JPH08283917A - Austenitic stainless steel and welding material - Google Patents

Austenitic stainless steel and welding material

Info

Publication number
JPH08283917A
JPH08283917A JP11264995A JP11264995A JPH08283917A JP H08283917 A JPH08283917 A JP H08283917A JP 11264995 A JP11264995 A JP 11264995A JP 11264995 A JP11264995 A JP 11264995A JP H08283917 A JPH08283917 A JP H08283917A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
welding
corrosion resistance
welding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11264995A
Other languages
Japanese (ja)
Inventor
Junji Itagaki
純司 板垣
Akitake Kamei
明剛 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKURA KOGYO KK
Original Assignee
TOKURA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKURA KOGYO KK filed Critical TOKURA KOGYO KK
Priority to JP11264995A priority Critical patent/JPH08283917A/en
Publication of JPH08283917A publication Critical patent/JPH08283917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE: To improve the ductility, toughness, and corrosion resistance of a piping member for semiconductor manufacturing process. CONSTITUTION: In the composition of an austenitic stainless steel used for piping member for semiconductor manufacturing process and a welding material for it, <=0.08% C, 8-16% Ni, and 16-22% Cr are incorporated and Si and Mn are excluded from constituents and further, if necessary, the allowable contents of Si and Mn, as impurities, are limited to <=0.1%. By this method, the ductility, toughness, and corrosion resistance of piping member for semiconductor manufacturing process can be improved, and deterioration in the purity of high-purity gas used for equipment can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造プロセス等の
超高純度ガス供給系又は排気系用配管或いは継手、チュ
ーブ等の配管部材に用いられるオーステナイト系ステン
レス鋼及びその溶接材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel used for piping or joints for ultra-high purity gas supply system or exhaust system for semiconductor manufacturing process or piping members such as tubes, and welding material thereof.

【0002】[0002]

【従来の技術】近年の半導体製造技術の進歩は目ざまし
いものである。半導体製造プロセスにおいては、高純度
の特殊ガスが使用され、これらのガスに対する純度の要
求は半導体の集積度が増すにしたがって厳しくなってき
ている。そして、半導体製造装置のガス供給ラインを構
成する配管及び継手やチューブなどの配管部材の内壁面
は、これらの特殊ガスと直接接触する。従って、この分
野に用いられる配管材料は特殊ガスの供給中に材料から
ガスの汚染源である不純物やパーティクルや水分などが
放出されず、しかも耐食性に優れた材料であることが要
求される。現在このような材料としては、SUS30
4,SUS304L,SUS316,SUS316Lな
どのオーステナイト系ステンレス鋼が一般に用いられて
いる。
2. Description of the Related Art Recent advances in semiconductor manufacturing technology have been remarkable. In the semiconductor manufacturing process, high-purity special gases are used, and the requirements for the purity of these gases are becoming stricter as the degree of integration of semiconductors increases. Then, the inner wall surfaces of the pipes and the pipe members such as joints and tubes that constitute the gas supply line of the semiconductor manufacturing apparatus are in direct contact with these special gases. Therefore, the piping material used in this field is required to be a material that does not release impurities such as gas contamination sources such as impurities, particles, and moisture during the supply of the special gas and has excellent corrosion resistance. Currently, as such a material, SUS30
Austenitic stainless steels such as 4, SUS304L, SUS316, and SUS316L are generally used.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来材
では、Siで1%、Mnで2%を上限としてそれぞれ積
極的に添加含有させている。しかし、本発明者らは、鋭
意研究の結果、Siに起因して溶接金属にσ相が析出
し、材料の脆化と耐食性の劣化を招き、また、溶接時
に、溶融部から発生したMnを主成分とする金属ヒュー
ムの付着により耐食性が劣化することを見出した。本発
明は、上記事情を背景としてなされたものであり、延靱
性及び耐食性に優れたオーステナイト系ステンレス鋼と
その共金溶接材料を提供することを目的とする。
By the way, in the above-mentioned conventional materials, the upper limit of Si is 1% and the upper limit of Mn is 2%. However, as a result of diligent research, the present inventors have found that a σ phase is precipitated in the weld metal due to Si, which causes embrittlement and deterioration of corrosion resistance of the material, and also causes Mn generated from the molten portion at the time of welding. It was found that the corrosion resistance deteriorates due to the adhesion of metallic fume as the main component. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an austenitic stainless steel excellent in ductility and corrosion resistance, and a common metal welding material thereof.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の手段すなわち、第1の発明は、重量%でC:0.08
%以下、Ni:8〜16%、Cr:16〜22%を含有
し、残部がFe及び不可避的不純物からなり延靱性及び
耐食性に優れていることを特徴とするオーステナイト系
ステンレス鋼である。第2の発明は、上記第1の発明の
成分に加え所望により、重量%で、Mo:2〜3%、T
i:4×(C%)〜0.6%、Nb:8×(C%)〜1
%の1種又は2種以上を含有し、残部がFe及び不可避
的不純物からなり、延靱性及び耐食性に優れていること
を特徴とするオーステナイト系ステンレス鋼である。第
3の発明は、第1又は第2の発明において、不可避的不
純物としてのSi、Mnの許容含有量を重量%で0.1
%以下に制限したオーステナイト系ステンレス鋼であ
る。第4の発明は、第1〜3の発明鋼と同一組成を有す
る共金溶接材料である。
[Means for Solving the Problems] Means for achieving the above-mentioned object, that is, the first invention is C: 0.08% by weight.
% Or less, Ni: 8 to 16%, Cr: 16 to 22%, the balance being Fe and unavoidable impurities and being excellent in ductility and corrosion resistance, an austenitic stainless steel. The second invention, in addition to the components of the above-mentioned first invention, optionally comprises Mo: 2 to 3%, T by weight%.
i: 4 x (C%) to 0.6%, Nb: 8 x (C%) to 1
%, And the balance consists of Fe and unavoidable impurities, and is excellent in ductility and corrosion resistance, and is an austenitic stainless steel. A third invention is the same as the first or second invention, wherein the allowable content of Si and Mn as unavoidable impurities is 0.1% by weight.
% Is an austenitic stainless steel limited to below. A fourth invention is a common metal welding material having the same composition as the steels of the first to third inventions.

【0005】[0005]

【作用】従来のSUS304(L),SUS316
(L),SUS321,SUS347には重量%でS
i:1.0%,Mn:2%をそれぞれ上限として積極的
に添加含有させているのに対し、本発明鋼及び溶接材料
はSi,Mnを無添加とし、その不可避的不純物として
の許容含有量をいずれも重量%で0.1%以下に制限し
たことを特徴とする。その限定理由を以下に述べる。
[Function] Conventional SUS304 (L), SUS316
(L), SUS321, SUS347 are S in weight%
While i: 1.0% and Mn: 2% are positively added and contained, respectively, the steels and welding materials of the present invention do not contain Si and Mn, and their allowable contents as inevitable impurities. All of the amounts are characterized by being limited to 0.1% by weight or less. The reason for the limitation will be described below.

【0006】Siはフェライト形成元素であって、本発
明鋼に多量に含有するとδフェライトを晶出して熱間加
工性、延靱性、耐応力腐食割性を除く耐食性の劣化を招
く、又、Siは鋼中の酸素と結び付いて、非金属介在物
を形成し、鋼の清浄度を低下せしめ延靱性を劣化させる
作用があるので従来鋼よりも更なる延靱性の改善を図る
ためには、Siを無添加とし、不可避的不純物として、
その含有量を極力低減する必要がある。又、溶接材料に
おいては、溶接金属の熱間割れ防止の観点から溶接金属
中に5〜10%のδフェライトが晶出するように成分調
整されている。なお、半導体製造関連装置の配管の一部
においては、約900℃に加熱されたガスが流れ、管の
内壁が600℃以上に加熱される。例えば約0.5%程
度のSiを含有する従来のSUS316L用の溶接材料
にて突合わせ溶接された管材の溶接金属にはSi濃度の
高いδフェライトが晶出している。この溶接金属が60
0℃以上の温度に長時間露されるとδフェライトがσ相
に変態してσ相析出による延靱性及び耐食性の低下を招
くという知見を得た。この知見に基づき、δフェライト
のσ相変態とSi含有量との相関を試験検討した結果、
Si含有量を低減することにより、δフェライトのσ相
変態開始時間が長時間側に移行し、実質的にσ相変態が
抑制されることを確認した。従って本発明の溶接材料に
は使用中における延靱性及び耐食性の低下防止の観点か
らSiを無添加とし、不可避的不純物として、その含有
量を極力低減する必要がある。しかし、現状の生産的規
模における精錬技術レベルを考慮して、不可避的不純物
としてのSiの許容含有量の上限を0.1%とした。
Si is a ferrite-forming element, and when contained in a large amount in the steel of the present invention, δ-ferrite is crystallized to cause deterioration of hot workability, ductility, corrosion resistance except stress corrosion resistance, and Si. Combines with oxygen in the steel to form non-metallic inclusions, which lowers the cleanliness of the steel and deteriorates the toughness. Therefore, in order to improve the toughness further than conventional steel, As an unavoidable impurity,
It is necessary to reduce the content as much as possible. Further, in the welding material, the components are adjusted so that 5 to 10% of δ ferrite is crystallized in the weld metal from the viewpoint of preventing hot cracking of the weld metal. In addition, in a part of the piping of the semiconductor manufacturing related apparatus, the gas heated to about 900 ° C. flows and the inner wall of the tube is heated to 600 ° C. or more. For example, δ ferrite having a high Si concentration is crystallized in the weld metal of the pipe material butt-welded with the conventional welding material for SUS316L containing about 0.5% Si. This welding metal is 60
It was found that δ-ferrite is transformed into a σ phase when exposed to a temperature of 0 ° C. or higher for a long time, resulting in a decrease in ductility and corrosion resistance due to σ-phase precipitation. Based on this finding, as a result of test examination of the correlation between the σ phase transformation of δ ferrite and the Si content,
It was confirmed that by reducing the Si content, the σ-phase transformation start time of δ ferrite shifts to a longer time side, and the σ-phase transformation is substantially suppressed. Therefore, it is necessary to add no Si to the welding material of the present invention as an unavoidable impurity and reduce its content as much as possible from the viewpoint of preventing reduction in ductility and corrosion resistance during use. However, considering the refining technology level in the current productive scale, the upper limit of the allowable content of Si as an unavoidable impurity is set to 0.1%.

【0007】配管や継手を溶接にてアッセンブルする場
合、溶接時、溶融部から金属ヒュームが発生する。この
金属ヒュームはステンレス鋼の構成成分のうちで最も蒸
気圧の高いMnが主成分である。この金属ヒュームが溶
接部近傍に付着して腐食の原因となる。従って、溶接部
の完全な耐食性を得るためには可能な限り溶接時に発生
するMnヒューム量を低減する必要があり、そのために
は管材及び溶接材料のMn含有量を極力低減しなければ
ならない。本発明のステンレス鋼及び溶接材料において
は前記理由により、Mnは無添加とし、不可避的不純物
として、その含有量を極力低減することを特徴とするも
のである。しかし、現状の生産的規模における精錬技術
レベルを考慮して、不可避的不純物としてのMnの許容
含有量の上限を0.1%とした。
When assembling pipes and joints by welding, metal fumes are generated from the molten portion during welding. This metal fume is mainly composed of Mn, which has the highest vapor pressure among the constituent components of stainless steel. This metal fume adheres to the vicinity of the weld and causes corrosion. Therefore, in order to obtain the complete corrosion resistance of the welded portion, it is necessary to reduce the amount of Mn fume generated during welding as much as possible, and for that purpose, the Mn content of the pipe material and the welding material must be reduced as much as possible. For the above reason, the stainless steel and the welding material of the present invention are characterized in that Mn is not added and the content thereof is reduced as an unavoidable impurity as much as possible. However, considering the refining technology level in the current productive scale, the upper limit of the allowable content of Mn as an unavoidable impurity is set to 0.1%.

【0008】なお、C,Ni,Cr,Mo,Ti及びN
bの成分範囲はJISのSUS304(L),SUS3
16(L),SUS321及びSUS347にほぼ準ず
るものであるから、その含有範囲の限定理由は省略す
る。
C, Ni, Cr, Mo, Ti and N
The component range of b is JIS SUS304 (L), SUS3
16 (L), SUS321, and SUS347, and the reason for limiting the content range is omitted.

【0009】[0009]

【実施例】表1に示す組成の本発明のオーステナイト系
ステンレス鋼及び従来のステンレス鋼を真空誘導加熱炉
で溶解して50kg鋼塊を溶製した。この鋼塊の半分を
板厚5mmの圧延板とし、他の半分を線引きして溶接材
料とした。溶体化処理を施した圧延板から引張試験片及
び突き合わせ溶接試験材を採取した。引張試験の結果を
表2に示す。
EXAMPLE Austenitic stainless steel of the present invention having the composition shown in Table 1 and conventional stainless steel were melted in a vacuum induction heating furnace to prepare a 50 kg steel ingot. Half of this steel ingot was used as a rolled plate having a plate thickness of 5 mm, and the other half was drawn to obtain a welding material. Tensile test pieces and butt welding test materials were sampled from the solution-treated rolled plate. The results of the tensile test are shown in Table 2.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】表2から明らかな様に本発明材No.1〜
No.8と従来材No.9〜No.12とをそれぞれ対
比すると、引張り強さは略同一であるが本発明材の伸び
(延性)が格段優れている。つぎに突き合わせ溶接試験
材を先に線引き製造した共金溶接材料を用いてTIG溶
接にて突き合わせ溶接し、溶接時に溶接部近傍に付着し
た金属ヒュームのMn含有量を定量した。その結果を表
3に示すが、本発明材から発生するMnヒューム量は5
原子%以下であって、従来材の1/10以下のMnヒュ
ーム量である。従って、本発明材においては、Mnヒュ
ームの付着に基因する溶接部近傍の腐食はほとんど生じ
ないものと思われる。
As apparent from Table 2, the material No. 1 to
No. 8 and the conventional material No. 9-No. Comparing Nos. 12 and 12, the tensile strengths are almost the same, but the elongation (ductility) of the material of the present invention is remarkably excellent. Next, the butt-welding test material was butt-welded by TIG welding using the common metal welding material produced by wire drawing in advance, and the Mn content of the metal fume adhering to the vicinity of the welded portion at the time of welding was quantified. The results are shown in Table 3, and the amount of Mn fume generated from the material of the present invention is 5
The amount of Mn fume is less than or equal to atomic% and less than 1/10 of the conventional material. Therefore, in the material of the present invention, it is considered that the corrosion near the welded portion due to the adhesion of Mn fume hardly occurs.

【0013】[0013]

【表3】 [Table 3]

【0014】引続いて、上記突き合わせ溶接材から溶接
金属を採取し、すべての試材においてδフェライトが5
〜10%晶出していることを確認した。ついで、この試
材を650℃、700℃又は750℃の温度に加熱保持
した。なお、この加熱保持は、各加熱温度で試材中のδ
フェライトの5%がσ相に変態するまで行った。その結
果を表4に示す。又、溶接ままの溶接金属および加熱保
持後の溶接金属のδフェライト量の測定はフェライトメ
ータを用いて磁気的に定量化し、加熱保持後におけるδ
フェライトのσ相への変態量は下式により算出した。 δフェライトからσ相への変態量=溶接ままの溶接金属
中のδフェライト量(%)
−加熱保持後の溶接金属中のδフェライト量(%) 表4から明らかなように、本発明材では、フェライトの
5%がσ相に変態するまでに長時間を要し、σ相変態が
抑制されていることがわかる。
Subsequently, the weld metal was sampled from the above butt-welded material, and in all the test materials, δ ferrite was 5
It was confirmed that -10% crystallized. Then, this test material was heated and held at a temperature of 650 ° C., 700 ° C. or 750 ° C. In addition, this heating and holding was carried out by δ in the test material at each heating temperature.
It was performed until 5% of the ferrite was transformed into the σ phase. The results are shown in Table 4. The amount of δ ferrite in the as-welded weld metal and the weld metal after heating and holding was magnetically quantified using a ferrite meter, and the δ after heating and holding was measured.
The amount of transformation of ferrite into the σ phase was calculated by the following formula. Amount of transformation from δ ferrite to σ phase = δ ferrite amount in as-welded weld metal (%)
-Amount of δ-ferrite in weld metal after heating and holding (%) As is clear from Table 4, in the material of the present invention, it takes a long time for 5% of ferrite to transform into the σ phase, and the σ-phase transformation occurs. You can see that it is suppressed.

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【発明の効果】以上説明したようにSi及びMnを含有
させない本発明のオーステナイトステンレス鋼は従来の
Si及びMnを含有するものよりも延靱性の改善及びM
nヒューム削減による耐食性の改善が認められる。又、
本発明に係る共金溶接材料は母材と同様の特性改善の効
果がある他にSiを不純物量(0.1%以下)に低減す
ることによるσ相析出抑制作用によって使用中に生じる
溶接金属の脆化及び耐食性低下を防止することが可能と
なる。上記改善により、本発明材を半導体製造プロセス
用配管部材およびその溶接材料として使用する際に、配
管内を流れる高純度ガスを汚染しないで高いレベルでガ
スの純度を維持できる効果がある。
As described above, the austenitic stainless steel of the present invention which does not contain Si and Mn has an improved ductility and M compared with the conventional ones containing Si and Mn.
Improvement of corrosion resistance by reducing n-fume is recognized. or,
The common metal welding material according to the present invention has the same property improving effect as that of the base metal, and also the welding metal produced during use due to the σ-phase precipitation suppressing action by reducing Si to the amount of impurities (0.1% or less). It is possible to prevent embrittlement and deterioration of corrosion resistance. Due to the above improvement, when the material of the present invention is used as a pipe member for semiconductor manufacturing process and a welding material thereof, there is an effect that the purity of the gas can be maintained at a high level without contaminating the high purity gas flowing in the pipe.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.08%以下、Ni:8
〜16%、Cr:16〜22%を含有し、残部がFe及
び不可避的不純物からなるオーステナイト系ステンレス
1. C: 0.08% or less by weight%, Ni: 8
.About.16%, Cr: 16 to 22%, and the balance Fe and unavoidable impurities in the balance.
【請求項2】 重量%でC:0.08%以下、Ni:8
〜16%、Cr:16〜22%を含有し、さらにMo:
2〜3%、Ti:4×(C%)〜0.6%、Nb:8×
(C%)〜1%の1種または2種以上を含有し、残部が
鉄及び不可避的不純物からなるオーステナイト系ステン
レス鋼
2. C: 0.08% or less by weight%, Ni: 8
.About.16%, Cr: 16 to 22%, and Mo:
2-3%, Ti: 4x (C%)-0.6%, Nb: 8x
(C%) to 1% of one or more kinds, and the balance is austenitic stainless steel consisting of iron and unavoidable impurities.
【請求項3】 不可避的不純物としてのSi,Mnの許
容含有量が重量%で0.1%以下である請求項1または
2記載のオーステナイト系ステンレス鋼
3. The austenitic stainless steel according to claim 1, wherein the allowable content of Si and Mn as unavoidable impurities is 0.1% or less by weight.
【請求項4】 請求項1〜3のいずれかに記載の組成を
有するオーステナイト系ステンレス鋼からなる溶接材料
4. A welding material made of austenitic stainless steel having the composition according to claim 1.
JP11264995A 1995-04-14 1995-04-14 Austenitic stainless steel and welding material Pending JPH08283917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11264995A JPH08283917A (en) 1995-04-14 1995-04-14 Austenitic stainless steel and welding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11264995A JPH08283917A (en) 1995-04-14 1995-04-14 Austenitic stainless steel and welding material

Publications (1)

Publication Number Publication Date
JPH08283917A true JPH08283917A (en) 1996-10-29

Family

ID=14592020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11264995A Pending JPH08283917A (en) 1995-04-14 1995-04-14 Austenitic stainless steel and welding material

Country Status (1)

Country Link
JP (1) JPH08283917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058290A1 (en) * 1998-05-08 1999-11-18 Swagelok Company Welding processes with ferritic-austenitic stainless steel
CN102500906A (en) * 2011-11-04 2012-06-20 中国科学院金属研究所 Method for welding heterogeneous austenitic stainless steel plates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058290A1 (en) * 1998-05-08 1999-11-18 Swagelok Company Welding processes with ferritic-austenitic stainless steel
CN1109593C (en) * 1998-05-08 2003-05-28 斯瓦戈洛克公司 Welding processes with ferritic-austenitic stainless steel
CN102500906A (en) * 2011-11-04 2012-06-20 中国科学院金属研究所 Method for welding heterogeneous austenitic stainless steel plates

Similar Documents

Publication Publication Date Title
KR101830561B1 (en) Ferritic stainless steel and production method therefor
EP2130937A1 (en) High-strength welded steel pipe having weld metal excelling in low-temperature cracking resistance and process for manufacturing the same
JP6566126B2 (en) Welded structural members
WO2012018074A1 (en) Ferritic stainless steel
WO2010071146A1 (en) Austenite-based weld material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for grain boundary corrosion using same
TW201512426A (en) Ferritic stainless steel having excellent oxidation resistance
JPH0565762B2 (en)
JP7135649B2 (en) Welding consumables for austenitic stainless steel
JP2001009589A (en) Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
US20160144463A1 (en) Filler for the welding of materials for high-temperature applications
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2013209705A (en) Ferritic stainless steel having excellent corrosion resistance and low temperature toughness in weld zone
JP2583238B2 (en) Filler metal for TIG welding for heat-resistant austenitic stainless steel alloys
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JP2021049572A (en) Austenitic stainless steel weld joint
JPH08283917A (en) Austenitic stainless steel and welding material
JP4314903B2 (en) Welded joints using stainless steel with excellent weldability
JP2858037B2 (en) Welding wire used for welding spheroidal graphite cast iron to stainless steel
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JPH11277293A (en) Welding metal and welding joint excellent in reheat crack resistance
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JPS5913949B2 (en) Welding method for molybdenum-containing, high-chromium ferritic stainless steel
JPH10237600A (en) Ferritic heat resistant steel excellent in high temperature weld cracking resistance and toughness in heat-affected zone
JP2002363709A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength