JPH08281064A - Ozone removing method - Google Patents

Ozone removing method

Info

Publication number
JPH08281064A
JPH08281064A JP7085521A JP8552195A JPH08281064A JP H08281064 A JPH08281064 A JP H08281064A JP 7085521 A JP7085521 A JP 7085521A JP 8552195 A JP8552195 A JP 8552195A JP H08281064 A JPH08281064 A JP H08281064A
Authority
JP
Japan
Prior art keywords
ozone
sulfide
hydrogen sulfide
aqueous solution
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7085521A
Other languages
Japanese (ja)
Other versions
JP2731125B2 (en
Inventor
Akira Adachi
暁 足立
Kazuhisa Okazaki
和久 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyester Co Ltd
Original Assignee
Nippon Polyester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyester Co Ltd filed Critical Nippon Polyester Co Ltd
Priority to JP7085521A priority Critical patent/JP2731125B2/en
Publication of JPH08281064A publication Critical patent/JPH08281064A/en
Application granted granted Critical
Publication of JP2731125B2 publication Critical patent/JP2731125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE: To efficiently remove ozone from an ozone-contg. waste gas with a relatively simple method by bringing the ozone-contg. gas into contact with an aq. soln. wherein hydrogen sulfide and/or metal sulfide are dissolved. CONSTITUTION: The yield of ozone of the ozonizer 1 is controlled by applying a silent discharge to dry air and adjusting the voltage at this time, and an optional amt. of ozone is mixed in the air to be supplied to an ozonation device by a motor-driven fan 2. Meanwhile, a motor-driven pump 4 is used to circulate an alkaline cleaning soln. and constitutes a cleaning soln. circulating line with a valve 5, flowmeter 6, pressure gage 7, spray nozzle 8, etc., and the circulation of the cleaning soln. is optionally adjusted by the valve 5 and flowmeter 6. When ozone is removed by using this device, an aq. alkaline soln. of hydrogen sulfide and/or a metal sulfide is used as the cleaning soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾン殺菌処理装置や
汚水等のオゾン処理設備、オゾン漂白処理設備、オゾン
酸化処理設備等から放出される余剰オゾンを、簡単な設
備で効率よく除去することのできる方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently removes excess ozone released from ozone sterilization equipment, ozone treatment equipment such as sewage, ozone bleaching equipment, ozone oxidation treatment equipment, etc. with simple equipment. It is about the method that can be done.

【0002】[0002]

【従来の技術】周知の通りオゾンは、優れた酸化作用と
それに伴う漂白作用や殺菌作用等を有しているところか
ら、殺菌処理、漂白処理、消毒等に使用される他、オゾ
ン含有空気によって空気中の微細な塵埃が負イオンに帯
電する作用を活用し、正イオンに帯電させた金網等の電
極板に塵埃を吸着・捕集する方法にも用いられている。
BACKGROUND OF THE INVENTION As is well known, ozone is used for sterilization, bleaching, disinfection, etc. because it has an excellent oxidizing action and bleaching action and sterilizing action accompanying it. It is also used in a method of adsorbing and collecting dust on an electrode plate such as a wire net charged with positive ions by utilizing the effect that fine dust in the air is charged with negative ions.

【0003】更に、下水・屎尿処理場排気やトイレの脱
臭、冷蔵庫の脱臭・殺菌、クリーンルームの殺菌、工場
の脱臭・殺菌、半導体製造設備や病院の脱臭・殺菌、食
品貯蔵庫の滅菌、空気清浄器(室内用や自動車用など)
の脱臭・殺菌に用いられる他、食品原材料の熟成促進や
植物の成長促進等にも幅広く用いられている。
Furthermore, exhaust from sewage / sewage treatment plants and deodorization of toilets, deodorization / sterilization of refrigerators, sterilization of clean rooms, deodorization / sterilization of factories, deodorization / sterilization of semiconductor manufacturing facilities and hospitals, sterilization of food storage, air purifiers (For indoor use, automobile use, etc.)
In addition to being used for deodorization and sterilization, it is also widely used for aging of food ingredients and promotion of plant growth.

【0004】これらの用途では、オゾン濃度の高い方が
有効であるので、通常は環境基準値の0.1ppm
(0.2mg/m3 )よりも高い濃度で使用される。オ
ゾンは空気中で自然分解して酸素になるが、オゾンの酸
化作用を受けるべき不純物や水分が少なければ、オゾン
が半減するまでに数十分を要するので、大抵の場合は残
存オゾンを除去するための装置が必要となる。
In these applications, the higher the ozone concentration is, the more effective it is.
Used at concentrations higher than (0.2 mg / m 3 ). Ozone spontaneously decomposes in the air to oxygen, but if there are few impurities and moisture that should be subjected to the oxidizing action of ozone, it will take dozens of minutes for the ozone to decrease to half, so in most cases residual ozone will be removed. Equipment is required.

【0005】ところで、オゾンは空気中よりも水中の方
が分解し易く、これは、オゾンによる殺菌・脱臭・脱色
等が空気中よりも水中の方が進行し易いことによっても
裏付けられる。そのため、オゾン水は上水道の殺菌、プ
ールの浄化、クーリングタワーの浄化、高架水槽の浄
化、井戸水の殺菌、超純水の製造、酒・ビール・ジュー
スなど用水の滅菌・脱色、養魚場水の殺菌・脱臭、水族
館水槽の透明度維持、河川等の浄化、下水の高度処理、
工場廃水のCOD低減・脱色、染色廃水の脱色、パルプ
の漂白、発電所冷却水配管や工場導水管の殺藻・殺貝、
食品の殺菌・消毒・鮮度維持・脱色、衛生器具の殺菌等
に広く用いられている。
By the way, ozone is more easily decomposed in water than in air, which is supported by the fact that sterilization, deodorization, decolorization, etc. by ozone are more likely in water than in air. Therefore, ozone water is used for sterilization of water supply, pool purification, cooling tower purification, elevated water tank purification, well water sterilization, ultrapure water production, sterilization / decolorization of liquor, beer, juice, etc. Deodorization, transparency of aquarium tank, purification of rivers, advanced treatment of sewage,
COD reduction and decolorization of factory wastewater, decolorization of dyeing wastewater, bleaching of pulp, algae killing and shellfish killing of power plant cooling water pipes and factory water pipes,
It is widely used for sterilization, disinfection, freshness maintenance, decolorization of food, and sterilization of sanitary equipment.

【0006】空気または酸素中で発生させたオゾンを水
に溶解させるには、空気側のオゾンを高濃度・高圧にす
る必要があり、水溶解後の空気中に残存するオゾンの処
理も必要となる。
In order to dissolve ozone generated in air or oxygen in water, ozone on the air side needs to have a high concentration and a high pressure, and it is also necessary to treat ozone remaining in the air after water is dissolved. Become.

【0007】そこで、上記の様なオゾン処理設備から排
出される残存オゾンの除去法としては様々の方法が提案
されているが、現在実用化されている代表的な方法は、
活性炭を用いて吸着除去する方法、およびオゾン分解触
媒を用いて分解除去する方法である。ところが前者の活
性炭吸着除去法では、活性炭とオゾンの反応が起こって
活性炭が早期に酸化消耗するため、活性炭を頻繁に再生
もしくは交換しなければならず、また処理条件によって
は発火を起こす危険も生じてくる。また後者のオゾン分
解除去法では、小容量であっても効率よくオゾン除去が
行なえるという利点を有している反面、分解触媒が非常
に高価であるという欠点がある。更に活性炭にしてもま
た触媒にしても、それらの効果を有効に発揮させるには
被処理ガスの湿度を80%程度以下に維持しなければな
らず、しかも被処理ガス中の塵埃や不純物によって目詰
まりを起こしたり活性低下を起こし易い。
Therefore, various methods have been proposed as a method for removing the residual ozone discharged from the ozone treatment equipment as described above, but a typical method currently in practical use is as follows.
It is a method of adsorbing and removing using activated carbon, and a method of decomposing and removing using an ozone decomposition catalyst. However, in the former method of adsorptive removal of activated carbon, the activated carbon reacts with ozone and the activated carbon is rapidly oxidized and consumed.Therefore, the activated carbon must be frequently regenerated or replaced, and there is a risk of ignition depending on the processing conditions. Come on. The latter method of decomposing / removing ozone has an advantage that ozone can be efficiently removed even with a small capacity, but on the other hand, it has a drawback that the decomposition catalyst is very expensive. Furthermore, in order to exert their effects effectively, whether it is activated carbon or a catalyst, the humidity of the gas to be treated must be maintained at about 80% or less, and moreover the dust and impurities in the gas to be treated can cause the humidity to deteriorate. It is easy to cause clogging and decrease in activity.

【0008】廃棄物処理や汚泥処理にオゾンを利用する
オゾン処理設備に利用される他の余剰オゾン除去処理法
として、オゾン含有排ガスをアルカリ水溶液に通し、あ
るいは該水溶液が散布されている部屋にオゾン含有排ガ
スを通すことにより、オゾンをアルカリ水溶液に吸収さ
せて除去する方法も実用化されているが、この方法で
は、排ガス中のオゾンのせいぜい50%程度が吸収除去
されるに過ぎない。
Another method for removing excess ozone used in ozone treatment equipment that uses ozone for waste treatment and sludge treatment is to pass ozone-containing exhaust gas through an alkaline aqueous solution or ozone in a room where the aqueous solution is sprayed. A method of absorbing ozone by an alkaline aqueous solution to remove it by passing the contained exhaust gas has been put into practical use, but in this method, about 50% of ozone in the exhaust gas is absorbed and removed at most.

【0009】また、アルカリ洗浄塔で除去しきれないオ
ゾンを除去するため、前述の如く活性炭吸着法やオゾン
脱臭触媒法等を併設して除去する方法もあるが、いずれ
も高活性を持続するには被処理ガスの湿度を80%程度
以下に保つことが必要であり、活性持続のために行なわ
れる事前アルカリ洗浄法では該湿度が高くなって逆効果
を招き、また除湿・乾燥装置などの並設は設備費や運転
経費の増大を招くので好ましくない。
Further, in order to remove ozone that cannot be completely removed by the alkali washing tower, there is a method in which an activated carbon adsorption method or an ozone deodorizing catalyst method is additionally provided as described above. It is necessary to keep the humidity of the gas to be treated at about 80% or less, and the pre-alkaline cleaning method performed to maintain the activity raises the humidity and causes an adverse effect. Installation is not preferable because it causes increase in equipment cost and operating cost.

【0010】更に、チオ硫酸ソーダ水溶液を洗浄液とし
て用いて残存オゾンを分解処理する方法も知られている
が、この方法には、チオ硫酸ソーダの分解により硫化物
が発生するという問題があり、結局のところ、事前に除
湿処理を必要とする吸着もしくは分解塔によるオゾン除
去が不可欠となる。
Further, a method of decomposing residual ozone by using an aqueous solution of sodium thiosulfate as a cleaning solution is also known, but this method has a problem that sulfide is generated due to decomposition of sodium thiosulfate, However, it is essential to remove ozone by an adsorption or decomposition tower that requires dehumidification treatment in advance.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、オゾ
ン含有排ガスからオゾンを比較的簡単な方法で効率よく
除去することのできる方法を提供しようとするものであ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to efficiently remove ozone from ozone-containing exhaust gas by a relatively simple method. It seeks to provide a way to do it.

【0012】[0012]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るオゾン除去法の構成は、(1) オゾ
ン含有ガスを、硫化水素および/または金属硫化物が溶
解されたアルカリ水溶液に接触させてオゾンを吸収除去
し、あるいは(2) オゾン含有ガスを、硫化水素および/
または金属硫化物が溶解されたアルカリ水溶液に接触さ
せてオゾンを吸収除去すると共に、生成する硫化水素含
有ガスを、硫化水素と反応して金属硫化物の沈殿を生成
する金属塩を含有するアルカリ水溶液と接触させ、前記
硫化水素含有ガス中の硫化水素を金属硫化物の沈殿とし
て除去するところに要旨を有するものである。
The constitution of the ozone removing method according to the present invention which was able to solve the above-mentioned problems is as follows: (1) An ozone-containing gas is an aqueous alkaline solution in which hydrogen sulfide and / or metal sulfide is dissolved. To remove ozone, or (2) treat ozone-containing gas with hydrogen sulfide and / or
Alternatively, an alkaline aqueous solution containing a metal salt that absorbs and removes ozone by contacting it with an alkaline aqueous solution in which a metal sulfide is dissolved, and reacts the produced hydrogen sulfide-containing gas with hydrogen sulfide to produce a precipitate of the metal sulfide. The present invention has a gist in that the hydrogen sulfide in the hydrogen sulfide-containing gas is removed as a precipitate of metal sulfide by contacting with.

【0013】尚上記(1),(2) の方法を実施するに当たっ
ては、金属硫化物として硫化ナトリウムおよび/または
硫化カリウムを使用し、アルカリ水溶液中の硫化水素お
よび/または金属硫化物の濃度を硫化ナトリウム換算濃
度で100〜300ppmに維持することによって、オ
ゾンをより効率よく除去することができる。また、この
方法を実施する際に用いられるアルカリ水溶液を構成す
るアルカリ成分としては、オゾン除去効率や取扱い性、
コスト等を総合的に考えて炭酸ソーダが最も有効であ
り、また、金属塩としては亜鉛塩を使用し、アルカリ水
溶液中の該亜鉛塩の含有量を、液中の懸濁物や沈殿を含
めて、該アルカリ水溶液中および懸濁物や沈殿として吸
収蓄積される硫化物に対し当量比で3倍以上に維持する
ことによって、オゾンの除去と該オゾン除去時に生成す
ることのある硫黄化合物の除去を一層効率よく実施する
ことができる。
In carrying out the above methods (1) and (2), sodium sulfide and / or potassium sulfide is used as the metal sulfide, and the concentration of hydrogen sulfide and / or metal sulfide in the alkaline aqueous solution is adjusted. By maintaining the sodium sulfide conversion concentration at 100 to 300 ppm, ozone can be removed more efficiently. Further, as the alkaline component that constitutes the alkaline aqueous solution used when carrying out this method, ozone removal efficiency and handleability,
Sodium carbonate is the most effective in consideration of cost, etc., and zinc salt is used as the metal salt, and the content of the zinc salt in the alkaline aqueous solution is adjusted to include the suspension and precipitate in the liquid. The removal of ozone and the removal of sulfur compounds that may be produced during the ozone removal by maintaining the equivalence ratio to 3 times or more with respect to the sulfide absorbed and accumulated in the alkaline aqueous solution and as a suspension or a precipitate. Can be carried out more efficiently.

【0014】[0014]

【作用】本発明者らは、後記図1〜3に示す様な二重洗
浄タイプのオゾン処理装置を使用し、洗浄液として炭酸
ソーダ水溶液またはこれに種々の物質を添加した洗浄液
を用いた場合について、オゾンの除去効率、更には該オ
ゾン除去工程で排出ガス中に含まれてくる硫化水素の除
去効率等について検討を行った。その結果、炭酸ソーダ
等のアルカリ水溶液ではオゾンの吸収除去が不充分であ
るが、下記の様な驚くべき事実が明らかにされた。
The inventors of the present invention use the double cleaning type ozone treatment apparatus as shown in FIGS. 1 to 3 below, and use the sodium carbonate aqueous solution or the cleaning solution in which various substances are added as the cleaning solution. The ozone removal efficiency, and further the removal efficiency of hydrogen sulfide contained in the exhaust gas in the ozone removal step were examined. As a result, although the absorption and removal of ozone was insufficient with an alkaline aqueous solution such as sodium carbonate, the following surprising facts were revealed.

【0015】アルカリ水溶液に硫化水素および/また
は金属硫化物を溶解させた洗浄液を用いてオゾン含有ガ
スを処理すると、オゾンを極めて効率よく吸収除去でき
ること。 アルカリ水溶液中に溶解させる硫化水素および/また
は金属硫化物の濃度を100〜300ppmに維持して
やれば、オゾンを99.9%以上(0.002ppm以
下まで)除去できること。 オゾン含有ガスと硫化水素含有ガスを別々の洗浄塔へ
導入して洗浄することとし、硫化水素が溶存するアルカ
リ洗浄液でオゾン含有ガスを洗浄すると、オゾンを9
9.9%以上(0.002ppm以下まで)除去できる
こと。
When the ozone-containing gas is treated with a cleaning liquid in which hydrogen sulfide and / or metal sulfide is dissolved in an alkaline aqueous solution, ozone can be absorbed and removed very efficiently. If the concentration of hydrogen sulfide and / or metal sulfide dissolved in an alkaline aqueous solution is maintained at 100 to 300 ppm, ozone can be removed by 99.9% or more (up to 0.002 ppm or less). When the ozone-containing gas and the hydrogen sulfide-containing gas are introduced into separate cleaning towers for cleaning, and the ozone-containing gas is cleaned with an alkaline cleaning liquid in which hydrogen sulfide is dissolved, the
Can be removed by 9.9% or more (up to 0.002 ppm or less).

【0016】上記〜のオゾン除去法を実施する場
合、オゾン除去排ガス中には硫化水素が混入してくるこ
とがあるが、該硫化水素は、硫化水素と反応して金属硫
化物の沈殿を生成する金属塩、好ましくは亜鉛塩を含有
するアルカリ水溶液と接触させると、硫化水素含有ガス
中の硫化水素を金属硫化物の沈殿として効率よく除去で
きること。
When carrying out the ozone removal methods (1) to (3) above, hydrogen sulfide may be mixed in the ozone-removed exhaust gas, and the hydrogen sulfide reacts with hydrogen sulfide to form a precipitate of metal sulfide. When it is brought into contact with an alkaline aqueous solution containing a metal salt, preferably a zinc salt, the hydrogen sulfide in the hydrogen sulfide-containing gas can be efficiently removed as a precipitate of metal sulfide.

【0017】上記試験に使用した図1〜3の構成につい
て説明する。図1は、上記オゾン除去試験および実施例
で用いた装置の該略図であり、図中1はオゾン発生装置
であって、乾燥空気に無声放電を施し、この時の電圧を
調節することによってオゾン発生量をコントロールする
機能を備えており、電動ファン2によってオゾン処理装
置へ送給される空気の中に、オゾンを任意の量で混入で
きる様にしている。該電動ファン2はターボ型構造のも
ので、風量を任意にインバータ制御できる様に構成され
ている。4はアルカリ洗浄液を循環させるための電動ポ
ンプであり、バルブ5、流量計6、圧力計7、スプレー
ノズル8等と共に洗浄液の循環路を構成しており、バル
ブ5と流量計6により洗浄液の循環量を任意に調節でき
る構成とされている。9は洗浄塔本体であり、その上部
には風量計測管10が接続されてその内部に風速センサ
ーが配置されると共に、該洗浄塔本体9の内部には、図
4に示す如く合成樹脂製の立体編物とメッシュワイヤを
組み合わせたツインウエーブ構造の気液接触促進用充填
材11とミストセパレータ12が配設されている。この
装置を用いてオゾン除去を行なうに当たっては、後で詳
述する如く洗浄液として硫化水素および/または金属硫
化物が溶解されたアルカリ水溶液が用いられる。
The configuration of FIGS. 1 to 3 used in the above test will be described. FIG. 1 is a schematic view of an apparatus used in the ozone removal test and the examples. In the figure, 1 is an ozone generator, which discharges dry air silently and adjusts the voltage at this time to generate ozone. It has a function of controlling the amount of generation, and allows the ozone to be mixed in an arbitrary amount into the air sent to the ozone processing device by the electric fan 2. The electric fan 2 has a turbo type structure and is configured so that the air volume can be arbitrarily controlled by an inverter. Reference numeral 4 denotes an electric pump for circulating the alkaline cleaning liquid, which constitutes a cleaning liquid circulation path together with a valve 5, a flow meter 6, a pressure gauge 7, a spray nozzle 8 and the like, and the valve 5 and the flow meter 6 circulate the cleaning liquid. It is configured to allow the amount to be adjusted arbitrarily. 9 is a main body of the washing tower, an air flow measuring pipe 10 is connected to the upper part of the main body, and a wind speed sensor is arranged inside the main body 9. The inside of the main body 9 of the washing tower is made of synthetic resin as shown in FIG. A twin-wave structure gas-liquid contact promoting filler 11 and a mist separator 12 in which a three-dimensional knitted fabric and a mesh wire are combined are provided. When ozone is removed using this apparatus, an alkaline aqueous solution in which hydrogen sulfide and / or metal sulfide is dissolved is used as a cleaning liquid as described later in detail.

【0018】図2は、他のオゾン除去試験および実施例
で使用した2重洗浄塔オゾン除去装置を示す概略説明図
であり、9は2重洗浄塔であって透明の硬質塩化ビニル
樹脂で作製されており、下部洗浄塔9aと上部洗浄塔9
bおよびミストセパレータ12を有している。下部洗浄
塔9aと上部洗浄塔9bに配置される気液接触促進用充
填材11a,11bは、前述の如くツイウエーブ構造体
で構成されている。13は、上部洗浄塔9bで使用され
た洗浄液の一部を下部洗浄塔9aへ降下させるための多
孔板であり、多数の孔が設けられている。そして、電動
ポンプ4、バルブ5、流量計6、スプレーノズル8、洗
浄液貯槽14の間で洗浄液循環ラインが構成されてお
り、洗浄液の一部はバイパス15に接続したチューブ
(図示せず)を経て直接洗浄液貯槽14へ戻る循環ライ
ンを構成している。該正規の循環量とバイパス循環量の
比率は、前記多孔板13に形成される孔の数や大きさ、
更にはバルブ操作によって任意に調節できる様に構成さ
れている。この様な装置を用いてオゾン除去を行なう際
には、洗浄液として硫化水素および/または金属硫化物
が溶解されたアルカリ水溶液が使用される。
FIG. 2 is a schematic explanatory view showing a double-cleaning tower ozone removing apparatus used in other ozone removing tests and examples. 9 is a double-cleaning tower, which is made of transparent hard vinyl chloride resin. The lower washing tower 9a and the upper washing tower 9
It has b and the mist separator 12. The gas-liquid contact promoting fillers 11a and 11b arranged in the lower cleaning tower 9a and the upper cleaning tower 9b are constituted by a twill wave structure as described above. Reference numeral 13 is a perforated plate for lowering a part of the cleaning liquid used in the upper cleaning tower 9b to the lower cleaning tower 9a, and is provided with a large number of holes. A cleaning liquid circulation line is formed between the electric pump 4, the valve 5, the flow meter 6, the spray nozzle 8 and the cleaning liquid storage tank 14, and a part of the cleaning liquid passes through a tube (not shown) connected to the bypass 15. A circulation line that directly returns to the cleaning liquid storage tank 14 is configured. The ratio between the regular circulation amount and the bypass circulation amount is the number and size of the holes formed in the perforated plate 13,
Further, it is constructed so that it can be arbitrarily adjusted by operating the valve. When removing ozone using such an apparatus, an alkaline aqueous solution in which hydrogen sulfide and / or metal sulfide is dissolved is used as a cleaning liquid.

【0019】16はファン架台、17は下部電動ファ
ン、18は上部電動ファンであり、また19は下部ファ
ン用ダンパ、20は上部ファン用ダンパで、これらのダ
ンパで風量を調節することによって、任意の風量での試
験ができる様になっている。21aは、風速計測とガス
分析用を兼ねた排気管であり、ダクト22aから吸引さ
れる空気には、オゾン発生装置から送られてくるオゾン
が供給された後下部洗浄塔9aに入り、下部充填材11
aを上昇する際に洗浄液と接触した後、該排気管21a
から処理ガスとして排出される。また、ダクト22bか
ら電動ファン18によって吸引される空気は、上部洗浄
塔9bへ入って洗浄された後、風速計測とガス分析用を
兼ねた排気管21bを通して排出される構成となってい
る。
Reference numeral 16 is a fan base, 17 is a lower electric fan, 18 is an upper electric fan, 19 is a lower fan damper, and 20 is an upper fan damper. It is designed so that it can be tested with the air volume. Reference numeral 21a is an exhaust pipe for both wind velocity measurement and gas analysis, and the air sucked from the duct 22a is supplied with ozone sent from the ozone generator and then enters the lower cleaning tower 9a to fill the lower part. Material 11
After coming into contact with the cleaning liquid when ascending a, the exhaust pipe 21a
Is discharged as a processing gas. Further, the air sucked by the electric fan 18 from the duct 22b enters the upper washing tower 9b to be washed, and then is discharged through the exhaust pipe 21b for both wind speed measurement and gas analysis.

【0020】23はオゾナイザー架台、24はセラミッ
クス製のオゾナイザーであり、エアポンプ25によって
吸入され乾燥剤充填管26を通過した空気に無声放電を
施すことにより、オゾンを発生させる。27はオゾナイ
ザー電源であり、ボルトスライダー28で入口電圧を調
節することによって、オゾン発生量をコントロールでき
る様に構成されており、発生したオゾンを任意の流量で
上部電動ファン18の入口側へ供給できる。
Reference numeral 23 is an ozonizer mount, and 24 is an ozonizer made of ceramics. Ozone is generated by silently discharging the air sucked by the air pump 25 and passing through the desiccant filling tube 26. Reference numeral 27 denotes an ozonizer power supply, which is configured to control the amount of ozone generated by adjusting the inlet voltage with a bolt slider 28, and the generated ozone can be supplied to the inlet side of the upper electric fan 18 at an arbitrary flow rate. .

【0021】図3は、他のオゾン除去試験および実施例
で使用した2塔直列型オゾン除去装置を示す概略説明図
であり、9a,9bは洗浄塔であって、夫々には前述の
様なツインエーブ構造の気液接触促進用充填材11a,
11bが配置されると共に、上方にミストセパレータ1
2a,12bが設けられ、夫々図1に示したのと同様
に、電動ポンプ4a,4b(バルブ5a,5b、流量計
6a,6b、圧力計7a,7bは省略している)、スプ
レーノズル8a,8bによって洗浄液の循環路を構成し
ており、図1と同様にバルブと流量計により洗浄液の循
環量を任意に調節できる構成とされている。この装置を
用いてオゾン除去を行なうに当たっては、洗浄塔9a,
9bの夫々にアルカリ水溶液を仕込んで循環させつつ、
洗浄塔9aでは金属硫化物のアルカリ水溶液を貯槽14
aからポンプPaによって供給し、洗浄塔9bでは、硫
化水素と反応して硫化物の沈殿を生成する金属塩のアル
カリ水溶液を貯槽14bからポンプPbによって供給す
る。
FIG. 3 is a schematic explanatory view showing a two-column in-line type ozone removing apparatus used in other ozone removing tests and examples. 9a and 9b are washing towers, each of which is as described above. Twin-ave structure filler 11a for promoting gas-liquid contact,
11b is arranged and the mist separator 1 is provided above.
2a and 12b are provided, and electric pumps 4a and 4b (valves 5a and 5b, flowmeters 6a and 6b, pressure gauges 7a and 7b are omitted) and spray nozzles 8a are provided in the same manner as shown in FIG. 1, respectively. , 8b constitute a circulation path of the cleaning liquid, and the circulation amount of the cleaning liquid can be arbitrarily adjusted by a valve and a flow meter as in FIG. When removing ozone using this apparatus, the cleaning tower 9a,
While charging and circulating an alkaline aqueous solution in each of 9b,
In the cleaning tower 9a, the alkali aqueous solution of metal sulfide is stored in the storage tank 14
In the cleaning tower 9b, an alkaline aqueous solution of a metal salt that reacts with hydrogen sulfide to form a precipitate of sulfide is supplied from the storage tank 14b by the pump Pb in the cleaning tower 9b.

【0022】まず、上記図2に示した様な2重洗浄塔オ
ゾン除去装置を使用し、洗浄液として炭酸ソーダ5%水
溶液を用いると共に、該水溶液への硫化ナトリウム(N
2S・9H2 O)の添加量を種々変更した場合につい
て、オゾン除去試験を行なったところ、下記表1に示す
様な結果が得られた。
First, a double-cleaning tower ozone removing apparatus as shown in FIG. 2 was used, a 5% aqueous solution of sodium carbonate was used as a cleaning solution, and sodium sulfide (N) was added to the aqueous solution.
The case of variously changing the addition amount of a 2 S · 9H 2 O) , was subjected to a ozone removal test, such results as shown in Table 1 were obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】表1からも明らかである様に、炭酸ソーダ
の単独水溶液からなる洗浄液を使用した場合は、出口オ
ゾン濃度を1ppm以下にまで低減することはできな
い。ところが、該洗浄液内に硫化ナトリウムを適量含有
させるとオゾン除去率は飛躍的に向上し、殊に200p
pm以上、より好ましくは250ppm以上の硫化ナト
リウムを溶解させたアルカリ洗浄液を使用すると、90
%以上、あるいは95%以上といった高レベルのオゾン
除去率が得られると共に、出口オゾン濃度を0.05p
pm以下にまで低減し得ることが分かる。またこうした
オゾン除去効率は、充填材部分での気液接触時間を長め
に設定することによって一層高められることが分かる。
As is clear from Table 1, the concentration of ozone at the outlet cannot be reduced to 1 ppm or less when a cleaning solution consisting of a single aqueous solution of sodium carbonate is used. However, when an appropriate amount of sodium sulfide is contained in the cleaning liquid, the ozone removal rate is dramatically improved, especially at 200 p
When an alkaline cleaning solution in which sodium sulfide of pm or more, more preferably 250 ppm or more is dissolved is used, 90
% Or more, or 95% or more, a high level ozone removal rate is obtained, and the outlet ozone concentration is 0.05 p
It can be seen that it can be reduced to pm or less. Further, it can be seen that such ozone removal efficiency can be further enhanced by setting the gas-liquid contact time at the filler portion longer.

【0025】また本発明者らが別途確認したところによ
ると、硫化ナトリウムとして最も一般的なNa2 S・x
2 O(6水塩、9水塩)を使用した場合はもとより、
無水物を使用した場合、あるいは多硫化ナトリウム(N
25 など)や水硫化ナトリウム(NaSH・2H2
O)等を使用した場合でも同様のオゾン除去効果を得る
ことができることが確認された。
According to another confirmation by the present inventors, Na 2 S · x, which is the most common sodium sulfide,
Not only when using H 2 O (hexahydrate, 9-hydrate),
When an anhydride is used or sodium polysulfide (N
a 2 S 5 etc.) and sodium hydrosulfide (NaSH ・ 2H 2
It was confirmed that the same ozone removing effect can be obtained even when O) or the like is used.

【0026】更には、アルカリ水溶液に硫化水素を吹き
込んで硫化ナトリウムを生成させた洗浄液を使用した場
合でも、全く同様の効果を得ることができる。こうした
事実から考えると、例えば硫化水素等の硫化物含有排ガ
スをアルカリ洗浄液で処理することによって硫化物を吸
収せしめ、該硫化物を硫化ナトリウムとして吸収したア
ルカリ洗浄液を用いてオゾンの吸収除去を行なう方法も
有効であると考えられる。
Further, even when a cleaning liquid in which hydrogen sulfide is blown into an alkaline aqueous solution to generate sodium sulfide is used, the same effect can be obtained. Considering these facts, for example, a method of absorbing sulfide by treating an exhaust gas containing sulfide such as hydrogen sulfide with an alkali cleaning liquid and absorbing ozone by using the alkali cleaning liquid absorbing the sulfide as sodium sulfide. Is also considered to be effective.

【0027】そこで、前記図2に示す2重洗浄塔オゾン
除去装置を使用し、洗浄液として炭酸ソーダ5%水溶液
を用い、ダクト22aから吸引される空気にオゾンを混
入させると共に、ダクト22bから吸引される空気には
硫化水素を混入させ、洗浄塔9a,9b内を循環するア
ルカリ洗浄液に硫化水素を吸収させると共に、該硫化水
素を吸収したアルカリ洗浄液にオゾンを吸収させる方法
を試みた。
Therefore, using the double-cleaning tower ozone removing device shown in FIG. 2 and using a 5% aqueous solution of sodium carbonate as a cleaning liquid, ozone is mixed with the air sucked from the duct 22a and sucked from the duct 22b. An attempt was made to mix hydrogen sulfide into the air to make the alkali cleaning liquid circulating in the cleaning towers 9a and 9b absorb hydrogen sulfide, and at the same time to make the alkali cleaning liquid absorbing the hydrogen sulfide absorb ozone.

【0028】結果は図5に示す通りであり、処理の初期
ではアルカリ洗浄液に硫化水素が実質的に吸収されてお
らず、該洗浄液中の硫化ナトリウム濃度が低いためオゾ
ン除去は殆んど行なわれないが、処理時間が経過し洗浄
液に硫化水素が吸収されて該洗浄液中の硫化ナトリウム
濃度が高まってくるにつれて、オゾン除去率は比例的に
上昇し、硫化水素がほぼ飽和濃度である硫化ナトリウム
換算濃度で200ppmに到達した時点以降、100%
に近いオゾン除去率が得られることが確認された。この
ことから、オゾン吸収のために用いられるアルカリ洗浄
液としては、例えば汚泥処理設備や廃棄物処理設備等か
ら排出される主たる悪臭成分である硫化水素の除去に用
いた硫化物吸収済のアルカリ洗浄液も、オゾン処理に有
効に活用できることが理解される。
The results are shown in FIG. 5, in which hydrogen sulfide was not substantially absorbed in the alkaline cleaning liquid at the initial stage of the treatment and the concentration of sodium sulfide in the cleaning liquid was low, so that ozone was almost removed. However, as the treatment time elapses and hydrogen sulfide is absorbed in the cleaning liquid, and the concentration of sodium sulfide in the cleaning liquid increases, the ozone removal rate increases proportionally, and the hydrogen sulfide conversion rate is almost saturated. 100% after the concentration reached 200 ppm
It was confirmed that an ozone removal rate close to the above was obtained. From this, as the alkaline cleaning liquid used for ozone absorption, for example, the sulfide-absorbed alkaline cleaning liquid used to remove hydrogen sulfide, which is the main malodorous component discharged from sludge treatment equipment, waste treatment equipment, etc. It is understood that it can be effectively used for ozone treatment.

【0029】また図6は、上記オゾン除去実験におい
て、アルカリ洗浄塔へ供給するオゾンと硫化水素の比率
を種々変更した場合のオゾン除去率を調べた結果を示し
たグラフであり、このグラフから、オゾンを効率よく除
去するにはオゾンに対し当量比で5倍モル程度以上の硫
化水素を供給すべきであることが分かる。
FIG. 6 is a graph showing the results of examining the ozone removal rate when various ratios of ozone and hydrogen sulfide supplied to the alkali washing tower were examined in the ozone removal experiment. From this graph, It can be seen that in order to remove ozone efficiently, hydrogen sulfide should be supplied in an amount about 5 times the molar equivalent of ozone or more.

【0030】上記実験からも明らかである様に、アルカ
リ洗浄液中に適量の硫化水素あるいは硫化ナトリウム等
が溶解した洗浄液を使用すると、空気中のオゾンを効率
よく吸収除去することができるが、反面、オゾン除去効
率を高めるには洗浄液中に相当量(硫化ナトリウム換算
で200ppm程度)の硫化物を溶解させておく必要が
あり、しかもオゾン除去排ガス中には相当量の硫化水素
ガスが混入してくる。これは、オゾン除去工程で下記の
反応が起こるためと考えられる。 O3 + Na2 S → Na2 SO33 + Na2 SO3 → Na2 SO4 + O2 ↑ Na2 S + 2H2 O → 2NaOH + H2 S↑
As is clear from the above experiment, when a cleaning liquid in which an appropriate amount of hydrogen sulfide or sodium sulfide is dissolved in an alkaline cleaning liquid is used, ozone in the air can be efficiently absorbed and removed. In order to improve the ozone removal efficiency, it is necessary to dissolve a considerable amount (about 200 ppm in terms of sodium sulfide) of sulfide in the cleaning liquid, and a considerable amount of hydrogen sulfide gas is mixed in the ozone removal exhaust gas. . It is considered that this is because the following reactions occur in the ozone removal step. O 3 + Na 2 S → Na 2 SO 3 O 3 + Na 2 SO 3 → Na 2 SO 4 + O 2 ↑ Na 2 S + 2H 2 O → 2NaOH + H 2 S ↑

【0031】そこで、該オゾン除去排ガス中に混入して
くる硫化水素についても、これを効率よく除去すべく研
究を進めた結果、以下に詳述する如く、該オゾン除去排
ガスを、硫化水素と反応して金属硫化物の沈殿を生成す
る金属塩を含有するアルカリ水溶液(例えば炭酸ソーダ
水溶液)と接触させてやれば、オゾン除去排ガス中の硫
化水素を金属硫化物の沈殿として効率よく除去し得るこ
とが確認された。
Therefore, as a result of conducting research to efficiently remove hydrogen sulfide mixed in the ozone-removing exhaust gas, the ozone-removing exhaust gas is reacted with hydrogen sulfide as described in detail below. By contacting it with an alkaline aqueous solution containing a metal salt that produces a metal sulfide precipitate (for example, an aqueous solution of sodium carbonate), hydrogen sulfide in the ozone-removing exhaust gas can be efficiently removed as a metal sulfide precipitate. Was confirmed.

【0032】一般的にいって、通常のアルカリ水溶液を
用いた洗浄法では、排ガス中の硫化水素を効率よく除去
することは容易でない。これは、次の様に考えられる。
即ち硫化水素は、アルカリ水溶液中でS2-の形で溶解す
るので、アルカリ水溶液中ではNa2 Sが生成するが、
この反応は可逆反応であるから、気相/液相間でのヘン
リー則で定まる硫化水素濃度比と液中でのNa2 Sの溶
解度との関係で平衡しているに過ぎず、気相中の硫化水
素濃度が低くなれば、液中に蓄積されるNa2Sが硫化
水素に戻るので、炭酸ソーダ水溶液を使用した洗浄塔で
硫化水素を完全に除去することはできない。従って、硫
化水素を完全に除去し続けるには、炭酸ソーダ水溶液中
に何らかの物質を添加し、溶解した硫化水素をNa2
以外の可逆でない物質に変換する必要がある。そのため
の手段として、硫化物を金属塩として沈殿除去する方法
が考えられる。
Generally speaking, it is not easy to efficiently remove hydrogen sulfide in exhaust gas by the usual cleaning method using an alkaline aqueous solution. This is considered as follows.
That is, since hydrogen sulfide is dissolved in the alkaline aqueous solution in the form of S 2− , Na 2 S is produced in the alkaline aqueous solution.
Since this reaction is a reversible reaction, it is only in equilibrium due to the relationship between the hydrogen sulfide concentration ratio determined by Henry's law between the gas and liquid phases and the solubility of Na 2 S in the liquid, and If the concentration of hydrogen sulfide becomes low, Na 2 S accumulated in the liquid returns to hydrogen sulfide, so that hydrogen sulfide cannot be completely removed by a washing tower using an aqueous solution of sodium carbonate. Therefore, in order to continue to completely remove hydrogen sulfide, some substance is added to the sodium carbonate aqueous solution and the dissolved hydrogen sulfide is dissolved in Na 2 S.
It is necessary to convert to other non-reversible substances. As a means for this, a method of removing sulfide as a metal salt by precipitation can be considered.

【0033】溶解度の小さい金属硫化物は種々存在する
が、コスト面を考慮して実用的なものは、鉛と亜鉛にほ
ぼ限定される。但し、いずれも炭酸ソーダ等のアルカリ
水溶液中では非常に溶解度の小さい炭酸鉛や炭酸亜鉛と
して沈殿してしまうので、例えば塩化鉛や塩化亜鉛の形
で炭酸ソーダ水溶液に添加しても、イオンの形で存在す
るのはごく微量であり、気液接触時間の短い洗浄塔で効
率よく金属硫化物を生成させることは非常に困難である
と考えられる。
There are various metal sulfides having low solubility, but practical ones are almost limited to lead and zinc in view of cost. However, both of them will precipitate as lead carbonate or zinc carbonate, which have very low solubility in an alkaline aqueous solution such as sodium carbonate, so even if they are added to the sodium carbonate aqueous solution in the form of lead chloride or zinc chloride, the ion form It is considered that it is very difficult to efficiently produce metal sulfides in a washing tower having a short gas-liquid contact time.

【0034】但し、鉛と亜鉛の硫化物の溶解度を比較す
ると、100gの水(15℃)に対する炭酸亜鉛の溶解
度は0.001gであるのに対して、100gの水(1
8℃)に対する硫化亜鉛の溶解度は0.00069gで
あって、炭酸亜鉛よりも硫化亜鉛の溶解度の方がかなり
小さいので、炭酸ソーダ水溶液への硫化水素の吸収速度
に対し洗浄液貯留槽での硫化亜鉛の生成に必要な滞留時
間を十分に取れば、CO3 2- に対してS2-は極く微量で
且つ炭酸ソーダ水溶液に添加した亜鉛化合物の殆んどが
固体の炭酸亜鉛の形で炭酸ソーダ水溶液中で懸濁してい
ても、 ZnCO3 →Zn2++CO3 2- , Zn2++S2-→ZnS↓ の反応が進み、洗浄液に溶解した硫化水素が硫化亜鉛と
して固定される可能性がないとは言えない。
However, when the solubilities of lead and zinc sulfides are compared, the solubility of zinc carbonate in 100 g of water (15 ° C.) is 0.001 g, whereas the solubility of 100 g of water (1
The solubility of zinc sulfide in 8 ° C.) is 0.00069 g, which is much smaller than that of zinc carbonate. Therefore, the zinc sulfide in the cleaning liquid storage tank is absorbed against the absorption rate of hydrogen sulfide in the sodium carbonate aqueous solution. If the residence time necessary for the formation of is sufficient, the amount of S 2− is very small relative to CO 3 2− and most of the zinc compounds added to the sodium carbonate solution are carbonated in the form of solid zinc carbonate. Even if suspended in an aqueous solution of soda, the reaction of ZnCO 3 → Zn 2+ + CO 3 2− , Zn 2+ + S 2 →→ ZnS ↓ may proceed and hydrogen sulfide dissolved in the cleaning solution may be fixed as zinc sulfide. It cannot be said that there is no.

【0035】そこで、塩化亜鉛を溶解させた炭酸ソーダ
水溶液を用いてオゾン除去排ガスの洗浄を行なったとこ
ろ、該オゾン除去排ガス中の硫化水素を炭酸亜鉛と硫化
亜鉛の混合物よりなる沈殿として効率よく除去できるこ
と、そして、該排ガス中の硫化水素を吸収して洗浄液中
に蓄積される硫化亜鉛に対して、洗浄液中に溶解状態お
よび懸濁状態もしくは沈殿として存在する塩化亜鉛の量
を当量比で3倍以上に維持してやれば、炭酸ソーダ水溶
液を洗浄液とする洗浄塔を用いた場合でも、硫化水素を
完全に除去できることが実証された。これは、硫化亜鉛
の生成反応によって消費される溶解状態の塩化亜鉛が、
アルカリ洗浄液中に懸濁状態もしくは沈殿として存在す
る塩化亜鉛によって直ちに補給され、硫化水素の吸収に
効率よく作用するためと考えられる。しかも、この処理
工程で生成する炭酸亜鉛と硫化亜鉛の混合物よりなる沈
殿は、塩酸に溶解し濾過・中和することによって、アル
カリ洗浄液への添加剤となる塩化亜鉛水溶液として再使
用することができる。
Therefore, when the ozone-removing exhaust gas was washed with an aqueous solution of sodium carbonate in which zinc chloride was dissolved, hydrogen sulfide in the ozone-removing exhaust gas was efficiently removed as a precipitate consisting of a mixture of zinc carbonate and zinc sulfide. What is possible, and with respect to zinc sulfide that absorbs hydrogen sulfide in the exhaust gas and accumulates in the cleaning liquid, the amount of zinc chloride present in the cleaning liquid in a dissolved state and a suspended state or as a precipitate is three times the equivalent ratio. It was proved that hydrogen sulfide can be completely removed by maintaining the above conditions even when using a washing tower using a sodium carbonate aqueous solution as a washing liquid. This is because the dissolved zinc chloride consumed by the reaction to produce zinc sulfide is
It is considered that this is because zinc chloride existing in suspension or as a precipitate in the alkaline washing solution is immediately replenished, and it efficiently acts on the absorption of hydrogen sulfide. Moreover, the precipitate formed of a mixture of zinc carbonate and zinc sulfide generated in this treatment step can be reused as an aqueous zinc chloride solution as an additive to the alkaline cleaning liquid by dissolving in hydrochloric acid, filtering and neutralizing. .

【0036】他方、塩化亜鉛の代わりに鉛塩を使用し、
洗浄液中で硫化水素を硫化鉛として固定する方法では、
100gの水(20℃)に対する炭酸鉛の溶解度が0.
00011gであるのに対し、100gの水(18℃)
に対する硫化鉛の溶解度は0.00009gであるか
ら、洗浄液中での硫化鉛生成率に対する鉛化合物添加量
を亜鉛化合物の場合より増やすことにより、可能と思わ
れる。
On the other hand, a lead salt is used instead of zinc chloride,
In the method of fixing hydrogen sulfide as lead sulfide in the cleaning liquid,
The solubility of lead carbonate in 100 g of water (20 ° C.) is 0.
10011g of water, while 00001g (18 ° C)
Since the solubility of lead sulfide with respect to is 0.00009 g, it seems to be possible by increasing the amount of the lead compound added relative to the lead sulfide production rate in the cleaning liquid as compared with the case of the zinc compound.

【0037】しかし、排水中の鉛イオン量に対する環境
基準は亜鉛イオン量に対する値よりはるかに厳しいの
で、鉛塩を使用した場合は洗浄液使用後の廃液処理に細
心の注意が必要となる。これに対し亜鉛イオンを含む廃
水の処理は、炭酸ソーダ添加による炭酸亜鉛としての沈
澱除去法が一般的であり、従って上記処理を行なう場合
の洗浄液の処理では、亜鉛イオンの沈澱操作済のものと
して、沈澱を分離し液を中和するのみで放流が可能であ
るので、極めて実用的といえる。尚、洗浄液中に懸濁し
ている炭酸亜鉛/硫化亜鉛混合物は一昼夜程度静置する
と容易に沈澱し、上澄みは完全な透明液となる。
However, since the environmental standard for the amount of lead ions in the waste water is far stricter than the value for the amount of zinc ions, when a lead salt is used, it is necessary to pay close attention to the waste liquid treatment after using the cleaning liquid. On the other hand, the treatment of wastewater containing zinc ions is generally carried out by the precipitation removal method as zinc carbonate by the addition of sodium carbonate. Therefore, in the treatment of the cleaning liquid in the above treatment, it is assumed that the zinc ion precipitation operation has been completed. Since it is possible to discharge by simply separating the precipitate and neutralizing the liquid, it can be said to be extremely practical. Incidentally, the zinc carbonate / zinc sulfide mixture suspended in the washing solution easily precipitates when left standing for a whole day and night, and the supernatant becomes a completely transparent liquid.

【0038】従って、この方法を採用して洗浄塔を長期
間運転する場合は、洗浄液の循環ライン乃至貯液部に沈
澱分離個所を設けておき、洗浄液に連続的または間欠的
に添加する亜鉛化合物(塩化亜鉛等)と当量の沈澱を連
続的または間欠的にラインから抜き出す方法を採用すれ
ばよい。上記のオゾン除去と、該オゾン除去工程で生じ
てくる硫化水素の除去を組み合わせた装置について、図
3を参照しつつ詳述する。
Therefore, when the cleaning tower is operated for a long period of time by adopting this method, a zinc compound is continuously or intermittently added to the cleaning liquid by providing a precipitation separation portion in the cleaning liquid circulation line or the storage part. A method may be adopted in which an equivalent amount of precipitate (zinc chloride, etc.) is withdrawn from the line continuously or intermittently. An apparatus that combines the above ozone removal and the removal of hydrogen sulfide generated in the ozone removal step will be described in detail with reference to FIG.

【0039】即ち図3に示す如く、前段のオゾン吸収塔
9aでは、洗浄液として硫化ナトリウムを溶解した炭酸
ソーダ水溶液を使用し、後段の硫化水素吸収塔9bで
は、洗浄液として塩化亜鉛を溶解した炭酸ソーダ水溶液
を使用し、オゾン含有量が1ppmの排気を20m3
minの流量で流しつつ、オゾン除去と生成する硫化水
素の除去を行なった。尚夫々の吸収塔9a,9bでは、
気液接触促進用として、前述の様なツインウエーブ充填
材を使用した。その結果、前段の洗浄塔9aでは、炭酸
ソーダ水溶液に硫化ナトリウムの5%水溶液を2.0g
/minの速度で定量供給することによって、被処理ガ
ス中のオゾンをほぼ完全(0.03ppm以下)に除去
することができ、該オゾン除去排ガス中には硫化水素が
0.03〜0.5ppm混入してくることが確認され
た。
That is, as shown in FIG. 3, a sodium carbonate aqueous solution in which sodium sulfide is dissolved is used as the cleaning liquid in the ozone absorption tower 9a in the first stage, and a sodium carbonate solution in which zinc chloride is dissolved is used as the cleaning liquid in the hydrogen sulfide absorption column 9b in the second stage. 20m 3 of exhaust gas with an ozone content of 1ppm using an aqueous solution
While flowing at a flow rate of min, ozone was removed and hydrogen sulfide produced was removed. In addition, in each absorption tower 9a, 9b,
The twin-wave filler as described above was used for promoting gas-liquid contact. As a result, in the washing tower 9a in the first stage, 2.0 g of a 5% aqueous solution of sodium sulfide was added to the sodium carbonate aqueous solution.
The ozone in the gas to be treated can be almost completely removed (0.03 ppm or less) by quantitatively supplying at a rate of / min, and hydrogen sulfide is 0.03 to 0.5 ppm in the ozone-removed exhaust gas. It was confirmed that it was mixed.

【0040】該オゾン除去工程でオゾンと硫化ナトリウ
ムとの間で生じる反応は前記化学式で示した通りであ
り、洗浄液中には亜硫酸ナトリウムと硫酸ナトリウムが
極く少量ずつ溶解蓄積されるが、本発明者らが確認した
ところによると、洗浄液の総量が1m3 である時の該蓄
積量は3年間の連続運転で亜硫酸ナトリウム換算濃度で
約1.7%程度に過ぎないので、洗浄液は3年に1回程
度中和廃棄しあるいは交換すればよい。尚、被処理ガス
の流量やオゾン濃度が変化する場合は、それらの濃度を
経時的に計測し、洗浄液中の硫化ナトリウム濃度が16
0ppm程度以下にならない様に、硫化ナトリウム水溶
液供給ポンプに連動させて制御するのが最も好ましい
が、この他、定期的な計測結果に基づいてやや過剰気味
の硫化ナトリウム水溶液を供給して上記硫化ナトリウム
濃度を維持することによっても、安定したオゾン除去率
を持続することが可能である。
The reaction occurring between ozone and sodium sulfide in the ozone removal step is as shown in the above chemical formula, and sodium sulfite and sodium sulfate are dissolved and accumulated in the cleaning solution in very small amounts. According to the confirmation by the people, the accumulated amount when the total amount of the cleaning liquid is 1 m 3 is only about 1.7% in terms of sodium sulfite conversion concentration in the continuous operation for 3 years, and therefore the cleaning liquid is used in 3 years. It may be neutralized and discarded or replaced about once. When the flow rate of the gas to be treated or the ozone concentration changes, those concentrations are measured over time and the sodium sulfide concentration in the cleaning liquid is 16%.
It is most preferable to control in conjunction with a sodium sulfide aqueous solution supply pump so that the concentration does not become 0 ppm or less, but in addition to this, the sodium sulfide aqueous solution which is slightly overbased on the basis of regular measurement results is supplied to the sodium sulfide aqueous solution supply pump. By maintaining the concentration, it is possible to maintain a stable ozone removal rate.

【0041】しかして、前段での洗浄液中の硫化ナトリ
ウム濃度が高まると、オゾン除去工程での硫化水素生成
反応が進み易くなるので、後段の硫化水素吸収塔9bへ
供給すべき塩化亜鉛の必要量は増大するが、それ以外の
不都合を生じることはなく、前段洗浄液中の硫化ナトリ
ウム濃度はほぼ一定範囲に持続される。また、上記反応
および供給される硫化ナトリウム水溶液により、計算上
の洗浄液(水)は増加することになるが、通常処理すべ
き排気の湿度は100%ではなく、オゾン吸収塔9a内
では洗浄液の水が蒸発側となって逆に水分量は減少する
傾向があるので、例えばボールタップ等を設けて給水す
る必要がある場合の方が多い。
However, when the concentration of sodium sulfide in the cleaning liquid in the first stage is increased, the hydrogen sulfide generation reaction in the ozone removal step is likely to proceed, so that the required amount of zinc chloride to be supplied to the second stage hydrogen sulfide absorption tower 9b is increased. However, there is no other inconvenience, and the sodium sulfide concentration in the pre-stage cleaning liquid is maintained in a substantially constant range. Further, although the above-mentioned reaction and the supplied sodium sulfide aqueous solution increase the calculated cleaning liquid (water), the humidity of the exhaust gas to be normally treated is not 100%, and the cleaning liquid water is not stored in the ozone absorption tower 9a. However, the amount of water tends to decrease on the evaporation side, so that it is often the case that a ball tap or the like needs to be provided to supply water.

【0042】上記の様にオゾン吸収塔9aでオゾンが除
去され、硫化水素ガスの混入したオゾン除去排ガスは、
引き続いて硫化水素吸収塔9bにおいて、塩化亜鉛の溶
解された炭酸ソーダ水溶液で洗浄されることによって、
該排ガス中の硫化水素もほぼ完全(0.01ppm以
下)に吸収除去されるが、上記硫化水素混入量に対応す
る10%塩化亜鉛水溶液の供給量は約0.6g/min
程度と非常に少ないので、例えば1か月毎に塩化亜鉛1
0%水溶液を25kg程度洗浄液に追加することによっ
て、ほぼ完全な硫化水素除去率を確保することができ
る。
The ozone-removed exhaust gas from which ozone has been removed by the ozone absorption tower 9a and hydrogen sulfide gas has been mixed in as described above,
Subsequently, in the hydrogen sulfide absorption tower 9b, by washing with an aqueous sodium carbonate solution in which zinc chloride is dissolved,
Hydrogen sulfide in the exhaust gas is also absorbed and removed almost completely (0.01 ppm or less), but the amount of 10% zinc chloride aqueous solution corresponding to the amount of hydrogen sulfide mixed is about 0.6 g / min.
As it is very small, for example, 1 zinc chloride per month
By adding about 25 kg of a 0% aqueous solution to the cleaning liquid, it is possible to secure a substantially complete hydrogen sulfide removal rate.

【0043】また、該硫化水素吸収塔9bにおける洗浄
液中の硫化亜鉛濃度は、洗浄液総量が500リットルの
場合1年間の連続運転で約4.3%となり、そのままで
は大部分が懸濁物として洗浄液中に浮遊して洗浄液循環
ラインを閉塞させる恐れがあるので、該循環ライン内の
適所に硫化亜鉛の沈殿・堆積部を形成し、堆積した硫化
亜鉛を定期的に系外へ排出するか、あるいは半年〜1年
程度の周期で洗浄液を交換することが望ましい。また図
3には記載していないが、硫化水素吸収塔9bに別途洗
浄液貯槽を設けて循環させて洗浄液の総量を増加させれ
ば、洗浄液の交換期間を延長させることができる。
Further, the concentration of zinc sulfide in the cleaning liquid in the hydrogen sulfide absorption tower 9b is about 4.3% after one year of continuous operation when the total amount of the cleaning liquid is 500 liters, and most of it remains as a cleaning liquid as a suspension. Since there is a risk of floating inside and clogging the cleaning liquid circulation line, a zinc sulfide precipitation / deposition portion is formed at an appropriate place in the circulation line, and the accumulated zinc sulfide is regularly discharged to the outside of the system, or It is desirable to change the cleaning solution every 6 months to 1 year. Although not shown in FIG. 3, if a cleaning liquid storage tank is separately provided in the hydrogen sulfide absorption tower 9b and is circulated to increase the total amount of the cleaning liquid, the replacement period of the cleaning liquid can be extended.

【0044】硫化水素吸収塔9bで循環される洗浄液を
交換する場合は、別に準備した貯槽に洗浄液を移し替
え、一昼夜程度静置して硫化亜鉛と炭酸亜鉛を沈降分離
した後、上澄み液を硫酸や塩酸等の酸で中和してから放
流すればよく、また沈殿は硫化水素ガス吸収装置を備え
た槽内で塩酸等で中和した後、濃縮して塩化亜鉛の結晶
として再生することも可能である。
When the cleaning liquid circulated in the hydrogen sulfide absorption tower 9b is to be replaced, the cleaning liquid is transferred to a separately prepared storage tank and left to stand for a whole day and night to precipitate and separate zinc sulfide and zinc carbonate, and then the supernatant liquid is sulfuric acid. It may be neutralized with an acid such as sodium chloride or hydrochloric acid, and then discharged. Alternatively, the precipitate may be neutralized with hydrochloric acid in a tank equipped with a hydrogen sulfide gas absorption device and then concentrated to be regenerated as zinc chloride crystals. It is possible.

【0045】更に、オゾン吸収塔9aの洗浄液と硫化水
素吸収塔9bの洗浄液とを同時に交換する場合は、両塔
9a,9bおよびファンFを稼働しつつオゾン吸収塔9
aの硫化ナトリウム水溶液供給ラインから酸を供給し、
洗浄液中の全ての硫化ナトリウムを硫化水素として排出
し、これを硫化水素吸収塔9bで処理する方法を採用す
れば、中和後のオゾン吸収塔9aの洗浄液はそのまま放
流することができる。その後に、硫化水素吸収塔9bの
洗浄液を前述の様な方法によって処理すればよい。
Further, when the cleaning liquid for the ozone absorption tower 9a and the cleaning liquid for the hydrogen sulfide absorption tower 9b are simultaneously replaced, both towers 9a, 9b and the fan F are operated while the ozone absorption tower 9 is being operated.
The acid is supplied from the sodium sulfide aqueous solution supply line of a.
If all sodium sulfide in the cleaning liquid is discharged as hydrogen sulfide and treated in the hydrogen sulfide absorption tower 9b, the neutralized cleaning liquid of the ozone absorption tower 9a can be discharged as it is. After that, the cleaning liquid for the hydrogen sulfide absorption tower 9b may be treated by the method as described above.

【0046】上記処理を行なう際に消費される薬剤の年
間必要量は、硫化ナトリウムが35kg程度、塩化亜鉛
は30kg程度であり、洗浄液交換時の炭酸ソーダや中
和用に用いられる酸を加えても、年間の消費薬剤に要す
る費用は数万円程度であり、従来のオゾン分解触媒法に
比べて大幅な経費削減が可能となる。ちなみに現在実用
化されているオゾン分解触媒法では、オゾンの耐用年数
を数年とした場合でもその年間コストは数十万円であ
り、更に触媒劣化を抑制するために必須とされる被処理
ガスの乾燥設備(ヒーター等)の設置コストやランニン
グコストを加えたトータルコストは更に高くなってく
る。従って、極く小規模の残存オゾン処理装置として
は、設備のコンパクト性や運転・操業の簡便性等の点で
触媒分解法の方が好まれる場合もあるが、例えば10m
3 /minを超える中規模ないし大規模な残存オゾンの
処理を行なう実用規模の設備としては、本発明の方法は
非常に有利な方法といえる。
The annual required amount of chemicals consumed when performing the above treatment is about 35 kg of sodium sulfide and about 30 kg of zinc chloride. Sodium carbonate at the time of exchanging the cleaning solution and the acid used for neutralization are added. However, the annual cost required for consuming chemicals is about tens of thousands of yen, and it is possible to significantly reduce the cost as compared with the conventional ozone decomposition catalyst method. By the way, with the ozone decomposition catalyst method currently in practical use, even if the useful life of ozone is set to several years, the annual cost is hundreds of thousands of yen, and the gas to be treated is essential to suppress catalyst deterioration. The total cost including the installation cost of the drying equipment (heater etc.) and the running cost will become higher. Therefore, as an extremely small-scale residual ozone treatment apparatus, the catalytic decomposition method may be preferred in terms of equipment compactness and ease of operation / operation.
It can be said that the method of the present invention is a very advantageous method for a practical scale facility for treating residual ozone of medium scale or large scale exceeding 3 / min.

【0047】上記一連の試験結果および実施例での炭酸
ソーダ水溶液の濃度は、いずれも5%で行なったもので
あるが、別の実験では炭酸ソーダ濃度1〜6%の範囲で
ほぼ同等の効果が認められ、概して高濃度の方がオゾン
及び硫化水素のいずれについても除去性能が良くなるこ
とを確認している。
The results of the above series of tests and the concentration of the sodium carbonate aqueous solution in the examples were all performed at 5%, but in another experiment, substantially the same effect was obtained in the sodium carbonate concentration range of 1 to 6%. It was confirmed that the higher the concentration, the better the removal performance for both ozone and hydrogen sulfide.

【0048】また上記試験および実施例では、アルカリ
として炭酸ソーダを使用した。これは、被処理ガスの大
部分は空気であり、苛性ソーダを使用すると空気中の二
酸化炭素を吸収して短期間のうちに炭酸ソーダに変質す
るため、安定した処理効果を得るには常に多量の苛性ソ
ーダを追加しなければならないのに対し、炭酸ソーダで
はこの様な変質が起こらず、安定した処理効果が持続さ
れ易いという理由に基づくものであるが、二酸化炭素に
よる変質の問題がなければ、苛性ソーダ水溶液の方が除
去性能は優れているので、アルカリとして苛性ソーダを
使用し、実質は苛性ソーダ・炭酸ソーダ混合液として使
用することもできる。
In the above test and examples, sodium carbonate was used as the alkali. This is because most of the gas to be treated is air, and when caustic soda is used, it absorbs carbon dioxide in the air and is transformed into sodium carbonate within a short period of time, so a large amount of it is always required to obtain a stable treatment effect. While caustic soda must be added, this is because sodium carbonate does not cause such deterioration and the stable treatment effect is easily maintained.However, if there is no problem of deterioration due to carbon dioxide, caustic soda can be used. Since the aqueous solution has a better removal performance, caustic soda can be used as an alkali, and substantially a caustic soda / sodium carbonate mixture can also be used.

【0049】また、炭酸水素ナトリウムや苛性カリ等の
他の無機アルカリ水溶液、更にはアミンやフェノール等
の有機アルカリ水溶液を洗浄液として用いることも可能
であるが、これらアルカリ薬剤の中でも炭酸ソーダは、
安価で且つ取扱いや保管が容易であるといった利点を有
しており、最も好ましいアルカリ薬剤として推奨され
る。しかも、通常のアルカリ洗浄液で用いれらるアルカ
リ薬剤としては苛性ソーダが最も汎用されているが、炭
酸ソーダであれば、取扱いの危険も非常に少なく安全性
も高められるという利点も享受できる。
It is also possible to use another inorganic alkaline aqueous solution such as sodium hydrogen carbonate or caustic potash, or an organic alkaline aqueous solution such as amine or phenol as a cleaning liquid. Among these alkaline chemicals, sodium carbonate is
It has the advantages of being inexpensive and easy to handle and store, and is recommended as the most preferable alkaline drug. In addition, caustic soda is most widely used as an alkaline chemical used in a normal alkaline cleaning liquid, but sodium carbonate can enjoy the advantage that handling risk is very small and safety is enhanced.

【0050】オゾン吸収塔9aでアルカリ水溶液に添加
される金属硫化物として、上記試験および実施例では硫
化ナトリウム(硫化ナトリウム)を使用したが、該硫化
ナトリウムとしては無水物の他Na2 O・xH2 O(6
水塩や9水塩など)を使用することが可能であり、更に
は多硫化ナトリウム(Na25 )、硫化水素ナトリウ
ム(NaSH・2H2 O等も同様に使用することがで
き、更にはナトリウム塩以外の金属硫化物、例えばカリ
ウム硫化物等を使用することも可能であるが、コストや
アルカリ水溶液への溶解性等を総合的に考えて最も好ま
しいのはナトリウム硫化物である。
Sodium sulfide (sodium sulfide) was used as the metal sulfide added to the alkaline aqueous solution in the ozone absorption tower 9a in the above-mentioned tests and examples. As the sodium sulfide, other than anhydrous substance, Na 2 O · xH was used. 2 O (6
It is also possible to use hydrate or nonahydrate, etc., and sodium polysulfide (Na 2 S 5 ), sodium hydrogen sulfide (NaSH · 2H 2 O, etc.) can be used as well. Although it is possible to use metal sulfides other than sodium salts, such as potassium sulfide, sodium sulfide is most preferred in view of cost, solubility in alkaline aqueous solution and the like.

【0051】また硫化水素吸収塔9bのアルカリ洗浄液
に添加する亜鉛塩として、上記試験および実施例では塩
化亜鉛を使用したが、これ以外にも硫酸亜鉛や臭化亜鉛
等の如く硫化水素と反応して水溶性の硫化亜鉛を生成す
る亜鉛塩でも同等の効果が得られることは明らかであ
り、また炭酸亜鉛を懸濁状態で添加することも可能であ
る。
As the zinc salt to be added to the alkaline cleaning liquid of the hydrogen sulfide absorption tower 9b, zinc chloride was used in the above-mentioned tests and examples, but other than this, it reacts with hydrogen sulfide such as zinc sulfate and zinc bromide. It is clear that the same effect can be obtained even with a zinc salt that produces water-soluble zinc sulfide, and it is also possible to add zinc carbonate in a suspended state.

【0052】洗浄塔の形式・構造については、上記試験
および実施例のいずれも、本願出願人の開発した図4に
示した様なツインウエーブ型充填材を気液接触促進用と
して使用した洗浄塔により実施したが、気液接触時間を
適宜選択すれば、他の例えば粒状の充填材やラシヒリン
グや鞍型充填材等を用いた充填塔や棚段塔等、種々の気
液接触装置でも同等の成果が得られることは明らかであ
り、本発明ではそれらの使用を除外するものではない。
Regarding the type and structure of the cleaning tower, in both the above-mentioned test and examples, the cleaning tower using the twin-wave type filler as shown in FIG. 4 developed by the applicant of the present invention for promoting gas-liquid contact. However, if the gas-liquid contact time is appropriately selected, other gas-liquid contacting devices such as a packed column using a granular packing or Raschig ring or a saddle-shaped packing, a tray column, or the like can also be used. It is clear that the results will be obtained, and the present invention does not exclude their use.

【0053】以上の様に本発明方法によれば、オゾン含
有ガスからオゾンの除去を効率よく遂行できると共に、
該オゾン除去工程で生じてくる硫化水素についても効率
よく除去することができ、優れたガス清浄化効果を得る
ことが可能となる。
As described above, according to the method of the present invention, ozone can be efficiently removed from the ozone-containing gas, and
Hydrogen sulfide generated in the ozone removing step can be efficiently removed, and an excellent gas cleaning effect can be obtained.

【0054】[0054]

【実施例】次に実施例を挙げて本発明をより具体的に説
明するが、本発明はもとより下記実施例によって制限を
受けるものではなく、前・後記の趣旨に適合し得る範囲
で適当に変更を加えて実施することも可能であり、それ
らは全て本発明の技術的範囲に包含される。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately applied within a range compatible with the gist of the above and the following. Modifications can be made and they are all included in the technical scope of the present invention.

【0055】実施例1 図1に示す装置を使用し、アルカリ洗浄液として炭酸ソ
ーダ3%水溶液を使用し、これを18リットル/min
で循環させると共に、被処理ガスとしてオゾンと硫化水
素の混入量を種々変更した空気を風量3.7m3 /mi
nで吹込み、洗浄塔9で炭酸ソーダ水溶液に硫化水素を
吸収せしめると共に、硫化水素の吸収された炭酸ソーダ
水溶液によってオゾンの吸収を行ない、該洗浄塔9から
排出される処理済みガスのオゾンおよび硫化水素の濃度
を測定することによって、オゾン除去率と硫化水素除去
率を調べた。
Example 1 Using the apparatus shown in FIG. 1, a 3% aqueous solution of sodium carbonate was used as an alkaline cleaning liquid, and this was used at 18 liters / min.
Air with various amounts of ozone and hydrogen sulfide mixed as the gas to be treated and a flow rate of 3.7 m 3 / mi.
n is blown, and hydrogen sulfide is absorbed in the sodium carbonate aqueous solution in the washing tower 9, and ozone is absorbed by the sodium carbonate aqueous solution in which hydrogen sulfide is absorbed, and ozone of the treated gas discharged from the washing tower 9 and The ozone removal rate and hydrogen sulfide removal rate were investigated by measuring the concentration of hydrogen sulfide.

【0056】結果は表2に示す通りであり、洗浄塔9へ
供給される空気中に1ppm程度以上の硫化水素を混入
させてこれを炭酸ソーダ水溶液に吸収させた洗浄液を使
用すると、洗浄塔9でのオゾン除去率を98%程度以上
に高め得ることが確認できる。
The results are shown in Table 2, and when a cleaning liquid prepared by mixing about 1 ppm or more of hydrogen sulfide in the air supplied to the cleaning tower 9 and absorbing it in an aqueous solution of sodium carbonate is used, It can be confirmed that the ozone removal rate can be increased to about 98% or more.

【0057】[0057]

【表2】 [Table 2]

【0058】実施例2 図2に示した2重洗浄塔オゾン除去装置を使用し、アル
カリ洗浄液として炭酸ソーダ5%水溶液を150リット
ル調整して20リットル/min流量で循環させると共
に、下部洗浄塔9aには風量0.40〜0.69m3
minでオゾンを0〜5.5ppm吹込み、一方上部洗
浄塔9bには、上部ファン18の上流側から風量3.3
〜3.4m3 /minで硫化水素を0〜13.9ppm
吹込み、オゾンおよび硫化水素の除去率を調べた。
Example 2 Using the double cleaning tower ozone removing device shown in FIG. 2, 150 liters of a 5% aqueous solution of sodium carbonate as an alkali cleaning liquid was prepared and circulated at a flow rate of 20 liters / min, and the lower cleaning tower 9a was used. The air volume is 0.40 to 0.69 m 3 /
0 to 5.5 ppm of ozone is blown in at the same time, while the upper cleaning tower 9b has an air flow rate of 3.3 from the upstream side of the upper fan 18.
〜3.4m 3 / min Hydrogen sulfide 0〜13.9ppm
Blow-in, ozone and hydrogen sulfide removal rates were investigated.

【0059】結果は図5に示した通りである。上部洗浄
塔9bで炭酸ソーダ水溶液に吸収された硫化水素が硫化
ナトリウムとして均一に溶解しているものとして、各運
転時間における洗浄液中の硫化水素濃度を計算すると、
その値にほぼ比例して下部洗浄塔9bへ導入したオゾン
の除去率は高まり、該洗浄液中の硫化ナトリウム濃度が
160ppm以上になると、下部洗浄塔9a出口部のオ
ゾン濃度は0.002ppm以下となり、99.9%以
上のオゾン除去率が得られる。また、洗浄液中の硫化ナ
トリウム濃度が130ppm以上になると、下部洗浄塔
9a出口側で硫化水素が検出される様になるので、この
方法でオゾンを70%以上除去するには、オゾン除去後
の該処理ガス中に混入してくる硫化水素を除去するため
の装置を、該オゾン除去装置の下流側へ付設すべきであ
ることが分かる。
The results are as shown in FIG. Assuming that the hydrogen sulfide absorbed in the sodium carbonate aqueous solution in the upper washing tower 9b is uniformly dissolved as sodium sulfide, the hydrogen sulfide concentration in the washing liquid at each operating time is calculated as follows:
The removal rate of ozone introduced into the lower cleaning tower 9b is increased almost in proportion to the value, and when the sodium sulfide concentration in the cleaning liquid is 160 ppm or more, the ozone concentration at the outlet of the lower cleaning tower 9a is 0.002 ppm or less, An ozone removal rate of 99.9% or more can be obtained. Further, when the concentration of sodium sulfide in the cleaning liquid becomes 130 ppm or more, hydrogen sulfide will be detected at the outlet side of the lower cleaning tower 9a. Therefore, in order to remove 70% or more of ozone by this method, It is understood that a device for removing hydrogen sulfide mixed in the process gas should be attached downstream of the ozone removing device.

【0060】実施例3 図2に示した様な2重洗浄オゾン除去装置(但し、オゾ
ン供給管は上部ファン18の上流側に接続した)を使用
し、アルカリ洗浄液として炭酸ソーダ5%水溶液を15
0リットル調整して20リットル/min流量で循環さ
せると共に、上部洗浄塔9bにオゾン含有空気を導入し
て運転を開始し、アルカリ洗浄液中に硫化ナトリウム5
%水溶液を、前記表1に示した濃度になる様に適宜追加
供給しつつ運転を継続し、洗浄液中の硫化ナトリウム濃
度とオゾン除去率の関係を調べた。
Example 3 A double cleaning ozone removing device as shown in FIG. 2 (however, the ozone supply pipe was connected to the upstream side of the upper fan 18) was used, and a 5% aqueous solution of sodium carbonate was used as an alkaline cleaning liquid.
0 liter was adjusted and circulated at a flow rate of 20 liter / min, and ozone-containing air was introduced into the upper washing tower 9b to start the operation, and sodium sulfide 5 was added to the alkali washing liquid.
% Aqueous solution was further supplemented as needed so as to have the concentrations shown in Table 1, and the operation was continued to examine the relationship between the concentration of sodium sulfide in the cleaning liquid and the ozone removal rate.

【0061】結果は前記表1に示した通りであり、アル
カリ洗浄液中の硫化ナトリウム濃度を200ppm以上
に保持すると共に、洗浄塔における充填材部分での気液
接触時間を十分に長く取ってやれば、95%以上、若し
くは98%以上のオゾン除去率を確保し得ることが分か
る。
The results are shown in Table 1 above. If the sodium sulfide concentration in the alkaline cleaning liquid is maintained at 200 ppm or more, and the gas-liquid contact time at the packing material portion in the cleaning tower is set to be sufficiently long. It can be seen that an ozone removal rate of 95% or more, or 98% or more can be secured.

【0062】実施例4 図3に示した様な2塔直列型のオゾン除去装置を使用
し、オゾン0.7〜1.3ppmを含有する排気を風量
20m3 /minで処理した。この時、前段の洗浄塔9
aでは、硫化ナトリウム250ppmを溶解した炭酸ソ
ーダ5%水溶液を400リットル/minで循環させ、
後段の洗浄塔9bでは、塩化亜鉛0.1%を添加した炭
酸ソーダ5%水溶液を40リットル/minで循環させ
ながら運転を開始し、且つ前段の洗浄液には、定量ポン
プで硫化ナトリウム5%水溶液を1.7g/min供給
し、後段の洗浄液には毎日1回塩化亜鉛10%水溶液を
500g添加することによって、該洗浄液中の塩化亜鉛
量を、該洗浄液中に蓄積される硫化ナトリウムに対し当
量比で3倍以上となる様に維持した。その結果、ファン
F出口からの排気中のオゾン濃度は0.02ppm以下
に、また硫化水素濃度は0.01ppm以下に夫々低減
されることが確認された。
Example 4 Exhaust gas containing 0.7 to 1.3 ppm of ozone was treated with an air flow rate of 20 m 3 / min using a two-column in-line ozone removing apparatus as shown in FIG. At this time, the washing tower 9 in the previous stage
In a, a 5% aqueous solution of sodium carbonate in which 250 ppm of sodium sulfide is dissolved is circulated at 400 liter / min,
In the latter-stage cleaning tower 9b, operation was started while circulating a 5% aqueous solution of sodium carbonate to which 0.1% of zinc chloride was circulated at 40 liters / min, and for the first-stage cleaning liquid, a 5% aqueous solution of sodium sulfide was used with a metering pump. Was added to the washing liquid in the subsequent stage and 500 g of a 10% aqueous solution of zinc chloride was added once a day to the washing liquid in the latter stage so that the amount of zinc chloride in the washing liquid was equivalent to that of sodium sulfide accumulated in the washing liquid. The ratio was maintained at 3 times or more. As a result, it was confirmed that the ozone concentration in the exhaust gas from the outlet of the fan F was reduced to 0.02 ppm or less and the hydrogen sulfide concentration was reduced to 0.01 ppm or less.

【0063】[0063]

【発明の効果】本発明は以上の様に構成されており、オ
ゾン含有排ガスからオゾンを経済的安価にしかも効率よ
く除去することができ、また該オゾン除去工程で生成す
る硫化水素ガスについてもほぼ完全に除去することがで
き、オゾン含有排ガスのほぼ完全な浄化処理を達成し得
ることになった。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and ozone can be efficiently and economically removed from ozone-containing exhaust gas, and hydrogen sulfide gas produced in the ozone removal step can be almost eliminated. It was possible to completely remove it, and it was possible to achieve almost complete purification treatment of ozone-containing exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いられる最も簡単なオゾン除去装置
を示す説明図である。
FIG. 1 is an explanatory view showing a simplest ozone removing device used in the present invention.

【図2】本発明で用いられる2重塔型のオゾン除去装置
を示す説明図である。
FIG. 2 is an explanatory view showing a double tower type ozone removing device used in the present invention.

【図3】本発明により、オゾン除去と共に硫化水素除去
を達成することのできる2塔直列型浄化装置を示す説明
図である。
FIG. 3 is an explanatory view showing a two-column serial purification apparatus capable of achieving removal of hydrogen sulfide as well as removal of ozone according to the present invention.

【図4】本発明でも有利に使用される気液接触用充填材
を示す模式図である。
FIG. 4 is a schematic diagram showing a gas-liquid contact filler which is advantageously used in the present invention.

【図5】洗浄液中の硫化ナトリウム濃度とオゾン除去率
等の関係を調べた結果を示すグラフである。
FIG. 5 is a graph showing the results of examining the relationship between the concentration of sodium sulfide in the cleaning liquid and the ozone removal rate.

【図6】洗浄液に吸収させる硫化水素に対する排ガス中
のオゾンの比率とオゾン除去率の関係を示す実験結果の
グラフである。
FIG. 6 is a graph of experimental results showing the relationship between the ozone removal rate and the ratio of ozone in the exhaust gas to hydrogen sulfide absorbed in the cleaning liquid.

【符号の説明】[Explanation of symbols]

4,4a,4b 洗浄液循環ポンプ 6,6a,6b 流量計 7,7a,7b 圧力計 8,8a,8b スプレーノズル 9,9a,9b 洗浄塔 11,11a,11b 気液接触用充填材 12,12a,12b ミストセパレータ 14,14a,14b 洗浄液貯槽 24 オゾナイザー 4,4a, 4b Cleaning liquid circulation pump 6,6a, 6b Flowmeter 7,7a, 7b Pressure gauge 8,8a, 8b Spray nozzle 9,9a, 9b Cleaning tower 11,11a, 11b Gas-liquid contact filler 12,12a , 12b Mist separator 14, 14a, 14b Cleaning liquid storage tank 24 Ozonizer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オゾン含有ガスを、硫化水素および/ま
たは金属硫化物が溶解されたアルカリ水溶液に接触させ
てオゾンを吸収除去することを特徴とするオゾンの除去
方法。
1. A method for removing ozone, which comprises contacting an ozone-containing gas with an aqueous alkaline solution in which hydrogen sulfide and / or metal sulfide is dissolved to absorb and remove ozone.
【請求項2】 オゾン含有ガスを、硫化水素および/ま
たは金属硫化物が溶解されたアルカリ水溶液に接触させ
てオゾンを吸収除去すると共に、生成する硫化水素含有
ガスを、硫化水素と反応して金属硫化物の沈殿を生成す
る金属塩を含有するアルカリ水溶液と接触させ、前記硫
化水素含有ガス中の硫化水素を金属硫化物の沈殿として
除去することを特徴とするオゾンの除去方法。
2. The ozone-containing gas is brought into contact with an alkaline aqueous solution in which hydrogen sulfide and / or metal sulfide is dissolved to absorb and remove ozone, and the produced hydrogen sulfide-containing gas is reacted with hydrogen sulfide to produce a metal. A method for removing ozone, which comprises contacting with an alkaline aqueous solution containing a metal salt that forms a precipitate of sulfide to remove hydrogen sulfide in the hydrogen sulfide-containing gas as a precipitate of metal sulfide.
【請求項3】 アルカリ水溶液を構成するアルカリ成分
として炭酸ソーダを使用すると共に、金属硫化物として
硫化ナトリウムおよび/または硫化カリウムを使用し、
アルカリ水溶液中の硫化水素および/または金属硫化物
の濃度を硫化ナトリウム換算濃度で100〜300pp
mに維持する請求項1または2に記載のオゾンの除去方
法。
3. Sodium carbonate is used as an alkaline component constituting an alkaline aqueous solution, and sodium sulfide and / or potassium sulfide is used as a metal sulfide,
The concentration of hydrogen sulfide and / or metal sulfide in the alkaline aqueous solution is 100 to 300 pp in terms of sodium sulfide conversion concentration.
The method for removing ozone according to claim 1 or 2, wherein the ozone is maintained at m.
【請求項4】 アルカリ水溶液を構成するアルカリ成分
として炭酸ソーダを使用すると共に、金属塩として亜鉛
塩を使用し、アルカリ水溶液中の亜鉛塩の含有量を、液
中の懸濁物や沈殿を含めて、該アルカリ水溶液中および
懸濁物や沈殿として吸収蓄積される硫化物に対し当量比
で3倍以上に維持する請求項2または3に記載のオゾン
の除去方法。
4. Sodium carbonate is used as an alkaline component constituting an alkaline aqueous solution, and a zinc salt is used as a metal salt, and the content of the zinc salt in the alkaline aqueous solution includes suspensions and precipitates in the solution. 4. The method for removing ozone according to claim 2 or 3, wherein the sulfide is absorbed and accumulated in the alkaline aqueous solution and as a suspension or a precipitate at an equivalent ratio of 3 times or more.
JP7085521A 1995-04-11 1995-04-11 Ozone removal method Expired - Fee Related JP2731125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085521A JP2731125B2 (en) 1995-04-11 1995-04-11 Ozone removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085521A JP2731125B2 (en) 1995-04-11 1995-04-11 Ozone removal method

Publications (2)

Publication Number Publication Date
JPH08281064A true JPH08281064A (en) 1996-10-29
JP2731125B2 JP2731125B2 (en) 1998-03-25

Family

ID=13861219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085521A Expired - Fee Related JP2731125B2 (en) 1995-04-11 1995-04-11 Ozone removal method

Country Status (1)

Country Link
JP (1) JP2731125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052076A (en) * 2000-08-07 2002-02-19 Smc Corp Method and apparatus for removing ozone
JP2003047814A (en) * 2001-08-03 2003-02-18 Takasago Thermal Eng Co Ltd Mist separator and operating method thereof
KR20220117689A (en) * 2021-02-17 2022-08-24 한남대학교 산학협력단 Method of removing pollutants generated by plasma process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917402B1 (en) 2009-05-15 2009-09-14 주식회사 유니테크 Ozone removal composition for treating off-gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128592A (en) * 1977-04-15 1978-11-09 Ebara Corp Process for removing hydrogen sulfide
JPS5771623A (en) * 1980-10-21 1982-05-04 Toshiba Corp Treatment of waste ozone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128592A (en) * 1977-04-15 1978-11-09 Ebara Corp Process for removing hydrogen sulfide
JPS5771623A (en) * 1980-10-21 1982-05-04 Toshiba Corp Treatment of waste ozone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052076A (en) * 2000-08-07 2002-02-19 Smc Corp Method and apparatus for removing ozone
JP2003047814A (en) * 2001-08-03 2003-02-18 Takasago Thermal Eng Co Ltd Mist separator and operating method thereof
KR20220117689A (en) * 2021-02-17 2022-08-24 한남대학교 산학협력단 Method of removing pollutants generated by plasma process

Also Published As

Publication number Publication date
JP2731125B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US3969479A (en) Odor control method
KR101833534B1 (en) Nutriculture system, and water treatment apparatus for sterilization and purification purposes
WO2006060563A2 (en) Apparatus and method for producing chlorine dioxide
KR100930987B1 (en) Unification deodorizing apparatus using high efficiency deodorization combined scrubber system have in ozone generator
CN110772913A (en) Waste gas treatment device
KR102004497B1 (en) Space Deordorizing System using Fine Spray Droplet
TWI588098B (en) A waste liquid treatment device and an air pollution control device using the waste liquid treatment device
JP3633127B2 (en) Air deodorization method and air deodorization apparatus using ozone water
JP2731125B2 (en) Ozone removal method
KR102046269B1 (en) Purification processing method of toxic substance containing liquid and toxic substance containing liquid for performing this
JP5391123B2 (en) Air purification device
CN217780843U (en) AOP strong ion oxidation disinfection processor
JP2731124B2 (en) Deodorization method
WO2020089763A1 (en) Method and system for cleaning and disinfection
CN216321080U (en) Device suitable for acid-base waste gas treatment and ozonolysis organic waste gas
JPS5847211B2 (en) Gas purification method
JPH0523682A (en) Device for reforming water quality using ozone aqueous solution
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
CN208340460U (en) A kind of efficient photooxidation catalytic waste gas processing system
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
JPS625008B2 (en)
CN218393055U (en) Sludge pyrohydrolysis waste gas deodorization device
CN208577573U (en) A kind of system of the processing containing free chloride wastewater
JPS6035165B2 (en) Ozone decolorization and deodorization method
CN202968188U (en) Ozone and activated carbon integrated sewage treatment unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971202

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees