JPH08278068A - Vapor compression type refrigerator - Google Patents

Vapor compression type refrigerator

Info

Publication number
JPH08278068A
JPH08278068A JP7898495A JP7898495A JPH08278068A JP H08278068 A JPH08278068 A JP H08278068A JP 7898495 A JP7898495 A JP 7898495A JP 7898495 A JP7898495 A JP 7898495A JP H08278068 A JPH08278068 A JP H08278068A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
liquid
vapor
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7898495A
Other languages
Japanese (ja)
Other versions
JP3203145B2 (en
Inventor
Takayuki Masukawa
貴之 益川
Taiji Yamamoto
泰司 山本
Michihiro Kurokawa
通広 黒河
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07898495A priority Critical patent/JP3203145B2/en
Publication of JPH08278068A publication Critical patent/JPH08278068A/en
Application granted granted Critical
Publication of JP3203145B2 publication Critical patent/JP3203145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To provide a vapor compression type refrigerator which enhances the efficiency of heat exchange in an evaporator and reduces-pressure drop in the evaporator as compared with that in conventional evaporators. CONSTITUTION: A vapor compression type refrigerator has a liquid receiving tank 5 provided between an evaporator 4 and a decompression unit 3 to store a liquid-like refrigerant from the decompression unit 3. The liquid receiving tank 5 separates the liquid-like refrigerant to a liquid refrigerant and a vapor refrigerant to supply them to the evaporator 4 so that a ratio of the liquid refrigerant to the vapor refrigerant is within a predetermined range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷暖房運転や給湯・冷
凍などに供する蒸気圧縮式冷凍装置に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression type refrigerating apparatus used for heating and cooling operation, hot water supply and freezing.

【0002】。[0002]

【従来の技術】従来、室内空調に利用する蒸気圧縮式冷
凍装置は、主に4つの要素部品によって構成されてい
る。以下に、この冷凍サイクルについて、図5に基づい
て説明する。同図に示すように、圧縮機1と、凝縮器2
と、減圧器3と、蒸発器4で冷凍サイクルが構成されて
おり、それぞれの要素部品は金属配管を介して接続され
ている。そして、フロンR−22などの冷媒が、この冷
凍サイクル内を循環し、この冷媒が気体状態や液体状態
に変化することによって、熱の吸収または放出を行って
いる。
2. Description of the Related Art Conventionally, a vapor compression refrigeration system used for indoor air conditioning is mainly composed of four component parts. The refrigeration cycle will be described below with reference to FIG. As shown in the figure, a compressor 1 and a condenser 2
The decompressor 3 and the evaporator 4 constitute a refrigeration cycle, and the respective component parts are connected via metal pipes. A refrigerant such as Freon R-22 circulates in the refrigeration cycle, and the refrigerant changes to a gas state or a liquid state to absorb or release heat.

【0003】圧縮機1は、蒸発器4から送り込まれた低
圧のガス状冷媒を、圧縮することによって高温高圧のガ
ス状冷媒に変換し、この圧縮機1に金属配管を介して接
続された凝縮器2へ、高温高圧に圧縮されたガス状冷媒
を送り込んでいる。
The compressor 1 converts the low-pressure gaseous refrigerant sent from the evaporator 4 into a high-temperature and high-pressure gaseous refrigerant by compressing it, and a condenser connected to the compressor 1 via a metal pipe. The gaseous refrigerant compressed to high temperature and high pressure is sent to the container 2.

【0004】そして、凝縮器2は、圧縮機1から送り込
まれた高温高圧のガス状冷媒を、空気または水等で冷却
することによって、高温高圧のガス状冷媒から熱を奪
い、ガス状冷媒を液化する。
The condenser 2 cools the high-temperature and high-pressure gaseous refrigerant sent from the compressor 1 with air, water or the like to remove heat from the high-temperature and high-pressure gaseous refrigerant to remove the gaseous refrigerant. Liquefy.

【0005】減圧器3は、金属配管を介して凝縮器2に
接続されており、凝縮器2から高圧の液状冷媒が送り込
まれる。そして、この減圧器3では、高温高圧の液状冷
媒を、減圧することによって蒸発しやすい低温の液状冷
媒にしている。
The decompressor 3 is connected to the condenser 2 via a metal pipe, and a high-pressure liquid refrigerant is fed from the condenser 2. Then, in the decompressor 3, the high-temperature and high-pressure liquid refrigerant is reduced in pressure to be a low-temperature liquid refrigerant that is easily evaporated.

【0006】蒸発器4は、金属配管を介して減圧器3に
接続されており、減圧器3から低温の液状冷媒が送り込
まれる。この蒸発器4内に送り込まれた液状冷媒は、蒸
発器4内を通過する間に周囲から熱を奪うことによって
蒸発し、低圧のガス状冷媒が圧縮機1内に再び送り込ま
れる。
The evaporator 4 is connected to the pressure reducer 3 via a metal pipe, and the low temperature liquid refrigerant is fed from the pressure reducer 3. The liquid refrigerant sent into the evaporator 4 evaporates by taking heat from the surroundings while passing through the evaporator 4, and the low-pressure gaseous refrigerant is sent again into the compressor 1.

【0007】以上の冷凍サイクルを繰り返すことによっ
て、凝縮器2で放熱を行い、蒸発器4で吸熱により冷凍
を発生させる。次に、図6を参照して、上記冷凍サイク
ルにおけるそれぞれの要素部品による冷媒の状態変化に
ついて説明する。図6は、上記冷凍サイクルのモリエル
線図を示しており、縦軸に圧力、横軸にエンタルピーを
とっている。尚、図中、xは冷媒の気相状態、液相状態
および気液2相状態の境界を示す曲線であり、頂点yよ
り右側の曲線部分は飽和蒸気線を示し、頂点yより左側
の曲線部分は飽和液線を示している。
By repeating the above refrigeration cycle, the condenser 2 radiates heat and the evaporator 4 absorbs heat to generate refrigeration. Next, with reference to FIG. 6, the state change of the refrigerant due to the respective component parts in the refrigeration cycle will be described. FIG. 6 shows a Mollier diagram of the refrigeration cycle, in which the vertical axis represents pressure and the horizontal axis represents enthalpy. In the figure, x is a curve indicating the boundary between the vapor phase state, the liquid phase state and the gas-liquid two-phase state of the refrigerant, the curved portion on the right side of the vertex y indicates the saturated vapor line, and the curved line on the left side of the vertex y. The part shows a saturated liquid line.

【0008】そして、上記の飽和蒸気線の右側の領域で
は冷媒は過熱蒸気であり、飽和蒸気線の左側の領域では
冷媒は湿り蒸気となっている。また、上記の飽和液線の
左側の領域では冷媒は液体状態であり、飽和液線の右側
の領域では冷媒は湿り蒸気となっている。よって、図中
a−b間では、冷媒は圧縮機1で圧縮されることによっ
て、高温高圧の過熱蒸気となっている。また、図中b−
c間では、冷媒は凝縮器2内で凝縮されることによっ
て、過熱蒸気状態から液体状態になる。そして、図中c
−d間では、冷媒は減圧器3で減圧されることによっ
て、気液2相状態(液冷媒と蒸気冷媒)の液状冷媒とな
る。図中d−a間では、液状の冷媒は蒸発器4内で周囲
から熱を奪うことによって蒸発し、過熱蒸気となる。そ
して、過熱蒸気となった冷媒が、再び圧縮機1内へ送り
込まれることになる。
In the area on the right side of the saturated vapor line, the refrigerant is superheated steam, and in the area on the left side of the saturated vapor line, the refrigerant is wet steam. Further, the refrigerant is in a liquid state in the area on the left side of the saturated liquid line, and the refrigerant is wet vapor in the area on the right side of the saturated liquid line. Therefore, between a and b in the figure, the refrigerant is compressed by the compressor 1 to become high-temperature and high-pressure superheated steam. Also, b- in the figure
Between c, the refrigerant is condensed in the condenser 2 to change from the superheated vapor state to the liquid state. And c in the figure
Between −d, the refrigerant is decompressed by the decompressor 3 to become a liquid refrigerant in a gas-liquid two-phase state (liquid refrigerant and vapor refrigerant). In the area d-a in the figure, the liquid refrigerant evaporates by taking heat from the surroundings in the evaporator 4 to become superheated steam. Then, the refrigerant that has become superheated steam is fed into the compressor 1 again.

【0009】次に、蒸発器4での熱交換動作について説
明する。図7は蒸発器4内部での冷媒の状態変化を示す
概略断面図である。図7から分かるように、減圧器3か
ら送り込まれた液状冷媒(気液2相状態)の液冷媒が、
蒸発器4内を通過する間に周囲から熱を奪うことによっ
て蒸発し、蒸発器4出口では蒸気冷媒のみとなる。そし
て、この際の蒸発器4内部での熱交換効率が、蒸発器4
内部での冷媒の状態によって異なることが実験的に確認
されている。具体的には、図8に示すように、液状冷媒
の液冷媒の割合が大きい蒸発器4の冷媒流入側ではその
個所での熱伝達率が小さく、液冷媒の割合が小さくな
る、即ち、液状冷媒に対する蒸気冷媒の割合(以下、乾
き度という)が大きくなるに連れて熱伝達率が上昇する
傾向を有している。
Next, the heat exchange operation in the evaporator 4 will be described. FIG. 7 is a schematic sectional view showing a state change of the refrigerant inside the evaporator 4. As can be seen from FIG. 7, the liquid refrigerant of the liquid refrigerant (gas-liquid two-phase state) sent from the pressure reducer 3 is
While passing through the inside of the evaporator 4, the heat is taken from the surroundings to evaporate, and only the vapor refrigerant is left at the outlet of the evaporator 4. The heat exchange efficiency inside the evaporator 4 at this time is
It has been experimentally confirmed that it depends on the state of the refrigerant inside. Specifically, as shown in FIG. 8, on the refrigerant inflow side of the evaporator 4 in which the proportion of the liquid refrigerant in the liquid refrigerant is large, the heat transfer coefficient at that portion is small and the proportion of the liquid refrigerant is small, that is, the liquid refrigerant. The heat transfer coefficient tends to increase as the ratio of the vapor refrigerant to the refrigerant (hereinafter referred to as dryness) increases.

【0010】[0010]

【発明が解決しようとする課題】このため、従来の蒸発
器4では、図8に示すように冷媒吐出側を除いて殆どの
領域において、乾き度が小さく、熱伝達率が低い状態で
熱交換されており、その結果、蒸発器4の冷媒流路管の
全長を長くしなければならず、圧力損失も大きなものと
なっていた。
Therefore, in the conventional evaporator 4, as shown in FIG. 8, heat exchange is performed in a state where the dryness is small and the heat transfer coefficient is low in almost all regions except the refrigerant discharge side. As a result, the entire length of the refrigerant passage pipe of the evaporator 4 has to be lengthened, resulting in a large pressure loss.

【0011】本発明は、斯かる点に鑑みてなされたもの
であって、蒸発器内での熱交換効率を高め、従来装置に
比べ蒸発器内での圧力損失を低減させた蒸気圧縮式冷凍
装置を提供することを目的とする。
The present invention has been made in view of the above problems, and has a vapor compression refrigeration system in which the heat exchange efficiency in the evaporator is improved and the pressure loss in the evaporator is reduced as compared with the conventional apparatus. The purpose is to provide a device.

【0012】[0012]

【課題を解決するための手段】本発明は、蒸気圧縮式冷
凍装置において、蒸発器及び減圧器の間に設けられ、該
減圧器からの液状冷媒を蓄える受液タンクを備え、該受
液タンクは、前記液状冷媒を液冷媒と蒸気冷媒とに分離
して前記蒸発器に供給し、前記蒸発器内での液冷媒と蒸
気冷媒との割合が一定範囲内となるようしたものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a vapor compression refrigerating apparatus, which is provided between an evaporator and a pressure reducer, and which includes a liquid receiving tank for storing the liquid refrigerant from the pressure reducing apparatus. Is for separating the liquid refrigerant into a liquid refrigerant and a vapor refrigerant and supplying them to the evaporator so that the ratio of the liquid refrigerant and the vapor refrigerant in the evaporator falls within a certain range.

【0013】具体的には、受液タンクは液冷媒を吐出す
る液冷媒出口と、蒸気冷媒を吐出する蒸気冷媒出口とを
有しており、該蒸気冷媒出口を前記蒸発器の冷媒流入部
に連結すると共に、前記液冷媒出口を前記蒸発器の冷媒
流入部及び冷媒流路途中に連結しているものである。
Specifically, the liquid receiving tank has a liquid refrigerant outlet for discharging the liquid refrigerant and a vapor refrigerant outlet for discharging the vapor refrigerant, and the vapor refrigerant outlet is connected to the refrigerant inflow portion of the evaporator. In addition to the connection, the liquid refrigerant outlet is connected to the refrigerant inflow portion and the refrigerant flow path of the evaporator.

【0014】また、蒸発器内での液状冷媒に対する蒸気
冷媒の割合が60%ないし90%の範囲内となるように
したものである。
Further, the ratio of the vapor refrigerant to the liquid refrigerant in the evaporator is set within the range of 60% to 90%.

【0015】[0015]

【作用】本発明によれば、蒸発器内での液状冷媒に対す
る蒸気冷媒の割合が高めになるように設定することによ
り、高乾き度の状態において周囲と熱交換されることに
なる。
According to the present invention, by setting the ratio of the vapor refrigerant to the liquid refrigerant in the evaporator to be high, heat is exchanged with the surroundings in a high dry condition.

【0016】また、蒸発器内での液状冷媒に対する蒸気
冷媒の割合が60%ないし90%の範囲内となるように
設定することにより、従来装置に比べて蒸発器での平均
熱伝達率を2倍近くに向上させることができる。
By setting the ratio of the vapor refrigerant to the liquid refrigerant in the evaporator to be in the range of 60% to 90%, the average heat transfer coefficient in the evaporator is 2 as compared with the conventional device. It can be improved nearly twice.

【0017】[0017]

【実施例】以下、本発明の蒸気圧縮式冷凍装置につい
て、その一実施例を示す図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vapor compression refrigeration system of the present invention will be described below with reference to the drawings showing an embodiment thereof.

【0018】図1は本発明の蒸気圧縮式冷凍装置の冷媒
回路を示す概略構成図である。尚、上述の従来例(図
5)と同じ構成については、同一符号を付してある。図
において、5は減圧器としてのキャピラリーチューブ3
と蒸発器4との間に設けられた受液タンクであり、キャ
ピラリーチューブ3から送られてくる液状冷媒を蓄え、
その液状冷媒を液冷媒と蒸気冷媒とに分離して蒸発器4
に供給している。そして、後述するように、受液タンク
5から蒸発器4へ液冷媒及び蒸気冷媒を供給して、蒸発
器4内の全領域において乾き度を一定範囲内(本実施例
では60%〜90%に設定)に設定している。
FIG. 1 is a schematic configuration diagram showing a refrigerant circuit of a vapor compression refrigeration system of the present invention. The same components as those in the above-mentioned conventional example (FIG. 5) are designated by the same reference numerals. In the figure, 5 is a capillary tube 3 as a pressure reducer.
And a liquid receiving tank provided between the evaporator 4 and the evaporator 4, storing the liquid refrigerant sent from the capillary tube 3,
The liquid refrigerant is separated into a liquid refrigerant and a vapor refrigerant, and the evaporator 4
Is being supplied to. Then, as will be described later, the liquid refrigerant and the vapor refrigerant are supplied from the liquid receiving tank 5 to the evaporator 4 so that the dryness is within a certain range (60% to 90% in this embodiment) in the entire area of the evaporator 4. Set to).

【0019】次に、上記構成の備えた本発明の蒸気圧縮
式冷凍装置における蒸発器4での熱交換動作について、
本発明の蒸発器4内部での冷媒の状態変化を示す概略断
面図(図2)を参照して説明する。尚、本発明の冷凍サ
イクルの基本的な動作原理は、上述した従来例と同一で
あるので詳細説明は省略する。
Next, the heat exchange operation in the evaporator 4 in the vapor compression refrigerating apparatus of the present invention having the above-mentioned structure will be described.
It will be described with reference to a schematic cross-sectional view (FIG. 2) showing a change in the state of the refrigerant inside the evaporator 4 of the present invention. Since the basic operation principle of the refrigeration cycle of the present invention is the same as that of the above-mentioned conventional example, detailed description thereof will be omitted.

【0020】図2に示すように、キャピラリーチューブ
3から供給された低温の液状冷媒が受液タンク5に供給
され、受液タンク5において液冷媒と蒸気冷媒に分離さ
れ、そして、受液タンク5には液冷媒を吐出する液冷媒
出口6と、蒸気冷媒を吐出する蒸気冷媒出口7とが設け
られており、蒸気冷媒出口7を蒸発器4の冷媒流入部8
に配管接続すると共に、液冷媒出口6を蒸発器4の冷媒
流入部8及び冷媒流路途中の複数個所9(本実施例では
4個所)(以下、液冷媒供給部9と称する)に配管接続
している。そして、蒸発器4内の全領域において乾き度
が60%〜90%になるように、液冷媒出口6から供給
される液冷媒量を調節している。
As shown in FIG. 2, the low temperature liquid refrigerant supplied from the capillary tube 3 is supplied to the liquid receiving tank 5, separated into the liquid refrigerant and the vapor refrigerant in the liquid receiving tank 5, and then the liquid receiving tank 5 Is provided with a liquid refrigerant outlet 6 for discharging a liquid refrigerant and a vapor refrigerant outlet 7 for discharging a vapor refrigerant. The vapor refrigerant outlet 7 is connected to the refrigerant inflow portion 8 of the evaporator 4.
The liquid refrigerant outlet 6 is connected to the refrigerant inflow portion 8 of the evaporator 4 and a plurality of locations 9 (four locations in this embodiment) in the middle of the refrigerant flow path (hereinafter, referred to as liquid refrigerant supply portion 9). are doing. Then, the amount of the liquid refrigerant supplied from the liquid refrigerant outlet 6 is adjusted so that the dryness is 60% to 90% in the entire area of the evaporator 4.

【0021】これにより、蒸発器4の冷媒流入部8及び
液冷媒供給部9において乾き度が60%となるように、
受液タンク5から液冷媒が供給されている。また、液冷
媒供給部9は、周囲との熱交換により液冷媒が蒸発して
乾き度が90%まで上昇した蒸発器4の冷媒流路位置に
設けられている。
As a result, the dryness of the refrigerant inflow portion 8 and the liquid refrigerant supply portion 9 of the evaporator 4 becomes 60%,
Liquid refrigerant is supplied from the liquid receiving tank 5. Further, the liquid refrigerant supply unit 9 is provided at the refrigerant flow path position of the evaporator 4 in which the liquid refrigerant is evaporated by heat exchange with the surroundings and the dryness is increased to 90%.

【0022】次に、図3に蒸発器での乾き度と熱伝達率
との関係図を示す。図に示すように、乾き度が大きくな
るに連れて熱伝達率が徐々に上昇し、乾き度が60%以
上になると急激に上昇している。そして、乾き度が90
%前後でピーク値となり、その後、急激に減少する傾向
を有している。尚、上記図5に示す従来装置では、一般
に蒸発器4での平均乾き度が50%前後となっている場
合が多く、図3から明らかなように、蒸発器4での平均
熱伝達率が低く、実験によると約5kW/m2Kであった。
Next, FIG. 3 shows a relationship diagram between the dryness in the evaporator and the heat transfer coefficient. As shown in the figure, the heat transfer coefficient gradually increases as the dryness increases, and sharply increases when the dryness reaches 60% or more. And the dryness is 90
%, The peak value is reached, and then the value tends to decrease sharply. In the conventional apparatus shown in FIG. 5, the average dryness in the evaporator 4 is often around 50% in general, and as is clear from FIG. 3, the average heat transfer coefficient in the evaporator 4 is It was low, and it was about 5 kW / m2K according to the experiment.

【0023】これに対して、本願の上記構成によると前
述したように、蒸発器4の冷媒流路管の全長において乾
き度が60%〜90%に設定されているため、図4に示
すように蒸発器4の各位置での熱伝達率が5.5〜1
2.5kW/m2Kとなり、全長での平均熱伝達率が約9kW/m
2Kであり、単位長当りの熱交換量が従来装置の2倍近く
となる。
On the other hand, according to the above-mentioned configuration of the present application, as described above, the dryness is set to 60% to 90% over the entire length of the refrigerant flow path pipe of the evaporator 4, so that as shown in FIG. The heat transfer coefficient at each position of the evaporator 4 is 5.5 to 1
2.5kW / m 2 K, average heat transfer coefficient over the entire length is about 9kW / m
It is 2 K, and the amount of heat exchange per unit length is almost double that of conventional equipment.

【0024】以上のように、本発明によれば蒸発器4に
おいて高乾き度の状態で熱交換することにより、従来に
比べ熱伝達率の向上させた熱交換を行うことができる。
尚、上記実施例では蒸発器4内での乾き度が60〜90
%となるように構成した場合について説明したが、特に
この範囲に限定する必要は無く、蒸発器内で乾き度が6
0%ないし90%の範囲内であればその他の値であって
も構わない。
As described above, according to the present invention, by exchanging heat in the evaporator 4 in a high degree of dryness, it is possible to perform heat exchange having an improved heat transfer coefficient as compared with the conventional case.
In the above embodiment, the dryness in the evaporator 4 is 60 to 90.
Although the case where it is configured so as to be 10% has been described, it is not particularly limited to this range, and the dryness in the evaporator is 6%.
Other values may be used within the range of 0% to 90%.

【0025】[0025]

【発明の効果】以上のとおり本発明によれば、蒸発器内
での液状冷媒に対する蒸気冷媒の割合が高めになるよう
に設定することにより、高乾き度の状態において周囲と
熱交換されることになり、従来装置に比べて蒸発器での
熱伝達率を飛躍的に向上させることができる。
As described above, according to the present invention, by setting the ratio of the vapor refrigerant to the liquid refrigerant in the evaporator to be high, heat is exchanged with the surroundings in a high dry condition. Therefore, the heat transfer coefficient in the evaporator can be dramatically improved as compared with the conventional device.

【0026】このため、従来装置に比べて、蒸発器の冷
媒流路管の全長を短くし、圧力損失を低減させることが
出来、冷凍装置の小型化を図ることが可能となる。
Therefore, compared with the conventional device, the entire length of the refrigerant passage pipe of the evaporator can be shortened, the pressure loss can be reduced, and the refrigeration device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸気圧縮式冷凍装置の冷媒回路の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a refrigerant circuit of a vapor compression refrigeration system of the present invention.

【図2】本発明の蒸発器内部での冷媒の状態変化を示す
概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a state change of the refrigerant inside the evaporator of the present invention.

【図3】蒸発器での乾き度と熱伝達率との関係図であ
る。
FIG. 3 is a diagram showing a relationship between dryness and heat transfer coefficient in an evaporator.

【図4】本発明の蒸発器内部での熱伝達率の変化を示す
図である。
FIG. 4 is a diagram showing changes in the heat transfer coefficient inside the evaporator of the present invention.

【図5】従来の蒸気圧縮式冷凍装置の冷媒回路の概略構
成図である。
FIG. 5 is a schematic configuration diagram of a refrigerant circuit of a conventional vapor compression refrigeration system.

【図6】蒸気圧縮式冷凍装置における冷凍サイクルのモ
リエル線図である。
FIG. 6 is a Mollier diagram of a refrigeration cycle in a vapor compression refrigeration system.

【図7】蒸発器内部での冷媒の状態変化を示す概略断面
図である。
FIG. 7 is a schematic cross-sectional view showing a state change of the refrigerant inside the evaporator.

【図8】従来の蒸発器内部での熱伝達率の変化を示す図
である。
FIG. 8 is a diagram showing a change in heat transfer coefficient inside a conventional evaporator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧器(キャピラリーチューブ) 4 蒸発器 5 受液タンク 6 液冷媒出口 7 蒸気冷媒出口 8 冷媒流入部 1 Compressor 2 Condenser 3 Decompressor (capillary tube) 4 Evaporator 5 Liquid receiving tank 6 Liquid refrigerant outlet 7 Vapor refrigerant outlet 8 Refrigerant inflow part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名迫 賢二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Nasako 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、蒸発器と、減圧器と、凝縮器と
を接続して冷凍サイクルを構成する蒸気圧縮式冷凍装置
において、 前記蒸発器及び減圧器の間に設けられ、該減圧器からの
液状冷媒を蓄える受液タンクを備え、 該受液タンクは、前記液状冷媒を液冷媒と蒸気冷媒とに
分離して前記蒸発器に供給し、前記蒸発器内での液冷媒
と蒸気冷媒との割合が一定範囲内となるようしたことを
特徴とする蒸気圧縮式冷凍装置。
1. A vapor compression refrigeration system in which a compressor, an evaporator, a pressure reducer, and a condenser are connected to form a refrigeration cycle, the vapor compression refrigeration device being provided between the evaporator and the pressure reducer. A liquid receiving tank for storing the liquid refrigerant from the evaporator, the liquid receiving tank separating the liquid refrigerant into a liquid refrigerant and a vapor refrigerant and supplying the liquid refrigerant to the evaporator, and the liquid refrigerant and the vapor in the evaporator. A vapor compression refrigeration system characterized in that the ratio with the refrigerant is within a certain range.
【請求項2】前記受液タンクは液冷媒を吐出する液冷媒
出口と、蒸気冷媒を吐出する蒸気冷媒出口とを有してお
り、該蒸気冷媒出口を前記蒸発器の冷媒流入部に連結す
ると共に、前記液冷媒出口を前記蒸発器の冷媒流入部及
び冷媒流路途中に連結していることを特徴とする請求項
1記載の蒸気圧縮式冷凍装置。
2. The liquid receiving tank has a liquid refrigerant outlet for discharging a liquid refrigerant and a vapor refrigerant outlet for discharging a vapor refrigerant, and the vapor refrigerant outlet is connected to a refrigerant inflow portion of the evaporator. At the same time, the liquid refrigerant outlet is connected to a refrigerant inflow portion and a refrigerant flow path of the evaporator, and the vapor compression refrigerating apparatus according to claim 1.
【請求項3】蒸発器内での液状冷媒に対する蒸気冷媒の
割合が60%ないし90%の範囲内となるようにしたこ
とを特徴とする請求項2記載の蒸気圧縮式冷凍装置。
3. The vapor compression refrigerating apparatus according to claim 2, wherein the ratio of the vapor refrigerant to the liquid refrigerant in the evaporator is in the range of 60% to 90%.
JP07898495A 1995-04-04 1995-04-04 Vapor compression refrigeration equipment Expired - Fee Related JP3203145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07898495A JP3203145B2 (en) 1995-04-04 1995-04-04 Vapor compression refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07898495A JP3203145B2 (en) 1995-04-04 1995-04-04 Vapor compression refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH08278068A true JPH08278068A (en) 1996-10-22
JP3203145B2 JP3203145B2 (en) 2001-08-27

Family

ID=13677166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07898495A Expired - Fee Related JP3203145B2 (en) 1995-04-04 1995-04-04 Vapor compression refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3203145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
JP4591413B2 (en) * 2006-06-26 2010-12-01 株式会社デンソー Ejector refrigeration cycle

Also Published As

Publication number Publication date
JP3203145B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JP3102651U (en) Refrigerator refrigerator with two evaporators
KR102262722B1 (en) Cooling Cycle Apparatus for Refrigerator
JP3838008B2 (en) Refrigeration cycle equipment
EP1804011A2 (en) Refrigerator
JP2001116376A (en) Supercritical vapor compression type refrigerating cycle
JP2003004321A (en) Refrigerating air conditioner
JP3599770B2 (en) Heat transfer device
JP2002295915A (en) Air conditioner
JP2009024884A (en) Refrigerating cycle device and cold insulation cabinet
JP2000304380A (en) Heat exchanger
JPH06272998A (en) Refrigerator
JPH08278068A (en) Vapor compression type refrigerator
JPH11248294A (en) Refrigerating machine
JP2006003023A (en) Refrigerating unit
JP3007455B2 (en) Refrigeration cycle device
JP2003279197A (en) Heat exchanger for condensation of freezer-refrigerator system
JPH10103796A (en) Steam compression type refrigerating device
JP2004226018A (en) Refrigeration unit
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
JP3256856B2 (en) Refrigeration system
JP6804076B1 (en) Multi-stage heat exchanger and its usage and refrigeration system incorporating the multi-stage heat exchanger
JP2008298307A (en) Refrigerating cycle
EP0374688A2 (en) Refrigerator system with dual evaporators for household refrigerators
JPH10111029A (en) Vapor compression refrigerator
JPH0894192A (en) Vapor compression type refrigerating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees