【0008】なお、回転数低下を防止する観点から、そ
の回転に要するモータを大きなものとすると、それだけ
消費電力が増大する等の不具合がある。
From the viewpoint of preventing a decrease in the number of rotations, if the motor required for the rotation is made large, there is a problem that the power consumption increases accordingly.

【0009】図10(b)および(c)に示す構成のも
のは、ともにターボ分子ポンプ部とねじ溝ポンプ部の独
立した回転を可能とするものであるから、上記のような
不具合を回避することは可能であるが、その構造上次の
ような欠点を有する。
The configurations shown in FIGS. 10 (b) and 10 (c) both enable independent rotation of the turbo-molecular pump section and the thread groove pump section, and therefore avoid the above-mentioned problems. However, the structure has the following drawbacks.

【0010】すなわち、図10(b)に示す構成にあっ
ては、ターボ分子ポンプ部とねじ溝ポンプ部の独立した
回転が二つの駆動軸51,52によるものであるため、
複数の駆動軸を必要とするばかりでなく、駆動軸につい
ての減速機構や複数のコントローラ等も必要となり、機
器全体が複雑なものとなる。
That is, in the structure shown in FIG. 10 (b), since the independent rotation of the turbo molecular pump section and the thread groove pump section is caused by the two drive shafts 51 and 52,
Not only a plurality of drive shafts are required, but also a deceleration mechanism for the drive shafts, a plurality of controllers and the like are required, which makes the entire device complicated.

【0011】一方、図10(c)に示す構成にあって
は、そのような独立の回転が切離機構53によるもので
あるため、その切り離しの構造が複雑であることから、
これもまた機器全体が複雑なものとなる。
On the other hand, in the structure shown in FIG. 10 (c), since such an independent rotation is caused by the separating mechanism 53, the structure of the separation is complicated,
This also complicates the entire device.

【0012】この発明は上述の事情に鑑みてなされたも
ので、その目的とするところは広範な圧力帯域で効率よ
く排気することができ、構造も簡単な真空ポンプを提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a vacuum pump which can efficiently exhaust gas in a wide pressure range and has a simple structure.

【0013】[0013]

【課題を解決するための手段】請求項1記載の発明は一
定の圧力帯域で回転によるガスの排気を行うとともに、
その排気のための翼部またはねじ部を備えてなる第1の
回転ポンプ部と、上記第1の回転ポンプ部とは異なる圧
力帯域で回転によるガスの排気を行うとともに、その排
気のための翼部またはねじ部を備えてなる第2の回転ポ
ンプ部とを有し、第1の回転ポンプ部と第2の回転ポン
プ部を、回転ポンプ部に作用する負荷に応じてすべりが
生ずるすべり機構を介して接合したことを特徴とする。
According to a first aspect of the present invention, gas is exhausted by rotation in a constant pressure zone, and
A first rotary pump part having a blade part or a screw part for exhausting the gas, and a gas for exhausting gas by rotation in a pressure range different from that of the first rotary pump part, and a blade for exhausting the gas. And a second rotary pump part including a screw part, and the first rotary pump part and the second rotary pump part are provided with a slip mechanism in which slip occurs depending on a load acting on the rotary pump part. It is characterized by being joined through.

【0014】請求項2記載の発明は第1の回転ポンプ部
が、回転可能に配設された筒体からなるねじポンプロー
タと、上記ねじポンプロータの外周面に設けたねじ部と
を備え、第2の回転ポンプ部が、回転可能に配設された
筒体からなるターボポンプロータと、上記ターボポンプ
ロータの外周面側に設けた翼部とを備えることを特徴と
する。
According to a second aspect of the present invention, the first rotary pump portion includes a screw pump rotor formed of a cylindrical body rotatably arranged, and a screw portion provided on an outer peripheral surface of the screw pump rotor. The second rotary pump unit is characterized by including a turbo pump rotor formed of a cylindrical body rotatably arranged, and a blade portion provided on the outer peripheral surface side of the turbo pump rotor.

【0015】請求項3記載の発明はすべり機構が、第1
の回転ポンプ部と第2の回転ポンプ部とを磁気的に非接
触に接合する磁気カップリング部からなることを特徴と
する。
According to a third aspect of the invention, the sliding mechanism has a first structure.
The rotary pump unit and the second rotary pump unit are magnetically coupled to each other in a non-contact manner.

【0016】請求項4記載の発明は磁気カップリング部
が、第1の回転ポンプ部と第2の回転ポンプ部との間に
位置し、かつ第1の回転ポンプ部側に取り付けられた第
1の磁石体と、上記第1の磁石体と対向し、かつ第2の
回転ポンプ部側に取り付けられた第2の磁石体とからな
ることを特徴とする。
According to a fourth aspect of the present invention, the magnetic coupling section is located between the first rotary pump section and the second rotary pump section and is attached to the first rotary pump section side. And a second magnet body facing the first magnet body and attached to the second rotary pump portion side.

【0017】請求項5記載の発明は第1および第2の磁
石体が永久磁石からなることを特徴とする。
The invention according to claim 5 is characterized in that the first and second magnet bodies are made of permanent magnets.

【0018】請求項6記載の発明は第1および第2の磁
石体のうちいずれか一方が電磁石からなることを特徴と
する。
According to a sixth aspect of the present invention, one of the first and second magnet bodies is an electromagnet.

【0019】請求項7記載の発明はすべり機構が、第1
の回転ポンプ部と第2の回転ポンプ部との間に位置し、
かつ第1の回転ポンプ部側に設けた第1の当接部と、上
記第1の当接部に摺動可能に接し、かつ第2の回転ポン
プ部側に設けた第2の当接部とからなることを特徴とす
る。
According to a seventh aspect of the invention, the sliding mechanism is the first
Located between the rotary pump part and the second rotary pump part of
A first contact portion provided on the first rotary pump portion side and a second contact portion slidably contacting the first contact portion and provided on the second rotary pump portion side. It consists of and.

【0020】請求項8記載の発明はすべり機構が、第1
の回転ポンプ部と第2の回転ポンプ部との間に、この両
ポンプ部に接する磁性流体を備えてなることを特徴とす
る。
The invention according to claim 8 is characterized in that the sliding mechanism is the first
Between the rotary pump part and the second rotary pump part, a magnetic fluid in contact with the both pump parts is provided.

【0021】[0021]

【作用】この発明は、第1および第2のポンプ部のいず
れかに過大な負荷が作用する圧力帯域では両回転ポンプ
部間にその負荷に応じたすべりが生じ、負荷を受けた側
の回転ポンプ部の回転が停止する。
According to the present invention, in the pressure range where an excessive load acts on either the first or second pump section, slippage occurs between the rotary pump sections depending on the load, and rotation on the side receiving the load occurs. The rotation of the pump part stops.

【0022】[0022]

【実施例】以下、この発明に係る真空ポンプの実施例に
ついて図1ないし図7を用い詳細に説明する。
Embodiments of the vacuum pump according to the present invention will be described in detail below with reference to FIGS.

【0023】この真空ポンプは図1に示すようにケーシ
ング1内に、第1の回転ポンプ部としてねじ溝ポンプ部
2、および第2の回転ポンプ部としてターボ分子ポンプ
部3を備える。
As shown in FIG. 1, this vacuum pump has a thread groove pump section 2 as a first rotary pump section and a turbo molecular pump section 3 as a second rotary pump section in a casing 1.

【0024】ねじ溝ポンプ部2は筒体からなるねじポン
プロータ200とねじ部201から構成されており、ね
じポンプロータ200はその内側に位置する軸部4に一
体に設けられ、かつ軸部4を中心に回転可能に支持さ
れ、またねじ部201はねじポンプロータ200の外周
面に形成されている。
The thread groove pump portion 2 is composed of a thread pump rotor 200 and a thread portion 201 which are cylindrical, and the thread pump rotor 200 is integrally provided on the shaft portion 4 located inside thereof and the shaft portion 4 is provided. The screw portion 201 is formed on the outer peripheral surface of the screw pump rotor 200.

【0025】ねじポンプロータ200の内側には軸部4
の外周面と対向する位置にステータ5が設けられ、ステ
ータ5にはモータ6の固定子600が設置されており、
また軸部4にはこの固定子600と対向する位置に当該
モータ6の回転子601が配設されている。
Inside the screw pump rotor 200, the shaft portion 4 is provided.
The stator 5 is provided at a position facing the outer peripheral surface of the stator 5, and the stator 600 of the motor 6 is installed on the stator 5.
A rotor 601 of the motor 6 is arranged on the shaft 4 at a position facing the stator 600.

【0026】一方、ターボ分子ポンプ部3はねじ溝ポン
プ部2と直列に配置され、かつ筒体からなるターボポン
プロータ300と翼部301から構成されている。
On the other hand, the turbo molecular pump portion 3 is arranged in series with the thread groove pump portion 2 and is composed of a turbo pump rotor 300 and a blade portion 301 which are cylindrical bodies.

【0027】ターボポンプロータ300はその内側の軸
部7にベアリング8,8を介して回転可能に取り付けら
れており、軸部7はねじ溝ポンプ部2の軸部4の延長線
上に位置し、かつ一端がねじポンプロータ200の端面
に一体に固定されている。
The turbo pump rotor 300 is rotatably attached to the inner shaft portion 7 via bearings 8 and 8. The shaft portion 7 is located on an extension line of the shaft portion 4 of the thread groove pump portion 2. In addition, one end is integrally fixed to the end surface of the screw pump rotor 200.

【0028】翼部301はターボポンプロータ300の
外周面側に設けられ、かつ複数の回転翼301aと固定
翼301bから構成されており、回転翼301aと固定
翼301bはターボポンプロータ300の回転中心軸線
に沿って交互に配設され、回転翼301aはターボポン
プロータ300の外周面に一体に、また固定翼301b
はケーシング1の内壁面に一体に設けられている。
The blade portion 301 is provided on the outer peripheral surface side of the turbo pump rotor 300 and is composed of a plurality of rotary blades 301a and fixed blades 301b. The rotary blades 301a and fixed blades 301b are the center of rotation of the turbo pump rotor 300. The rotor blades 301a are alternately arranged along the axis, and the rotor blades 301a are integrally formed on the outer peripheral surface of the turbo pump rotor 300, and the rotor blades 301a are fixed blades 301b.
Is integrally provided on the inner wall surface of the casing 1.

【0029】ターボ分子ポンプ部3とねじ溝ポンプ部2
との間にはすべり機構として磁気カップリング部9が設
けられており、磁気カップリング部9は第1および第2
の磁石体900,901から構成されている。
Turbo molecular pump section 3 and thread groove pump section 2
A magnetic coupling portion 9 is provided as a sliding mechanism between the magnetic coupling portion 9 and the first and second magnetic coupling portions 9.
It is composed of magnet bodies 900 and 901.

【0030】第1の磁石体900はねじ溝ポンプ部2と
ターボ分子ポンプ部3との間に位置し、かつねじ溝ポン
プ部2側に取り付けられている一方、第2の磁石体90
1は第1の磁石体900と対向し、かつターボ分子ポン
プ部3側に取り付けられている(図2参照)。
The first magnet body 900 is located between the thread groove pump portion 2 and the turbo molecular pump portion 3 and is attached to the thread groove pump portion 2 side, while the second magnet body 90 is attached.
Reference numeral 1 is opposed to the first magnet body 900 and is attached to the turbo molecular pump unit 3 side (see FIG. 2).

【0031】また、第1および第2の磁石体900,9
01は永久磁石から構成され、互いに吸引し合うように
設けられているとともに、ねじ溝ポンプ部2およびター
ボ分子ポンプ部3の回転中心回りに環状に複数配設され
ている(図3参照)。
Further, the first and second magnet bodies 900, 9
Reference numeral 01 is composed of permanent magnets, and is provided so as to attract each other, and a plurality of them are arranged annularly around the rotation centers of the thread groove pump portion 2 and the turbo molecular pump portion 3 (see FIG. 3).

【0032】このような構成のすべり機構は吸引力によ
りターボ分子ポンプ部3とねじ溝ポンプ部2を磁気的に
非接触に接合するとともに、その接合力(吸引力)を上
回る過大な負荷がターボ分子ポンプ部3に作用するとき
は当該負荷に基づきすべりが生じ、ねじ溝ポンプ部2の
みの回転を可能とするものである。
In the slip mechanism having such a structure, the turbo molecular pump portion 3 and the thread groove pump portion 2 are magnetically joined in a non-contact manner by a suction force, and an excessive load exceeding the joining force (suction force) is turbo-charged. When the molecular pump portion 3 is acted on, slippage occurs due to the load, and only the thread groove pump portion 2 is allowed to rotate.

【0033】なお、ターボ分子ポンプ部3のみでは高真
空側で排気効率がよく、ねじ溝ポンプ部2のみでは低真
空側で排気効率がよい。このように効率のよい圧力帯域
に差が生じるのは、ターボ分子ポンプ部3は高真空側に
おいてガスの排気に有効な翼部301を備えるのに対
し、ねじ溝ポンプ部2は低真空側においてガスの排気が
有効なねじ部201を備えるためである。
It should be noted that the turbo molecular pump section 3 alone has good exhaust efficiency on the high vacuum side, and the thread groove pump section 2 only has good exhaust efficiency on the low vacuum side. The reason why there is a difference in the efficient pressure band is that the turbo-molecular pump unit 3 is provided with the blade portion 301 effective for exhausting gas on the high vacuum side, whereas the thread groove pump unit 2 is on the low vacuum side. This is because the screw portion 201 that is effective for exhausting gas is provided.

【0034】次に、上記の如く構成された真空ポンプの
動作を図1に基づき説明する。
Next, the operation of the vacuum pump configured as described above will be described with reference to FIG.

【0035】この真空ポンプによれば、運転開始当初の
ように排気しようとするガスの圧力が高い帯域(低真空
側)では、ターボ分子ポンプ部3は回転せず、ねじ溝ポ
ンプ部2のみが回転する。
According to this vacuum pump, the turbo molecular pump section 3 does not rotate in the high pressure region (low vacuum side) where the gas to be exhausted is at the beginning of the operation, and only the thread groove pump section 2 is rotated. Rotate.

【0036】すなわち、モータ6を起動すると、ねじポ
ンプロータ200の回転力が磁気カップリング部9を介
してターボポンプロータ300側に伝達されようとす
る。
That is, when the motor 6 is started, the rotational force of the screw pump rotor 200 tends to be transmitted to the turbo pump rotor 300 side via the magnetic coupling portion 9.

【0037】しかし、低真空側ではターボ分子ポンプ部
3に過大な負荷が作用し、その負荷が磁気カップリング
部9の吸引力を上回り、磁気カップリング部9でのすべ
りが大きなものとなる。
On the low vacuum side, however, an excessive load acts on the turbo molecular pump section 3, and the load exceeds the attractive force of the magnetic coupling section 9, and the slippage at the magnetic coupling section 9 becomes large.

【0038】そのため、ねじポンプロータ200の回転
力はターボポンプロータ300側に伝達されず、よって
ターボ分子ポンプ部3は回転せず、ねじ溝ポンプ部2の
みが回転し、そのねじ部201によるガスの排気が行わ
れる。
Therefore, the rotational force of the screw pump rotor 200 is not transmitted to the turbo pump rotor 300 side, the turbo molecular pump unit 3 does not rotate, only the thread groove pump unit 2 rotates, and the gas generated by the screw unit 201 is changed. Is exhausted.

【0039】このように、低真空側では磁気カップリン
グ部9でのすべりを通じてターボ分子ポンプ部3にかか
る負荷が逃げ、その負荷による回転数の低下や発熱が防
止される。
As described above, on the low vacuum side, the load applied to the turbo molecular pump unit 3 escapes through the slippage in the magnetic coupling unit 9, and the reduction of the rotation speed and the heat generation due to the load are prevented.

【0040】さらに、排気しようとするガスの圧力が次
第に低下し、高真空側に至ると、これに伴いターボ分子
ポンプ部3に作用する負荷が磁気カップリング部9の吸
引力を下回り、その吸引力によりターボ分子ポンプ部3
とねじ溝ポンプ部2とが非接触に接合される。
Further, when the pressure of the gas to be exhausted gradually decreases and reaches the high vacuum side, the load acting on the turbo molecular pump section 3 becomes less than the suction force of the magnetic coupling section 9 as a result, and the suction is performed. Turbo molecular pump part 3 by force
And the thread groove pump portion 2 are joined in a non-contact manner.

【0041】これにより、ねじポンプロータ200の回
転力が磁気カップリング部9を介してターボポンプロー
タ300側に伝達され、その結果、ねじ溝ポンプ部2に
加えて、ターボ分子ポンプ部3も回転し、その翼部30
1によるガスの排気が行われる。
As a result, the rotational force of the screw pump rotor 200 is transmitted to the turbo pump rotor 300 side via the magnetic coupling portion 9, and as a result, in addition to the thread groove pump portion 2, the turbo molecular pump portion 3 also rotates. And its wings 30
The gas is exhausted according to 1.

【0042】すなわち、この実施例の真空ポンプは、タ
ーボ分子ポンプ部3に過大な負荷が作用する圧力帯域
(低真空側)ではターボ分子ポンプ部3とねじ溝ポンプ
部2間にその負荷に応じたすべりが生じ、ターボ分子ポ
ンプ部3の回転が停止するように構成したものである。
このため過大な負荷を受けながらターボ分子ポンプ部3
が回転し続ける不具合、すなわち回転数の低下や発熱を
防止でき、排気効率の向上と、排気作動可能な圧力帯域
の拡大を図れる。
That is, in the vacuum pump of this embodiment, depending on the load between the turbo molecular pump section 3 and the thread groove pump section 2, in the pressure band (low vacuum side) where an excessive load acts on the turbo molecular pump section 3. It is configured such that slippage occurs and the rotation of the turbo molecular pump unit 3 is stopped.
Therefore, the turbo molecular pump unit 3 receives an excessive load.
Can be prevented from continuing to rotate, that is, reduction in the number of revolutions and heat generation can be prevented, exhaust efficiency can be improved, and the pressure range in which exhaust can be performed can be expanded.

【0043】しかも、この真空ポンプによると、負荷に
基づくターボ分子ポンプ部3の回転停止がねじ溝ポンプ
部2とターボ分子ポンプ部3間を切り離す機構によるの
ではなく、すべりによるものであるため、機器構造も簡
単である。
Further, according to this vacuum pump, the rotation stop of the turbo molecular pump unit 3 due to the load is not caused by the mechanism for separating the thread groove pump unit 2 and the turbo molecular pump unit 3 but by the slip, The device structure is also simple.

【0044】なお、すべり機構については図4あるいは
図5に示す構造のものを適用することができる。
As for the sliding mechanism, the one having the structure shown in FIG. 4 or 5 can be applied.

【0045】図4のすべり機構は固体摩擦を利用したも
のであり、第1および第2の当接部10,11から構成
されている。
The sliding mechanism of FIG. 4 utilizes solid friction and is composed of first and second contact portions 10 and 11.

【0046】第1の当接部10はねじ溝ポンプ部2とタ
ーボ分子ポンプ部3との間に位置し、かつねじ溝ポンプ
部2側に取り付けられている一方、第2の当接部11は
第1の当接部10に摺動可能に接し、かつターボ分子ポ
ンプ部3側に取り付けられている。
The first contact portion 10 is located between the thread groove pump portion 2 and the turbo molecular pump portion 3 and is attached to the thread groove pump portion 2 side, while the second contact portion 11 is provided. Is slidably in contact with the first contact portion 10 and is attached to the turbo molecular pump portion 3 side.

【0047】このような構成のすべり機構は両当接部1
0,11間に生じる摩擦力によりターボ分子ポンプ部3
とねじ溝ポンプ部2を接合するとともに、その接合力
(摩擦力)を上回る過大な負荷がターボ分子ポンプ部3
に作用するときには当該負荷に基づきすべりが生じ、ね
じ溝ポンプ部2のみの回転を可能とするものである。
The sliding mechanism having such a structure is provided with the contact portions 1
Due to the frictional force generated between 0 and 11, the turbo molecular pump unit 3
And the thread groove pump portion 2 are joined, and an excessive load exceeding the joining force (friction force) is applied to the turbo molecular pump portion 3
When this occurs, a slip occurs due to the load, and only the thread groove pump portion 2 can rotate.

【0048】図5のすべり機構は流体の粘性を利用した
ものであり、ねじ溝ポンプ部2とターボ分子ポンプ部3
との間に磁性流体12を備える。
The slip mechanism of FIG. 5 utilizes the viscosity of fluid, and the thread groove pump section 2 and the turbo molecular pump section 3 are used.
And a magnetic fluid 12 between them.

【0049】磁性流体12はねじポンプロータ200の
端面に形成した環状の注入溝13に充填されており、ま
た注入溝13には突起部14の先部が磁性流体12と接
するように挿入配設され、突起部14の後部はターボポ
ンプロータ300に固定されている。つまり磁性流体1
2はねじ溝ポンプ部2に直接接するとともに、突起部1
4を介してターボ分子ポンプ部3に接するように設けら
れている。
The magnetic fluid 12 is filled in an annular injection groove 13 formed on the end surface of the screw pump rotor 200, and is inserted and arranged so that the tip of the protrusion 14 is in contact with the magnetic fluid 12. The rear portion of the protrusion 14 is fixed to the turbo pump rotor 300. That is, magnetic fluid 1
2 directly contacts the thread groove pump unit 2 and the protrusion 1
It is provided so as to be in contact with the turbo molecular pump unit 3 via 4.

【0050】注入溝13の内外両側壁には磁性流体12
の流出を防止するための電磁石15が埋設されている。
The magnetic fluid 12 is formed on both inner and outer side walls of the injection groove 13.
An electromagnet 15 is embedded to prevent the outflow of water.

【0051】このような構成のすべり機構は磁性流体1
2を介してねじ溝ポンプ部2とターボ分子ポンプ部3を
接合する、つまり磁性流体12の粘性で突起部14を注
入溝13に拘束し、これによりターボ分子ポンプ部3と
ねじ溝ポンプ部2の接合を図るとともに、その接合力
(粘性による拘束力)を上回る過大な負荷がターボ分子
ポンプ部3に作用するときは当該負荷に基づきすべりが
生じ、ねじ溝ポンプ部2のみの回転を可能とするもので
ある。
The slip mechanism having such a structure is used for the magnetic fluid 1.
The thread groove pump portion 2 and the turbo molecular pump portion 3 are joined together via 2, that is, the protrusion 14 is restrained in the injection groove 13 by the viscosity of the magnetic fluid 12, whereby the turbo molecular pump portion 3 and the thread groove pump portion 2 When an excessive load exceeding the joining force (constraining force due to viscosity) acts on the turbo molecular pump unit 3, slipping occurs due to the load and only the thread groove pump unit 2 can rotate. To do.

【0052】特に、このすべり機構では磁性流体12の
すべてを電磁石15側に吸引して磁性流体12と突起部
14を非接触とし、これによりねじ溝ポンプ部2とター
ボ分子ポンプ部3との接合を解除でき、またその接合力
の変更も電磁石15の吸引力の調節を通じて容易に行え
る。
In particular, in this sliding mechanism, all of the magnetic fluid 12 is attracted to the electromagnet 15 side so that the magnetic fluid 12 and the protrusion 14 do not come into contact with each other, whereby the thread groove pump portion 2 and the turbo molecular pump portion 3 are joined. Can be canceled and the joining force can be easily changed by adjusting the attraction force of the electromagnet 15.

【0053】なお、第1および第2の磁石体900,9
01についてはいずれか一方あるいは両方を電磁石とし
てもよい。このように電磁石とする場合は励磁電流を変
更するのみでターボ分子ポンプ部3とねじ溝ポンプ部2
の磁気的接合力を容易に変更できる。
Incidentally, the first and second magnet bodies 900, 9
Regarding 01, either one or both may be an electromagnet. When the electromagnet is used in this way, the turbo molecular pump unit 3 and the thread groove pump unit 2 are simply changed by changing the exciting current.
The magnetic joining force of can be easily changed.

【0054】第1の回転ポンプ部についてはねじ溝ポン
プ部2に限定されず、ターボ分子ポンプ部3とは異なる
圧力帯域で回転によるガスを排気を行う他のターボ分子
ポンプ部とすることもでき、また第2の回転ポンプ部に
ついてはターボ分子ポンプ部3に限定されず、ねじ溝ポ
ンプ部2とは異なる圧力帯域で回転によるガスを排気を
行う他のねじ溝ポンプ部とすることもでき、両回転ポン
プ部ともその形式は問わない。つまり第1および第2の
回転ポンプ部は互いに異なる圧力帯域で回転によるガス
の排気を行うポンプであればよい。
The first rotary pump unit is not limited to the thread groove pump unit 2 and may be another turbo molecular pump unit that exhausts gas by rotation in a pressure band different from that of the turbo molecular pump unit 3. The second rotary pump unit is not limited to the turbo-molecular pump unit 3, and may be another screw groove pump unit that exhausts gas by rotation in a pressure band different from that of the screw groove pump unit 2. The type of both rotary pump parts does not matter. That is, the first and second rotary pump parts may be pumps that exhaust gas by rotation in different pressure zones.

【0055】図7は本実施例装置の排気特性を示したも
のであり、その排気特性は実線で示す通り、ねじ溝ポ
ンプ部2単品の特性(一点鎖線参照)とターボ分子ポ
ンプ部3単品の特性(一点鎖線参照)との両者を複合
したものとなる。
FIG. 7 shows the exhaust characteristic of the apparatus of this embodiment. As shown by the solid line, the exhaust characteristic is the characteristic of the thread groove pump unit 2 alone (see the alternate long and short dash line) and the turbo molecular pump unit 3 alone. It is a combination of both the characteristics (see the chain line).

【0056】図8は本実施例装置と従来例の広帯域型複
合ポンプとを消費電力につき対比したものであり、図中
二点鎖線は本実施例装置におけるねじ溝ポンプ部2
での消費電力(鎖線は磁気カップリング部9の電磁力
を調節してすべりを制御した場合)を、また点線は従
来例の広帯域型複合ポンプにおけるねじ溝ポンプ部での
消費電力を表したものである。これによると二点鎖線
と点線との対比から本実施例装置の方が明らかに低真
空側での電力消費量が少ないことが分かる。なお一点鎖
線は本実施例装置におけるターボ分子ポンプ部3での
消費電力を表したものである。
FIG. 8 is a comparison of the power consumption of the device of this embodiment and the conventional wide band type composite pump. The chain double-dashed line in the figure indicates the thread groove pump portion 2 of the device of this embodiment.
Power consumption (the chain line indicates the case where the electromagnetic force of the magnetic coupling part 9 is adjusted to control the slip), and the dotted line indicates the power consumption at the thread groove pump part in the conventional wide band type composite pump. Is. According to this, it can be seen from the comparison between the two-dot chain line and the dotted line that the power consumption of the device of this embodiment is obviously smaller on the low vacuum side. The alternate long and short dash line represents the power consumption of the turbo molecular pump unit 3 in the apparatus of this embodiment.

【0057】[0057]

【発明の効果】この発明に係る真空ポンプにあっては、
上記の如く第1および第2の回転ポンプ部のいずれかに
過大な負荷が作用する圧力帯域では両回転ポンプ部間に
その負荷に応じたすべりが生じ、負荷を受けた側の回転
ポンプ部の回転が停止するように構成したものである。
このため過大な負荷を受けながら回転ポンプ部が回転し
続ける不具合、すなわち回転数の低下や発熱を防止で
き、排気効率の向上と、排気作動可能な圧力帯域の拡大
を図れる。
According to the vacuum pump of the present invention,
As described above, in a pressure band in which an excessive load acts on either the first or second rotary pump unit, a slip corresponding to the load occurs between both rotary pump units, and the rotary pump unit on the side receiving the load is slipped. It is configured to stop rotation.
For this reason, it is possible to prevent the problem that the rotary pump portion continues to rotate while receiving an excessive load, that is, it is possible to prevent a decrease in the number of revolutions and heat generation, improve exhaust efficiency, and expand the pressure band in which exhaust operation is possible.

【0058】しかも、この真空ポンプにあっては、負荷
に基づく回転ポンプ部の回転停止動作が第1および第2
の回転ポンプ部間を切り離す機構によるのではなく、す
べりによるものであるため、機器構造も簡単である。
Moreover, in this vacuum pump, the rotation stop operation of the rotary pump portion based on the load is the first and second.
The structure of the device is simple because it does not depend on the mechanism for separating the rotary pump parts of the above, but due to the slip.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の断面図。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】図1に示すA部周辺の詳細説明図。FIG. 2 is a detailed explanatory diagram around a portion A shown in FIG.

【図3】図1のB−B線断面図FIG. 3 is a sectional view taken along line BB of FIG.

【図4】この発明の他の実施例の断面図。FIG. 4 is a sectional view of another embodiment of the present invention.

【図5】この発明の他の実施例の断面図。FIG. 5 is a sectional view of another embodiment of the present invention.

【図6】この発明の実施例装置の特性図。FIG. 6 is a characteristic diagram of an apparatus according to an embodiment of the present invention.

【図7】この発明の実施例装置の特性図。FIG. 7 is a characteristic diagram of an apparatus according to an embodiment of the present invention.

【図8】ターボ分子ポンプの特性図。FIG. 8 is a characteristic diagram of a turbo molecular pump.

【図9】ねじ溝ポンプ等の特性図。FIG. 9 is a characteristic diagram of a thread groove pump or the like.

【図10】従来の広帯域型複合ポンプの説明図。FIG. 10 is an explanatory diagram of a conventional broadband composite pump.

【図11】従来の広帯域型複合ポンプの特性図。FIG. 11 is a characteristic diagram of a conventional broadband type composite pump.

【符号の説明】[Explanation of symbols]

2 ねじ溝ポンプ部(第1の回転ポンプ部) 3 ターボ分子ポンプ部(第2の回転ポンプ部) 9 磁気カップリング部(すべり機構) 10 第1の当接部 11 第2の当接部 12 磁性流体 200 ねじポンプロータ 201 ねじ部 300 ターボポンプロータ 301 翼部 900 第1の磁石体 901 第2の磁石体 2 Thread Groove Pump Section (First Rotation Pump Section) 3 Turbo Molecular Pump Section (Second Rotation Pump Section) 9 Magnetic Coupling Section (Sliding Mechanism) 10 First Contact Section 11 Second Contact Section 12 Magnetic fluid 200 Screw pump rotor 201 Screw portion 300 Turbo pump rotor 301 Wing portion 900 First magnet body 901 Second magnet body

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一定の圧力帯域で回転によるガスの排気
を行うとともに、その排気のための翼部またはねじ部を
備えてなる第1の回転ポンプ部と、 上記第1の回転ポンプ部とは異なる圧力帯域で回転によ
るガスの排気を行うとともに、その排気のための翼部ま
たはねじ部を備えてなる第2の回転ポンプ部とを有し、 第1の回転ポンプ部と第2の回転ポンプ部を、ポンプ部
に作用する負荷に基づきすべりが生ずるすべり機構を介
して接合したことを特徴とする真空ポンプ。
1. A first rotary pump part, which is configured to exhaust gas by rotation in a constant pressure range, and is provided with blades or screw parts for exhausting the gas, and the first rotary pump part. The first rotary pump unit and the second rotary pump have a second rotary pump unit including a blade portion or a screw portion for exhausting the gas by rotating in different pressure zones. A vacuum pump characterized in that the parts are joined via a slip mechanism in which a slip occurs due to a load acting on the pump part.
【請求項2】 第1の回転ポンプ部が、 回転可能に配設された筒体からなるねじポンプロータ
と、 上記ねじポンプロータの外周面に設けたねじ部とを備
え、 第2の回転ポンプ部が、 回転可能に配設された筒体からなるターボポンプロータ
と、 上記ターボポンプロータの外周面側に設けた翼部とを備
えることを特徴とする請求項1記載の真空ポンプ。
2. A second rotary pump, wherein the first rotary pump portion includes a screw pump rotor formed of a cylindrical body rotatably arranged, and a screw portion provided on an outer peripheral surface of the screw pump rotor. The vacuum pump according to claim 1, wherein the portion includes a turbo pump rotor formed of a cylindrical body rotatably arranged, and a blade portion provided on an outer peripheral surface side of the turbo pump rotor.
【請求項3】 すべり機構が、 第1の回転ポンプ部と第2の回転ポンプ部とを磁気的に
非接触に接合する磁気カップリング部からなることを特
徴とする請求項1記載の真空ポンプ。
3. The vacuum pump according to claim 1, wherein the sliding mechanism comprises a magnetic coupling portion that magnetically joins the first rotary pump portion and the second rotary pump portion in a non-contact manner. .
【請求項4】 磁気カップリング部が、 第1の回転ポンプ部と第2の回転ポンプ部との間に位置
し、かつ第1の回転ポンプ部側に取り付けられた第1の
磁石体と、 上記第1の磁石体と対向し、かつ第2の回転ポンプ部側
に取り付けられた第2の磁石体とからなることを特徴と
する請求項3記載の真空ポンプ。
4. A first magnetic body, wherein the magnetic coupling part is located between the first rotary pump part and the second rotary pump part, and is attached to the first rotary pump part side, 4. The vacuum pump according to claim 3, comprising a second magnet body facing the first magnet body and attached to the second rotary pump section side.
【請求項5】 第1および第2の磁石体が永久磁石から
なることを特徴とする請求項4記載の真空ポンプ。
5. The vacuum pump according to claim 4, wherein the first and second magnet bodies are permanent magnets.
【請求項6】 第1および第2の磁石体のうちいずれか
一方が電磁石からなることを特徴とする請求項4記載の
真空ポンプ。
6. The vacuum pump according to claim 4, wherein one of the first and second magnet bodies comprises an electromagnet.
【請求項7】 すべり機構が、 第1の回転ポンプ部と第2の回転ポンプ部との間に位置
し、かつ第1の回転ポンプ部側に設けた第1の当接部
と、 上記第1の当接部に摺動可能に接し、かつ第2の回転ポ
ンプ部側に設けた第2の当接部とからなることを特徴と
する請求項1記載の真空ポンプ。
7. A sliding mechanism is located between the first rotary pump part and the second rotary pump part, and a first abutting part provided on the first rotary pump part side; The vacuum pump according to claim 1, wherein the vacuum pump comprises a second contact portion slidably in contact with the first contact portion and provided on the second rotary pump portion side.
【請求項8】 すべり機構が、 第1の回転ポンプ部と第2の回転ポンプ部との間に、こ
の両ポンプ部を接する磁性流体を備えてなることを特徴
とする請求項1記載の真空ポンプ。
8. The vacuum according to claim 1, wherein the sliding mechanism includes a magnetic fluid between the first rotary pump section and the second rotary pump section, the magnetic fluid being in contact with the both pump sections. pump.
JP08720495A 1995-04-12 1995-04-12 Vacuum pump Expired - Fee Related JP3558733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08720495A JP3558733B2 (en) 1995-04-12 1995-04-12 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08720495A JP3558733B2 (en) 1995-04-12 1995-04-12 Vacuum pump

Publications (2)

Publication Number Publication Date
JPH08284877A true JPH08284877A (en) 1996-10-29
JP3558733B2 JP3558733B2 (en) 2004-08-25

Family

ID=13908444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08720495A Expired - Fee Related JP3558733B2 (en) 1995-04-12 1995-04-12 Vacuum pump

Country Status (1)

Country Link
JP (1) JP3558733B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006129A1 (en) * 1999-07-16 2001-01-25 Leybold Vakuum Gmbh Friction vacuum pump for use in a system for regulating pressure and pressure regulating system comprising a friction vacuum pump of this type
EP2843238B1 (en) * 2013-08-21 2022-06-01 Pfeiffer Vacuum Gmbh Vacuum pump in which different modules either can be driven with different speeds or can be traversed by different gas flows

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006129A1 (en) * 1999-07-16 2001-01-25 Leybold Vakuum Gmbh Friction vacuum pump for use in a system for regulating pressure and pressure regulating system comprising a friction vacuum pump of this type
US6702544B1 (en) 1999-07-16 2004-03-09 Leybold Vakuum Gmbh Friction vacuum pump for use in a system for regulating pressure and pressure regulating system comprising a friction vacuum pump of this type
EP2843238B1 (en) * 2013-08-21 2022-06-01 Pfeiffer Vacuum Gmbh Vacuum pump in which different modules either can be driven with different speeds or can be traversed by different gas flows

Also Published As

Publication number Publication date
JP3558733B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
PT1478855E (en) A centrifugal compressor
WO2007145033A1 (en) Motor rotor and method of correcting rotational balance of the same
JPH11313471A (en) Brushless dc motor, magnetic bearing device and turbomolecular pump
JP2556320B2 (en) Vacuum pump
JPH09509999A (en) Compressor
US20070132330A1 (en) Fan assemblies employing LSPM motors and LSPM motors having improved synchronization
JPH08284877A (en) Vacuum pump
JP2008190328A (en) Centrifugal compressor
JPH08254193A (en) Positive displacement vacuum pump
JP3742777B2 (en) Magnetic levitation type magnet pump
JP2714113B2 (en) Dry vacuum pump and operating method thereof
JP3485351B2 (en) Axial fluid electric machine
JP2012125126A (en) Motor device
JP2001304121A (en) Motor compressor
JP2020184872A (en) Braking method for permanent magnet synchronous motor
EP3575604B1 (en) Scroll compressor
JP2020184872A5 (en)
JPH0726623B2 (en) Vacuum unit
JPS597039B2 (en) rotary compressor
JP2004116335A (en) Underwater pump for deep well
JP2006152994A (en) Centrifugal compressor
JP2006057505A (en) Vacuum pump
JPH0617035Y2 (en) Turbo molecular pump
JPH05272488A (en) Turbo-molecular pump
WO2013186935A1 (en) Motor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350