JPH08280367A - Utilization of hot effluent from retort and system therefor - Google Patents

Utilization of hot effluent from retort and system therefor

Info

Publication number
JPH08280367A
JPH08280367A JP7113947A JP11394795A JPH08280367A JP H08280367 A JPH08280367 A JP H08280367A JP 7113947 A JP7113947 A JP 7113947A JP 11394795 A JP11394795 A JP 11394795A JP H08280367 A JPH08280367 A JP H08280367A
Authority
JP
Japan
Prior art keywords
water
retort
passage
hot
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7113947A
Other languages
Japanese (ja)
Other versions
JP3528944B2 (en
Inventor
Norimitsu Wakabayashi
憲光 若林
Masami Kohama
正巳 小浜
明 ▲はい▼島
Akira Haijima
Fujio Komatsu
富士夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Showa Denko Gas Products Co Ltd
Original Assignee
Mayekawa Manufacturing Co
Showa Tansan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Showa Tansan Co Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP11394795A priority Critical patent/JP3528944B2/en
Publication of JPH08280367A publication Critical patent/JPH08280367A/en
Application granted granted Critical
Publication of JP3528944B2 publication Critical patent/JP3528944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PURPOSE: To provide the subject system enabling necessary mechanical power to be significantly reduced by utilizing, as a heat source, hot effluent changing in a time series fashion within the temperature range between 40 and 70 deg.C, along with enabling the highly accurate control of cooling water for the retort. CONSTITUTION: Hot effluent discharged from a retort 1 is introduced as the heat source water 2A for an absorption or adsorption refrigerating machine (hereafter, referred to an adsorption refrigerating machine 2, etc.), and the heat-deprived hot water after use as the heat source water 2A is subjected to atmospheric heat dissipation through an evaporative condenser 3 and then introduced into the cooling side 2B of the adsorption refrigerating machine 2, etc., to generate temperature-controlled cooling water, which is then introduced into the retort 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレトルト釜を利用した殺
菌システムにおける温排水利用方法とそのシステムに係
り、特に加熱工程後における冷却工程時にレトルト釜内
より排出される温排水をクローズサイクルで利用可能に
した温排水利用方法とそのシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using hot waste water in a sterilization system using a retort kettle and the system thereof, and in particular, uses hot waste water discharged from the retort kettle in a closed cycle during a cooling step after a heating step. The present invention relates to a method of using warm waste water and its system.

【0002】[0002]

【従来の技術】従来より、飲料缶、食品を可撓性包装体
に充填した密封包装食品、缶及び瓶詰め食品等(以下こ
れらを総称して被殺菌体という)、の殺菌システムとし
てレトルトを利用した殺菌システムが周知である。
2. Description of the Related Art Conventionally, a retort has been used as a sterilization system for beverage cans, hermetically sealed foods in which flexible packaging is filled with foods, cans and bottled foods (hereinafter collectively referred to as sterilized objects). Known sterilization systems are well known.

【0003】この種の殺菌システムにおいては、レトル
ト(調理殺菌槽)内に多段状に飲料缶等の被殺菌体を収
容した後、圧縮空気による加圧(等圧制御)貯湯タンク
より加圧された120℃前後の熱水を供給し、レトルト
内を加圧状態にしつつ前記被加熱体が熱水に浸るように
して120℃前後の加熱殺菌を行う。そして前記加熱殺
菌の後に、水蒸気及び/又は空気をレトルト内に吹込
み、熱水を排出する。その後、前記レトルト内にシャワ
ーその他の手段にて冷却水を導入して被殺菌体の冷却を
行う訳であるが、環境の面よりこの被殺菌体を冷却後の
温排水はクローズサイクルにて再度略25〜30℃前後
に冷却して再利用されるのが好ましい。
In this type of sterilization system, after a sterilized object such as a beverage can is housed in a retort (cooking sterilization tank) in multiple stages, the sterilized system is pressurized by compressed air (equal pressure control) hot water storage tank. Further, hot water of about 120 ° C. is supplied, and while heating the inside of the retort so that the object to be heated is immersed in the hot water, heat sterilization of about 120 ° C. is performed. After the heat sterilization, steam and / or air is blown into the retort to discharge hot water. After that, the cooling water is introduced into the retort by a shower or other means to cool the object to be sterilized, but from the environmental point of view, the warm waste water after cooling the object to be sterilized is again closed cycle. It is preferable to cool it to about 25 to 30 ° C. and reuse it.

【0004】図3はかかるクローズサイクルのシステム
フロー図を示し、レトルト1で排水された温排水は外気
と熱接触されるエバコン51で28〜35℃前後に一次
冷却した後、圧縮式冷凍機52により25〜30℃前後
の制御された温度に二次冷却し、その冷却水を再度レト
ルト1内に導入可能に構成している。尚、図中53は冷
却塔であり、冷媒の凝縮用として機能している。
FIG. 3 shows a system flow chart of such a closed cycle, in which the hot wastewater discharged from the retort 1 is primarily cooled to around 28 to 35 ° C. by the evaporator 51 which is in thermal contact with the outside air, and then the compression refrigerator 52. By this, secondary cooling is performed to a controlled temperature of around 25 to 30 ° C., and the cooling water can be introduced into the retort 1 again. Incidentally, reference numeral 53 in the figure denotes a cooling tower, which functions as a condenser for the refrigerant.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記従来
システムにおいては、圧縮式冷凍機を用いる構成の為に
必要動力が大きくなり、ランニングコストが無用に増大
するという欠点が生じる。
However, in the above-mentioned conventional system, there is a drawback that the required power becomes large due to the constitution using the compression type refrigerator and the running cost unnecessarily increases.

【0006】かかる欠点を解消するために、吸収式若し
くは吸着式の冷凍機を用いることも考えられるしかしな
がら吸収式若しくは吸着式の冷凍機は、50〜85℃前
後の熱源水を必要とし、一方レトルト1よりの温排水
は、冷却工程初期では70℃前後の熱源を得られるが、
冷却工程終期では40℃前後に低下し、吸収式若しくは
吸着式の冷凍機の有効利用が図れない。
In order to solve such a drawback, it is conceivable to use an absorption type or adsorption type refrigerator, but an absorption type or adsorption type refrigerator requires heat source water of about 50 to 85 ° C., while a retort is required. The hot drainage from 1 can obtain a heat source of around 70 ° C at the beginning of the cooling process,
At the end of the cooling process, the temperature drops to around 40 ° C, and the absorption type or adsorption type refrigerator cannot be effectively used.

【0007】本発明はかかる従来技術の欠点に鑑み、4
0〜70℃と時系列的に変化する温排水を熱源として有
効に利用して必要動力の大幅低減とともに、精度よくレ
トルト1に供給する冷却水の制御が可能なレトルト釜に
おける温排水利用方法とそのシステムを提供することに
ある。
In view of the drawbacks of the prior art, the present invention is
A method of using warm wastewater in a retort kettle that enables effective control of the cooling water supplied to the retort 1 with a significant reduction in required power by effectively utilizing the warm wastewater that changes in time series from 0 to 70 ° C as a heat source. To provide that system.

【0008】[0008]

【課題を解決するための手段】本発明は、図1に示すよ
うに、レトルト1より排出された温排水を吸収式若しく
は吸着式の冷凍機(以下吸着式冷凍機2等という)の熱
源水2Aとして導入した後、該熱源水2Aとして利用後
の奪熱温水をエバコン3により大気放熱し、該大気放熱
された前記放熱水を前記吸着式冷凍機2等の冷却側2B
に導入して温度制御された冷却水を生成し、該冷却水を
レトルト1に導入することを基本構成とするものであ
る。
The present invention, as shown in FIG. 1, is a heat source water for an absorption type or adsorption type refrigerator (hereinafter referred to as an adsorption type refrigerator 2 etc.) of hot waste water discharged from a retort 1. After being introduced as 2A, the heat-removed hot water that has been used as the heat source water 2A is radiated to the atmosphere by the evaporator 3, and the radiated radiated water is cooled to the cooling side 2B of the adsorption refrigerator 2 or the like.
Is introduced into the retort 1 to generate temperature-controlled cooling water, and the cooling water is introduced into the retort 1.

【0009】即ち、吸着式冷凍機2等の熱源水2Aとし
て利用後の奪熱温水は平均して40℃以上の、レトルト
1の冷却水として好適な25〜30℃前後の温度に比較
して15℃前後若しくはそれ以上の温度差を有するもの
を直接吸着式冷凍機2等の冷却側2Bに導入しようとし
ても精度よく温度制御された冷却水を生成し得ない。し
たがって本発明はこのような温度差を有する温水を直接
吸着式冷凍機2の冷却側2Bに導入する事なく、熱源水
2Aとして利用後の略40〜45℃前後の奪熱温水をエ
バコン3により大気放熱して28〜35℃前後に低減さ
せた後、該28〜35℃前後の放熱水を前記吸着式冷凍
機2等の冷却側2Bに導入して25〜30℃前後の冷却
水を生成しようとしてる。
That is, the heat-deprived hot water after being used as the heat source water 2A of the adsorption refrigerator 2 or the like is 40 ° C. or more on average, compared to a temperature around 25 to 30 ° C. which is suitable as the cooling water for the retort 1. Even if an object having a temperature difference of around 15 ° C. or more is directly introduced into the cooling side 2B of the adsorption refrigerator 2, the temperature-controlled cooling water cannot be accurately generated. Therefore, the present invention does not directly introduce the hot water having such a temperature difference into the cooling side 2B of the adsorption type refrigerator 2 but uses the heat-removing hot water of about 40 to 45 ° C. after use as the heat source water 2A by the evaporator 3. After radiating heat to the atmosphere to reduce the temperature to around 28 to 35 ° C, the facility water around 28 to 35 ° C is introduced into the cooling side 2B of the adsorption refrigerator 2 or the like to generate cooling water around 25 to 30 ° C. I'm trying.

【0010】したがって本発明によれば吸着式冷凍機2
の冷却温度差が、2〜数℃差ですむ為に、精度よい温度
制御が可能となる。しかしながらかかる構成においても
吸着式冷凍機2の熱源水側2Aでは、レトルト1よりの
温排水が40〜70℃と時系列的に変化する為に、該温
排水を熱源として有効に利用する工夫までは考慮されて
いない。この場合、吸着式冷凍機2の熱源水2A導入側
にタンク6を設け、レトルト1よりの40〜70℃の温
排水温度の平均化を図って吸着式冷凍機2に導入される
熱源水2A温度を50℃以上に維持するのがよい。
Therefore, according to the present invention, the adsorption refrigerator 2
Since the cooling temperature difference between the two is only 2 to several degrees Celsius, accurate temperature control is possible. However, even in such a configuration, since the hot drainage water from the retort 1 changes in time series at 40 to 70 ° C. on the heat source water side 2A of the adsorption refrigerator 2, even a device for effectively using the hot drainage as a heat source is provided. Is not considered. In this case, the tank 6 is provided on the heat source water 2A introduction side of the adsorption refrigerator 2 and the heat source water 2A introduced to the adsorption refrigerator 2 by averaging the warm waste water temperature of 40 to 70 ° C from the retort 1 is introduced. The temperature should be maintained above 50 ° C.

【0011】そして更に好ましい本発明によれば、レト
ルト1の排出側と、吸着式冷凍機2等の熱源水2Aとし
て利用後の奪熱温水間をバイパスさせて、前記レトルト
1より排出される温排水が所定温度(例えば50℃以
上、好ましくは60℃以上)以上の場合に該温排水を吸
着式冷凍機2等の熱源水2Aとして利用し、前記レトル
ト1より排出される温排水が所定温度以下に低下した場
合に前記バイパス路10を利用してエバコン3吸入側に
供給し、該エバコン3により大気放熱して28〜35℃
前後に低減させることにより、そのまま吸着式冷凍機2
等の冷却側2Bに導入できる。
Further, according to the present invention, the temperature discharged from the retort 1 is bypassed by bypassing between the discharge side of the retort 1 and the heat-removed hot water that has been used as the heat source water 2A of the adsorption refrigerator 2 or the like. When the waste water is at a predetermined temperature (for example, 50 ° C. or higher, preferably 60 ° C. or higher), the warm waste water is used as the heat source water 2A of the adsorption refrigerator 2 and the warm waste water discharged from the retort 1 has a predetermined temperature. When the temperature falls below the level, it is supplied to the suction side of the evaporator 3 by using the bypass passage 10 and radiated to the atmosphere by the evaporator 3 to 28 to 35 ° C.
By reducing back and forth, adsorption refrigerator 2
Can be introduced to the cooling side 2B.

【0012】この場合前記レトルト1を複数設け、時間
差をもたせて冷却工程を行わしめる事により例えば60
℃以上の高温温排水と60℃以下の低温温排水を並行し
て排出させる事が出来、そして前記複数温度の温排水を
選択してバイパス路10側と熱源水側2Aに流す事によ
り、吸着式冷凍機2等の運転を停止させることなく、効
率的に且つ温度精度よくレトルト1に供給する冷却水の
制御が可能となる。
In this case, a plurality of retorts 1 are provided, and the cooling process is performed with a time difference, for example, 60
High-temperature hot drainage of ℃ or more and low-temperature hot drainage of 60 ℃ or less can be discharged in parallel, and the hot drainage of multiple temperatures is selected to flow to the bypass passage 10 side and the heat source water side 2A The cooling water supplied to the retort 1 can be controlled efficiently and with high temperature accuracy without stopping the operation of the rotary refrigerator 2.

【0013】又前記バイパス路10よりの低温温排水と
熱源水2Aとして利用後の奪熱温水は夫々個別にエバコ
ン3に供給する事なく、両者を一旦タンク6に貯溜混合
して温度を平均化してからエバコン3に供給するのがよ
い。
Further, the low-temperature hot drainage water from the bypass passage 10 and the heat-removed hot water that has been used as the heat source water 2A are not supplied to the evaporator 3 individually, but both are temporarily stored and mixed in the tank 6 to average the temperature. After that, it is better to supply it to the evaporator 3.

【0014】又エバコン3吐出側においても、その放熱
水を直接前記吸着式冷凍機2等の冷却側2Bに導入する
ことなく、タンク7に貯溜させて温度の平均化を図りつ
つ、該タンク7と吸着式冷凍機2等の冷却水吐出側をバ
イパス19させてレトルト1側が熱水殺菌工程にある場
合等のように冷却水を不要とする場合若しくは必要とす
る冷却水流量が減少した場合に、吸着式冷凍機2等より
の吐出冷却水をタンク7側に戻入するのがよい。
Also, on the discharge side of the evaporator 3, the radiated water is not directly introduced into the cooling side 2B of the adsorption type refrigerator 2 or the like, but is stored in the tank 7 so that the temperature can be averaged and the tank 7 can be stored. When the cooling water discharge side of the adsorption refrigerator 2 or the like is bypassed 19 to eliminate the need for cooling water such as when the retort 1 side is in the hot water sterilization process, or when the required cooling water flow rate decreases. It is preferable to return the cooling water discharged from the adsorption refrigerator 2 or the like to the tank 7 side.

【0015】そしてかかるレトルト温排水利用方法のシ
ステム構成として、レトルト1より排出された温排水を
吸着式冷凍機2等の熱源水側2Aに導く第1の通路11
と、該熱源水2Aとして利用後の奪熱温水をエバコン3
側に導く第2の通路12と、該大気放熱された前記放熱
水を前記吸着式冷凍機2等の冷却側2Bに導入する第3
の通路13と、冷凍機等の冷却側2Bより生成された冷
却水をレトルト1側に導入する第4の通路14を具え、
前記第1の通路11を切換弁15A、15Bを介してバ
イパスさせて前記第2の通路12側に連通させる第1の
バイパス路10を設けた事を特徴とする。
As a system configuration of such a retort warm wastewater utilization method, the first passage 11 for guiding the warm wastewater discharged from the retort 1 to the heat source water side 2A of the adsorption refrigerator 2 or the like.
And the heat-removed hot water after being used as the heat source water 2A
The second passage 12 leading to the side, and the third passage for introducing the facility water radiated to the atmosphere to the cooling side 2B of the adsorption refrigerator 2 or the like.
And a fourth passage 14 for introducing the cooling water generated from the cooling side 2B of the refrigerator or the like to the retort 1 side.
It is characterized in that a first bypass passage 10 is provided, which bypasses the first passage 11 via the switching valves 15A and 15B and communicates with the second passage 12 side.

【0016】そしてより具体的には前記第1〜第4の通
路11〜14を具えるとともに、時間差をもたせて冷却
工程を行わしめる前記レトルト1を複数1A1B設け、
且つ夫々のレトルト1排出側に切換弁15A、15Bを
設け、該両切換弁15A、15Bの一の出口側を前記第
1の通路11を、他の出口側に前記第2の通路12側に
連通させる第1のバイパス路10を設けた事を特徴とす
る。
More specifically, the retort 1 is provided with a plurality of the retorts 1 having the first to the fourth passages 11 to 14 and performing a cooling process with a time difference,
In addition, switching valves 15A and 15B are provided on the respective retort 1 discharge sides, and one outlet side of both switching valves 15A and 15B is connected to the first passage 11 and the other outlet side is connected to the second passage 12 side. It is characterized in that a first bypass passage 10 for communication is provided.

【0017】この場合前記第2の通路12の第1のバイ
パス路10との接続部に第1のタンク6を設け、前記バ
イパス路10よりの低温温排水と熱源水2Aとして利用
後の奪熱温水を一旦タンク6に貯溜混合して温度を平均
化してからエバコン3に供給するのがよい。
In this case, the first tank 6 is provided at the connecting portion of the second passage 12 with the first bypass passage 10 so that the low temperature hot drainage from the bypass passage 10 and the heat removal after use as the heat source water 2A. It is preferable that hot water is once stored and mixed in the tank 6 to average the temperature and then supplied to the evaporator 3.

【0018】更に前記第3の通路13途中に第2のタン
ク7を設けるとともに、該第2のタンク7と第4の通路
14途中をバイパスさせる第2のバイパス路19を設
け、第4の通路14側に導入した吸着式冷凍機2等より
の吐出冷却水を第2のタンク7側に戻入可能に構成する
のがよい。更に、何等かの事情で一旦冷水温度が下がる
と、レトルト釜の熱容量が一定のために、その排出側温
度が吸着式冷凍機の熱源温度まで下がり、運転不能にな
る事がある。これを避けるためにエバコン吐出側とレト
ルト導入通路側間をバイパスさせる第3のバイパス路を
設けて、吸着式冷凍機2の吐出冷却水よりの冷却水温度
が一定温度以下に低下した場合に、エバコンより吐出さ
れた放熱水を直接レトルトに導入するのがよい。
Further, a second tank 7 is provided in the middle of the third passage 13, and a second bypass passage 19 for bypassing the second tank 7 and the middle of the fourth passage 14 is provided, and a fourth passage is provided. It is preferable that the cooling water discharged from the adsorption refrigerating machine 2 and the like introduced on the 14th side can be returned to the 2nd tank 7 side. Furthermore, once the cold water temperature drops for some reason, the discharge side temperature of the retort kettle may drop to the heat source temperature of the adsorption refrigerator due to the constant heat capacity of the retort kettle, resulting in an inoperable operation. In order to avoid this, a third bypass passage that bypasses between the discharge side of the evaporator and the retort introduction passage side is provided, and when the cooling water temperature from the cooling water discharged from the adsorption refrigerator 2 drops below a certain temperature, It is advisable to introduce the facility water discharged from the evaporator directly into the retort.

【0019】[0019]

【実施例】以下図1〜図2を参照して本発明の実施例に
つき詳細に説明する。但し、この実施例に記載されてい
る構成部品の寸法、材質、形状、その相対的配置等は特
に特定的な記載がないかぎりは、この発明の範囲をそれ
に限定する趣旨ではなく、単なる説明例にすぎない。図
1は本発明の基本構成を示すレトルト1温排水利用シス
テムであり、本実施例では特に缶コーヒ等の熱水殺菌後
の、冷却工程における温排水利用システムに好適に適用
されるものである。そして本実施例において、1は前記
缶コーヒを収納して前記従来技術で示す熱水殺菌とその
冷却を行うレトルト、2は吸着式冷凍機で、一般に冷媒
として水、アルコール等を使用し、又シリカゲル、ゼオ
ライト、活性炭、活性アルミナ等の固体吸着剤を収設し
た吸着剤熱交換器(不図示)を複数基並設し、前記レト
ルト1より排出された温排水の再生用熱源と、冷却搭4
より放熱された放熱水を前記熱交換器の熱源水側2Aと
冷却水側に交互に供給しながら、前記吸着剤への冷媒の
吸着と脱着を繰り返し、該冷媒の蒸発潛熱を利用して放
熱水の冷却を行うように構成している。4は冷却塔で、
冷却側2Bより蒸発した冷媒を外気と間接接触させて凝
縮を行うとともに、吸着剤熱交換器における吸着熱を大
気放熱する。エバコン3は前記したように吸着式冷凍機
2で熱源水2Aとして利用後の奪熱温水を大気放熱する
ものである。
Embodiments of the present invention will be described in detail below with reference to FIGS. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but merely illustrative examples. Nothing more. FIG. 1 shows a retort 1 hot drainage utilization system showing a basic configuration of the present invention, and in this embodiment, it is particularly preferably applied to a hot drainage utilization system in a cooling process after hot water sterilization of canned coffee etc. . In the present embodiment, 1 is a retort for accommodating the canned coffee and performing hot water sterilization and cooling as shown in the prior art, 2 is an adsorption refrigerator, which generally uses water, alcohol or the like as a refrigerant, A plurality of adsorbent heat exchangers (not shown) accommodating solid adsorbents such as silica gel, zeolite, activated carbon, activated alumina, etc. are installed side by side, and a heat source for regenerating the warm waste water discharged from the retort 1 and a cooling tower are provided. Four
While further supplying the radiated radiated water to the heat source water side 2A and the cooling water side of the heat exchanger, adsorption and desorption of the refrigerant to and from the adsorbent are repeated, and the evaporation heat of the refrigerant is used to radiate heat. It is configured to cool water. 4 is a cooling tower,
The refrigerant evaporated from the cooling side 2B is indirectly contacted with the outside air to condense, and the heat of adsorption in the adsorbent heat exchanger is radiated to the atmosphere. As described above, the evaporator 3 is for radiating heat to the atmosphere of the heat-removed hot water that has been used as the heat source water 2A in the adsorption refrigerator 2.

【0020】そして前記夫々の装置はレトルト1より排
出された温排水を吸着式冷凍機2の熱源水側2Aに導く
第1の通路11と、該熱源水側2Aとして利用後の奪熱
温水をエバコン3側に導く第2の通路12と、該大気放
熱された前記放熱水を前記吸着式冷凍機2の冷却側2B
に導入する第3の通路13と、冷凍機等の冷却側2Bよ
り生成された冷却水をレトルト1側に導入する第4の通
路14を介して夫々接続されているとともに、第1の通
路11の吸着式冷凍機2の熱源水2A導入側に熱源用タ
ンク5を設け、レトルト1よりの温排水温度の平均化を
図っている。そしてかかる実施例によれば、レトルト1
より排出される温排水40〜70℃前後の温排水は第1
の通路11より熱源用タンク5に貯溜して温排水温度の
平均化を図りながら略50〜65℃前後の温排水を吸着
式冷凍機2に熱源水2Aとして導入した後、該熱源水2
Aとして利用後の40〜42℃前後に低下した奪熱温水
を第2の通路12よりエバコン3に導入して大気放熱す
る。
In each of the devices, the first passage 11 for guiding the warm waste water discharged from the retort 1 to the heat source water side 2A of the adsorption refrigerator 2 and the heat-removed hot water after being used as the heat source water side 2A. The second passage 12 that leads to the side of the evaporator 3 and the cooling side 2B of the adsorption refrigerating machine 2 that transfers the facility water radiated to the atmosphere
Is connected to a third passage 13 which is introduced into the retort 1 side with a third passage 13 which is introduced into the retort 1 side, and the first passage 11 The heat source tank 5 is provided on the heat source water 2A introduction side of the adsorption refrigerating machine 2 in order to average the temperature of the hot waste water from the retort 1. And according to such an embodiment, the retort 1
The warm drainage from around 40-70 ℃ is the first
After the hot drainage water of about 50 to 65 ° C. is introduced into the adsorption type refrigerator 2 as the heat source water 2A while being stored in the heat source tank 5 through the passage 11 and averaging the hot drainage temperature, the heat source water 2
After being used as A, the heat-removed hot water that has dropped to around 40 to 42 ° C. is introduced into the evaporator 3 through the second passage 12 and radiates heat to the atmosphere.

【0021】そして該大気放熱により28〜30℃に低
下した放熱水を前記吸着式冷凍機2の冷却側2Bに導入
して25〜28℃の間の例えば26℃に温度制御された
冷却水を生成し、該冷却水をレトルト1に導入すること
により吸着式冷凍機2を使用したクローズサイクルによ
る温排水の再利用が可能となる。したがって本実施例は
前記熱源用タンク5により、40〜70℃と時系列的に
変化するレトルト1の温排水を吸着式冷凍機2の熱源と
して利用可能な温度まで平均化を図るとともに、熱源水
2Aとして利用後の略40〜45℃前後の奪熱温水をエ
バコン3により大気放熱して28〜35℃、好ましくは
28〜30℃前後に低減させた後、該28〜30℃前後
の放熱水を前記吸着式冷凍機2の冷却側2Bに導入して
25〜30℃、具体的には26℃に温度制御された冷却
水を生成している。
Then, the facility water, which has been lowered to 28 to 30 ° C. by the heat radiation to the atmosphere, is introduced into the cooling side 2B of the adsorption type refrigerator 2 to supply the cooling water whose temperature is controlled to, for example, 26 ° C. between 25 and 28 ° C. By generating and introducing the cooling water into the retort 1, it becomes possible to reuse the warm waste water by the closed cycle using the adsorption refrigerator 2. Therefore, in this embodiment, the heat source tank 5 averages the temperature of the hot water discharged from the retort 1 that changes in time series from 40 to 70 ° C. to a temperature at which it can be used as the heat source of the adsorption refrigerator 2. After the heat-removed warm water of about 40 to 45 ° C after being used as 2A is radiated to the atmosphere by the evaporator 3 and reduced to 28 to 35 ° C, preferably to about 28 to 30 ° C, the radiated water of about 28 to 30 ° C Is introduced into the cooling side 2B of the adsorption refrigerator 2 to generate cooling water whose temperature is controlled to 25 to 30 ° C, specifically 26 ° C.

【0022】図2に示す第2の実施例は吸着式冷凍機2
の熱源水2Aとしての温排水の一層の効率的利用と冷却
水の一層の緻密な制御を図ったものである。以下前記実
施例との差異を中心に説明する。前記レトルト1は2つ
1A、1B並列に設け、時間差をもたせて冷却工程を行
わしめる事により例えば60℃以上の高温温排水と60
℃以下の低温温排水が交互に並行して排出させる事が出
来るようにしている。又レトルト1A、1Bの入口側と
出口側には夫々2方向弁20A、20B、21A、21
B(開閉弁)が接続されている。20A、20Bは通常
開閉弁であるが、ポンプのON、OFFで少なくとも1
つの弁の代用をする場合もある。
The second embodiment shown in FIG. 2 is an adsorption refrigerator 2.
This is intended to make more efficient use of warm waste water as the heat source water 2A and more precise control of cooling water. The difference from the above embodiment will be mainly described below. The two retorts 1 are provided in parallel with each other 1A and 1B, and the cooling process is performed with a time lag, so that high temperature hot drainage of 60 ° C. or more and 60
Low temperature warm water below ℃ can be discharged alternately in parallel. Two-way valves 20A, 20B, 21A, 21 are provided on the inlet side and the outlet side of the retorts 1A, 1B, respectively.
B (open / close valve) is connected. 20A and 20B are normally on-off valves, but at least 1 when the pump is turned on and off
In some cases, one valve may be substituted.

【0023】又レトルト1排出側に位置する2方向弁2
1A、21Bの出口側には、入口側の温排水の温度を感
知して出口側の吐出方向を切り換える温度感知型切換弁
15A、15Bを設け、該切換弁15A、15Bの一の
出口側を集合して第1の通路11に、他の出口側を集合
して第1のバイパス路10に接続させる。前記第1の通
路11の吸着式冷凍機2の熱源水2A導入側には熱源用
タンク5を設けている。又前記バイパス路10は第2の
通路12の途中に介装した第1のタンク6に接続され、
該バイパス路10よりの低温温排水と熱源水2Aとして
利用後の奪熱温水を一旦前記第1のタンク6に貯溜混合
して温度を平均化してからエバコン3に供給するように
構成している。
Further, the two-way valve 2 located on the discharge side of the retort 1
On the outlet side of 1A, 21B, temperature sensing type switching valves 15A, 15B for sensing the temperature of the hot waste water on the inlet side and switching the discharge direction on the outlet side are provided, and one outlet side of the switching valves 15A, 15B is provided. The first passage 11 is assembled and the other outlets are assembled and connected to the first bypass passage 10. A heat source tank 5 is provided on the first passage 11 on the heat source water 2A introduction side of the adsorption refrigerator 2. Further, the bypass passage 10 is connected to the first tank 6 interposed in the middle of the second passage 12,
The low-temperature hot drainage from the bypass passage 10 and the heat-removed hot water after being used as the heat source water 2A are once stored and mixed in the first tank 6 to average the temperature and then supplied to the evaporator 3. .

【0024】エバコン3は複数個3A、3B設け、これ
を直列に接続して有効な放熱と温度低減を可能とする。
A plurality of evaporators 3 are provided 3A and 3B, which are connected in series to enable effective heat dissipation and temperature reduction.

【0025】又エバコン3A、3B吐出側の第3の通路
13途中には第2のタンク7を設け、該タンク7に放熱
水を貯溜させて温度の平均化を図る。又エバコン3A、
3B吐出側と三方弁22出口側のレトルト導入通路20
A、20B側間をバイパスさせる第3のバイパス路71
を設けて三方弁72を介して第4の通路14と接続させ
ている。又前記タンク7にはバイパス路19及び三方弁
22を介して第4の通路14と接続され、三方弁22の
開度若しくは切換制御により第4の通路14側に導入し
た吸着式冷凍機2よりの吐出冷却水を第2のタンク7側
に戻入可能に構成している。従って前記三つのタンク容
量は、その目的の差異より、第2のタンク7>第一のタ
ンク6>熱源用タンク5の順になっている。尚、前記通
路には夫々矢印方向に水が流れるようにポンプP1…を
設けている。
A second tank 7 is provided in the middle of the third passage 13 on the discharge side of the evaporators 3A and 3B, and facility water is stored in the second tank 7 to average the temperature. Also, Evacon 3A,
3B discharge side and three-way valve 22 outlet side retort introduction passage 20
Third bypass passage 71 for bypassing between the A and 20B sides
Is provided and is connected to the fourth passage 14 via the three-way valve 72. Further, the tank 7 is connected to the fourth passage 14 through a bypass passage 19 and a three-way valve 22, and the adsorption type refrigerator 2 introduced to the fourth passage 14 side by the opening degree of the three-way valve 22 or switching control. The discharge cooling water of No. 2 can be returned to the second tank 7 side. Therefore, the three tank capacities are in the order of second tank 7> first tank 6> heat source tank 5 due to the difference in their purposes. Pumps P 1 ... Are provided in the passages so that water flows in the directions of the arrows.

【0026】次にかかる実施例の作用を説明する。前記
二つのレトルト1は時間差をもたせて冷却工程を行わし
めるように構成し、例えば60℃〜70℃の高温温排水
と40〜60℃の低温温排水が並行して排出するように
構成する。そして温度感知切換弁15A、15Bでは、
前記夫々のレトルト1A、1Bより排出された温排水の
温度を検知して60℃以上の高温温排水は第1の通路1
1側に、60℃以下の低温温排水は第一のバイパス路1
0側に流し、夫々熱源用タンク5と第一のタンク6に貯
溜される。
Next, the operation of this embodiment will be described. The two retorts 1 are configured to perform a cooling process with a time lag, for example, high temperature hot drainage of 60 ° C to 70 ° C and low temperature hot drainage of 40 ° C to 60 ° C are drained in parallel. And in the temperature sensing switching valves 15A and 15B,
The temperature of the hot waste water discharged from each of the retorts 1A and 1B is detected, and the high temperature hot waste water of 60 ° C. or higher is discharged into the first passage 1
On the 1st side, the low temperature hot drainage of 60 ° C or less is the first bypass passage 1
It flows to the 0 side and is stored in the heat source tank 5 and the first tank 6, respectively.

【0027】熱源用タンク5側では60℃〜70℃の高
温温排水の貯溜により温排水温度の平均化を図り、約6
5℃の安定した熱源水2Aを得る事が出来る。そして前
記65℃前後の温排水を吸着式冷凍機2に熱源水2Aと
して導入した後、該熱源水2Aとして利用後の40〜5
0℃前後に低下した奪熱温水は第一のタンク6に貯溜さ
れる。又前記バイパス路10よりの40〜60℃の低温
温排水も前記第一のタンク6に貯溜され、従って該第一
のタンク6には40〜50℃前後の温水が混合貯溜され
る事となる。
On the heat source tank 5 side, the hot drainage temperature is averaged by storing hot drainage at a temperature of 60 ° C. to 70 ° C.
It is possible to obtain 2 A of stable heat source water at 5 ° C. Then, after introducing the warm waste water of about 65 ° C. into the adsorption refrigerator 2 as the heat source water 2A, 40 to 5 after use as the heat source water 2A
The heat-removed hot water that has dropped to around 0 ° C. is stored in the first tank 6. Further, the low temperature hot water of 40 to 60 ° C. from the bypass passage 10 is also stored in the first tank 6, so that the hot water of 40 to 50 ° C. is mixed and stored in the first tank 6. .

【0028】そして前記貯溜された温水、例えば42℃
前後の温水は直列接続されたエバコン3Aに供給され、
該エバコン3A、3Bで29℃前後に冷却された放熱水
が得られる。又エバコン3B吐出側においても、その放
熱水を直接前記吸着式冷凍機2の冷却側2Bに導入する
ことなく、第2のタンク7に貯溜させて温度の平均化を
図る。
The stored warm water, for example 42 ° C.
The hot water before and after is supplied to the Evacon 3A connected in series,
Facility water cooled to around 29 ° C. is obtained with the evaporators 3A and 3B. Further, also on the discharge side of the evaporator 3B, the facility water is not directly introduced to the cooling side 2B of the adsorption refrigerator 2 but is stored in the second tank 7 so that the temperature is averaged.

【0029】そして前記タンク7より吸着式冷凍機2の
冷却側2Bに29℃前後の放熱水を導入する事により2
6℃前後に温度制御された冷却水を生成し、該冷却水を
レトルト1A、1Bに導入することにより吸着式冷凍機
2を使用したクローズサイクルによる温排水の再利用が
可能となる。
Then, by introducing facility water of about 29 ° C. from the tank 7 to the cooling side 2B of the adsorption refrigerator 2, 2
By generating cooling water whose temperature is controlled at around 6 ° C. and introducing the cooling water into the retorts 1A and 1B, it is possible to reuse the warm waste water by the closed cycle using the adsorption refrigerator 2.

【0030】尚、レトルト1A、1B側が熱水殺菌工程
にある場合等のように冷却水を不要とする場合若しくは
必要とする冷却水流量が減少した場合に、3方弁の出口
切換若しくは開度調整により吸着式冷凍機2よりの吐出
冷却水をバイパス路19を介してタンク7側に戻入す
る。更に、何等かの事情で一旦冷水温度が下がると、レ
トルト釜の熱容量が一定のために、その排出側温度が吸
着式冷凍機の熱源温度まで下がり、運転不能になる事が
ある。これを避けるためにエバコン3A、3B吐出側と
三方弁22出口側のレトルト導入通路20A、20B側
間をバイパスさせる第3のバイパス路71を設けて三方
弁72を介して第4の通路14と接続させて、吸着式冷
凍機2の吐出冷却水よりの冷却水温度が一定温度以下に
低下した場合に、三方弁72を切り換えてエバコン3
A、3Bより吐出された放熱水を直接レトルト導入通路
20A、20B側にバイパスさせる。
When the cooling water is unnecessary or the required cooling water flow rate is reduced, such as when the retort 1A, 1B side is in the hot water sterilization step, the outlet switching or opening of the three-way valve is performed. By adjustment, the cooling water discharged from the adsorption refrigerator 2 is returned to the tank 7 side via the bypass 19. Furthermore, once the cold water temperature drops for some reason, the discharge side temperature of the retort kettle may drop to the heat source temperature of the adsorption refrigerator due to the constant heat capacity of the retort kettle, resulting in an inoperable operation. In order to avoid this, a third bypass passage 71 that bypasses between the discharge sides of the evaporators 3A, 3B and the outlet side of the three-way valve 22 and the retort introduction passages 20A, 20B is provided, and the fourth passage 14 is provided via the three-way valve 72. By connecting the three-way valve 72 when the cooling water temperature from the discharge cooling water of the adsorption refrigerator 2 drops below a certain temperature, the three-way valve 72 is switched.
The facility water discharged from A and 3B is bypassed directly to the retort introduction passages 20A and 20B side.

【0031】[0031]

【発明の効果】以上記載のごとく本発明によれば、40
〜70℃と時系列的に変化する温排水を熱源として有効
に利用して必要動力の大幅低減とともに、精度よくレト
ルトに供給する冷却水の制御が可能なレトルト釜におけ
る温排水利用方法とそのシステムを提供することが出来
る。
As described above, according to the present invention, 40
~ 70 ℃ The hot wastewater that changes in time series is effectively used as a heat source to significantly reduce the required power, and the method and system for using the hot wastewater in the retort kettle capable of accurately controlling the cooling water supplied to the retort. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すレトルト温排水利用シ
ステムのシステムフロー図を示す。
FIG. 1 is a system flow diagram of a retort hot wastewater utilization system showing a basic configuration of the present invention.

【図2】本発明の他の実施例を示すレトルト温排水利用
システムのシステムフロー図を示す。
FIG. 2 is a system flow diagram of a retort warm wastewater utilization system showing another embodiment of the present invention.

【図3】従来のクローズサイクルにおけるレトルト温排
水利用システムのシステムフロー図を示す。
FIG. 3 shows a system flow diagram of a conventional retort warm wastewater utilization system in a closed cycle.

【符号の説明】 1、1A、1B レトルト 2 吸着式冷凍機 2A 熱源水側 2B 冷却側 3、3A、3B エバコン 5 熱源用タンク 6 第1のタンク 7 第2のタンク 10 第1のバイパス路 11 第1の通路 12 第2の通路 13 第3の通路 14 第4の通路 15A、15B 切換弁 19 第2のバイパス路 71 第3のバイパス路[Explanation of Codes] 1, 1A, 1B Retort 2 Adsorption refrigerator 2A Heat source water side 2B Cooling side 3, 3A, 3B Evacon 5 Heat source tank 6 First tank 7 Second tank 10 First bypass passage 11 1st passage 12 2nd passage 13 3rd passage 14 4th passage 15A, 15B switching valve 19 2nd bypass passage 71 3rd bypass passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲はい▼島 明 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 小松 富士夫 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yes ▼ Akira Shima 2-13-1, Botan, Koto-ku, Tokyo Inside Maekawa Co., Ltd. (72) Inventor Fujio Komatsu 2-13, Botan, Koto-ku, Tokyo No. 1 Stock Company Maekawa Works

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 レトルト釜内より排出される被殺菌体の
冷却後の温排水を冷凍機により冷却しながら主としてク
ローズサイクルにより前記温排水の再利用を図るレトル
ト温排水利用方法において、 レトルトより排出された温排水を吸収式若しくは吸着式
の冷凍機(以下吸着式冷凍機等という)の熱源水として
導入した後、該熱源水として利用後の奪熱温水をエバコ
ンにより大気放熱し、該大気放熱された前記放熱水を前
記吸着式冷凍機等の冷却側に導入して温度制御された冷
却水を生成し、該冷却水をレトルトに導入することを特
徴とするレトルト温排水利用方法
1. A method for utilizing hot water discharged from a retort, wherein the hot water discharged from the retort kettle after cooling the object to be sterilized is cooled by a refrigerator and mainly reused by the closed cycle. After introducing the warmed wastewater as heat source water of an absorption or adsorption type refrigerator (hereinafter referred to as an adsorption type refrigerator), the desorbed hot water after being used as the heat source water is radiated to the atmosphere by an evaporator and the heat is radiated to the atmosphere. The retort warm wastewater utilization method, characterized in that the generated facility water is introduced into a cooling side of the adsorption refrigerator or the like to generate temperature-controlled cooling water, and the cooling water is introduced into a retort.
【請求項2】 レトルトの排出側と、吸着式冷凍機等の
熱源水として利用後の奪熱温水間をバイパスさせて、前
記レトルトより排出される温排水が所定温度以上の場合
に該温排水を吸着式冷凍機等の熱源水として利用し、前
記レトルトより排出される温排水が所定温度以下に低下
した場合に前記バイパス路を利用してエバコン吸入側に
供給し、該エバコンにより大気放熱して前記放熱水を得
る事を特徴とする請求項1記載のレトルト温排水利用方
2. The hot drainage water discharged from the retort is bypassed between the discharge side of the retort and the heat removal hot water after being used as a heat source water for an adsorption refrigerator, etc., when the hot drainage water is at a predetermined temperature or higher. Is used as a heat source water for an adsorption refrigerator, etc., and when the hot waste water discharged from the retort drops below a predetermined temperature, it is supplied to the intake side of the evaporator using the bypass passage, and heat is released to the atmosphere by the evaporator. The method of using retort warm waste water according to claim 1, characterized in that the facility water is obtained by
【請求項3】 レトルトより排出される温排水が略50
℃好ましくは60℃以上の場合に該温排水を吸着式冷凍
機等の熱源水として利用し、前記温排水が略50℃以下
若しくは60℃以下の場合に、前記バイパス路を利用し
て前記熱源水として利用後の略40〜45℃前後の奪熱
温水とともにエバコン吸入側に供給し、該エバコンによ
り大気放熱して前記両温水を28〜35℃前後に低減さ
せた後、該28〜35℃前後の放熱水を前記吸着式冷凍
機等の冷却側に導入して25〜30℃前後の冷却水を生
成する事を特徴とする請求項2記載のレトルト温排水利
用方法
3. The warm waste water discharged from the retort is about 50.
C., preferably at 60.degree. C. or higher, the hot drainage is used as heat source water for an adsorption refrigerator or the like, and when the hot drainage is about 50.degree. After being used as water, it is supplied to the evaporator suction side together with the heat-removed hot water of about 40 to 45 ° C., the heat of the atmosphere is radiated by the evaporator to reduce both of the hot water to about 28 to 35 ° C., and then the 28 to 35 ° C. The retort warm wastewater utilization method according to claim 2, wherein the facility water before and after is introduced into the cooling side of the adsorption refrigerator or the like to generate the coolant around 25 to 30 ° C.
【請求項4】 前記レトルトを複数設け、時間差をもた
せて冷却工程を行わしめる事により所定温度以上の高温
温排水と所定温度以下の低温温排水を並行して排出さ
せ、そして前記並行排出させた複数温度の温排水を、選
択的にバイパス路側と熱源水側に流す事を特徴とする請
求項2記載のレトルト温排水利用方法
4. A plurality of the retorts are provided, and by performing a cooling process with a time lag, high temperature hot drainage above a predetermined temperature and low temperature warm drainage below a predetermined temperature are discharged in parallel, and the parallel discharge is performed. The method of utilizing hot water of retort according to claim 2, wherein the hot water of multiple temperatures is selectively flowed to the bypass passage side and the heat source water side.
【請求項5】 前記バイパス路よりの低温温排水と熱源
水として利用後の奪熱温水を一旦タンクに貯溜混合して
温度を平均化してからエバコンに供給するようにした事
を特徴とする請求項2記載のレトルト温排水利用方法
5. The low-temperature hot drainage from the bypass passage and the heat-deprived hot water after being used as a heat source water are once stored and mixed in a tank to average the temperature, and then supplied to the evaporator. Item 2. Retort hot water drainage method
【請求項6】 吸着式冷凍機の熱源水導入側に熱源用タ
ンクを設け、レトルトよりの温排水温度の平均化を図っ
た事を特徴とする請求項1記載のレトルト温排水利用方
6. The method for utilizing hot water of retort according to claim 1, wherein a heat source tank is provided on the heat source water introducing side of the adsorption refrigerator to average the temperature of hot water discharged from the retort.
【請求項7】 エバコン吐出側において、その放熱水を
タンクに貯溜させて温度の平均化を図りつつ、該タンク
と吸着式冷凍機等の冷却水吐出側をバイパスさせて吸着
式冷凍機等よりの吐出冷却水をタンク側に戻入戻入する
事を特徴とする請求項2記載のレトルト温排水利用方法
7. On the discharge side of the evaporator, the facility water is stored in a tank to equalize the temperature, and the tank and the cooling water discharge side of the adsorption refrigerating machine are bypassed so that the adsorption refrigerating machine or the like is used. 3. The method for utilizing retort warm waste water according to claim 2, wherein the discharged cooling water from the tank is returned to and returned from the tank side.
【請求項8】 吸着式冷凍機2の吐出冷却水よりの冷却
水温度が一定温度以下に低下した場合に、エバコン吐出
側とレトルト導入通路側間をバイパスさせて、エバコン
より吐出された放熱水を直接レトルトに導入する事を特
徴とする請求項7記載のレトルト温排水利用方法
8. The facility water discharged from the evaporator is bypassed between the discharge side of the evaporator and the retort introduction passage when the temperature of the cooling water discharged from the adsorption refrigerator 2 drops below a certain temperature. The method of using hot retort wastewater according to claim 7, wherein the retort is directly introduced into the retort.
【請求項9】 レトルト内より排出される被殺菌体の冷
却後の温排水を冷凍機により冷却しながら主としてクロ
ーズサイクルにより前記温排水の再利用を図るレトルト
温排水利用システムにおいて、レトルトより排出された
温排水を吸着式冷凍機等の熱源側に導く第1の通路と、
該熱源水として利用後の奪熱温水をエバコン側に導く第
2の通路と、該大気放熱された前記放熱水を前記吸着式
冷凍機等の冷却側に導入する第3の通路と、冷凍機等の
冷却側より生成された冷却水をレトルト側に導入する第
4の通路を具え、前記第1の通路を切換弁を介してバイ
パスさせて前記第2の通路側に連通させる第1のバイパ
ス路を設けた事を特徴とするレトルト温排水利用システ
9. In a retort warm wastewater utilization system, wherein the warm wastewater discharged from the retort after cooling the sterilized object is cooled by a refrigerator and mainly reuses the warm wastewater in a closed cycle. A first passage for guiding the warm waste water to the heat source side of the adsorption refrigerator,
A second passage for guiding the heat-deprived hot water after being used as the heat source water to the evaporator side, a third passage for introducing the radiated radiated water into the cooling side of the adsorption refrigerator or the like, and a refrigerator. A first bypass for introducing cooling water generated from the cooling side to the retort side, the first passage bypassing the first passage via a switching valve and communicating with the second passage side. Retort hot water drainage system characterized by having a channel
【請求項10】 レトルト内より排出される被殺菌体の
冷却後の温排水を冷凍機により冷却しながら主としてク
ローズサイクルにより前記温排水の再利用を図るレトル
ト温排水利用システムにおいて、レトルトより排出され
た温排水を吸着式冷凍機等の熱源側に導く第1の通路
と、該熱源水として利用後の奪熱温水をエバコン側に導
く第2の通路と、該大気放熱された前記放熱水を前記吸
着式冷凍機等の冷却側に導入する第3の通路と、冷凍機
等の冷却側より生成された冷却水をレトルト側に導入す
る第4の通路を具えるとともに、時間差をもたせて冷却
工程を行わしめる前記レトルトを複数設け、且つ夫々の
レトルト排出側に切換弁を設け、該両切換弁の一の出口
側を前記第1の通路を、他の出口側に前記第2の通路側
に連通させる第1のバイパス路10を設けた事を特徴と
するレトルト温排水利用システム
10. In a retort warm wastewater utilization system, wherein the warm wastewater after cooling the sterilization target discharged from the retort is cooled by a refrigerator and mainly reuses the warm wastewater in a closed cycle. The first passage for guiding the warm waste water to the heat source side of the adsorption refrigerator, the second passage for guiding the heat-removed hot water used as the heat source water to the evaporator side, and the facility water radiated to the atmosphere. It has a third passage introduced into the cooling side of the adsorption refrigerator or the like and a fourth passage introduced into the retort side of cooling water generated from the cooling side of the refrigerator or the like, and cools with a time difference. A plurality of the retorts for performing the steps are provided, and a switching valve is provided on each retort discharge side, one outlet side of the two switching valves is the first passage, and another outlet side is the second passage side. The first port to communicate with Retort hot water drainage system characterized by having an ipas road 10.
【請求項11】 前記第2の通路の第1のバイパス路と
の接続部に第1のタンクを設け、前記バイパス路よりの
低温温排水と熱源水として利用後の奪熱温水を一旦タン
クに貯溜混合して温度を平均化してからエバコンに供給
するようにした事を特徴とする請求項9記載のレトルト
温排水利用システム
11. A first tank is provided at a connecting portion of the second passage with the first bypass passage, and the low temperature hot drainage water from the bypass passage and the heat removal hot water after being used as heat source water are temporarily stored in the tank. 10. The retort hot wastewater utilization system according to claim 9, wherein the temperature is averaged by mixing in a reservoir and then supplied to the evaporator.
【請求項12】 前記第3の通路途中に第2のタンクを
設けるとともに、該第2のタンクと第4の通路途中をバ
イパスさせる第2のバイパス路を設け、第4の通路側に
導入した吸着式冷凍機等よりの吐出冷却水を第2のタン
ク側に戻入可能に構成した事を特徴とする請求項9記載
のレトルト温排水利用システム
12. A second tank is provided in the middle of the third passage, and a second bypass passage for bypassing the second tank and the middle of the fourth passage is provided and introduced to the side of the fourth passage. 10. The retort hot water drainage utilization system according to claim 9, wherein the cooling water discharged from the adsorption refrigerator or the like can be returned to the second tank side.
【請求項13】 エバコン吐出側とレトルト導入通路側
間をバイパスさせる第3のバイパス路を設けて、吸着式
冷凍機2の吐出冷却水よりの冷却水温度が一定温度以下
に低下した場合に、エバコンより吐出された放熱水を直
接レトルトに導入する事を特徴とする請求項12記載の
レトルト温排水利用システム
13. A third bypass passage for bypassing between the discharge side of the evaporator and the retort introduction passage side is provided, and when the temperature of the cooling water from the cooling water discharged from the adsorption refrigerator 2 drops below a certain temperature, 13. The retort warm wastewater utilization system according to claim 12, wherein the facility water discharged from the evaporator is directly introduced into the retort.
JP11394795A 1995-04-14 1995-04-14 Utilization method and system of retort kettle hot drainage Expired - Lifetime JP3528944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11394795A JP3528944B2 (en) 1995-04-14 1995-04-14 Utilization method and system of retort kettle hot drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11394795A JP3528944B2 (en) 1995-04-14 1995-04-14 Utilization method and system of retort kettle hot drainage

Publications (2)

Publication Number Publication Date
JPH08280367A true JPH08280367A (en) 1996-10-29
JP3528944B2 JP3528944B2 (en) 2004-05-24

Family

ID=14625203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11394795A Expired - Lifetime JP3528944B2 (en) 1995-04-14 1995-04-14 Utilization method and system of retort kettle hot drainage

Country Status (1)

Country Link
JP (1) JP3528944B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089327A1 (en) * 2000-05-25 2001-11-29 Showa Tansan Co., Ltd. Pasteurizer
JP2012191910A (en) * 2011-03-17 2012-10-11 Tokyo Electric Power Co Inc:The Sterilization system
JP2013009642A (en) * 2011-06-30 2013-01-17 Miura Co Ltd Retort apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089327A1 (en) * 2000-05-25 2001-11-29 Showa Tansan Co., Ltd. Pasteurizer
US6588327B2 (en) 2000-05-25 2003-07-08 Showa Tansan Co., Ltd. Pasteurizer
JP2012191910A (en) * 2011-03-17 2012-10-11 Tokyo Electric Power Co Inc:The Sterilization system
JP2013009642A (en) * 2011-06-30 2013-01-17 Miura Co Ltd Retort apparatus

Also Published As

Publication number Publication date
JP3528944B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
US5491979A (en) Apparatus for cooling food stuffs, especially in an aircraft
KR930008821B1 (en) Refrigerating system
US8438865B2 (en) Cooling system and method for cooling an aircraft device
JPH02230068A (en) Absorption freezer and its operating method
CN113544446B (en) Climate control system with absorption chiller
WO1996009504A1 (en) Thermal compressive device
US20110265509A1 (en) Multiple-way valve, system for alternately cooling and heating a reactor, and also sorption cooling
CN111406343A (en) Method for controlling the temperature of a battery device and temperature-controlled battery device
RU2458824C2 (en) Method and system for cooling aircraft onboard device
US5934101A (en) Compression absorption heat pump
US20210167440A1 (en) Method and device for controlling the temperature of a battery assembly
JP3528944B2 (en) Utilization method and system of retort kettle hot drainage
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JPH11223411A (en) Adsorption heat pump
JPH06189727A (en) Vacuum cooler
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2003072362A (en) Adsorption type refrigerator
JP3628457B2 (en) Waste heat recovery aseptic line
JP2004232928A (en) Adsorption type refrigerator and method of operating the same
JP2005104087A (en) Heat storage type mold cooling system
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JPS6238200Y2 (en)
JPH0552442A (en) Adsorption type heat accumulating method, adsorption type heat accumulating device, and air-conditioning and hot-water-feeding system employing the adsorption type heat accumulating device
JP3168362B2 (en) Chemical heat pump refrigeration system with heat storage function and its operation method
JPH05118593A (en) Chemical heat accumulating system and chemical heat accumulating device employed for the same system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040218

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9