JPH10111029A - Vapor compression refrigerator - Google Patents

Vapor compression refrigerator

Info

Publication number
JPH10111029A
JPH10111029A JP26442296A JP26442296A JPH10111029A JP H10111029 A JPH10111029 A JP H10111029A JP 26442296 A JP26442296 A JP 26442296A JP 26442296 A JP26442296 A JP 26442296A JP H10111029 A JPH10111029 A JP H10111029A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
vapor
bypass pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26442296A
Other languages
Japanese (ja)
Inventor
Taiji Yamamoto
泰司 山本
Masafumi Ueda
雅文 上田
Masami Ikemoto
真佐美 池元
Takayuki Masukawa
貴之 益川
Yukio Miyamura
幸雄 宮村
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26442296A priority Critical patent/JPH10111029A/en
Publication of JPH10111029A publication Critical patent/JPH10111029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat exchange efficiency in a condenser and shorten the whole length of a refrigerant flow passage pipe in a vapor compression freezer where a vapor refrigerant is recirculated in the condenser by providing a bypass pipe parallely to the refrigerant flow passage pipe of the condenser and further providing circulation means for recirculating the vapor refrigerant to the bypass pipe. SOLUTION: A high temperature vapor refrigerant supplied from a compressor 1 is supplied to a refrigerant inflow part of a condenser 2. Thereupon, a bypass pipe 5 and a circulation pump 7 are connected between an upstream side part 6a and a downstream side part 6b of a freezing flow passage pipe 6 of the condenser 2 whereby the vapor refrigerant from the bypass pipe 5 is mixed to a gas/liquid two phase state refrigerant in the condenser 2 at the upstream side part 6a, and a recirculation vapor refrigerant amount is adiusted with the circulation pump 7 such that the dryness before and behind the mixing part is increased by about 15 %. Further, in the downstream side part 6b, the vapor refrigerant is condensed by heat exchange with the surroundings and hence the dryness is lowered to 60%, and most of the vapor refrigerant in the gas/liquid two phase state refrigerant is recirculated to the upstream side part 6a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷暖房運転や給湯
・冷凍などに供する蒸気圧縮式冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigeration system used for cooling and heating operations, hot water supply and freezing.

【0002】[0002]

【従来の技術】従来、室内空調に利用する蒸気圧縮式冷
凍装置は、主に4つの要素機器によって構成されてい
る。以下に、この冷凍サイクルについて、図5に基づい
て説明する。同図に示すように、圧縮機1と、凝縮器2
と、減圧器3と、蒸発器4で冷凍サイクルが構成されて
おり、それぞれの要素機器は金属配管を介して接続され
ている。そして、R22(クロロジフルオロメタン)な
どの冷媒が、この冷凍サイクル内を循環し、この冷媒が
気体状態や液体状態に変化することによって、熱の吸収
または放出を行っている。
2. Description of the Related Art Conventionally, a vapor compression refrigeration system used for indoor air conditioning mainly comprises four component devices. Hereinafter, the refrigeration cycle will be described with reference to FIG. As shown in the figure, a compressor 1 and a condenser 2
, A decompressor 3 and an evaporator 4 constitute a refrigeration cycle, and the respective component devices are connected via metal piping. Then, a refrigerant such as R22 (chlorodifluoromethane) circulates through the refrigeration cycle, and the refrigerant changes into a gas state or a liquid state, thereby absorbing or releasing heat.

【0003】圧縮機1は、蒸発器4から送り込まれた低
圧のガス状冷媒を、圧縮することによって高温高圧のガ
ス状冷媒に変換し、この圧縮機1に金属配管を介して接
続された凝縮器2へ、高温高圧に圧縮されたガス状冷媒
を送り込んでいる。
The compressor 1 converts the low-pressure gaseous refrigerant sent from the evaporator 4 into a high-temperature and high-pressure gaseous refrigerant by compressing the gaseous refrigerant, and connects the condensate connected to the compressor 1 via a metal pipe. A gaseous refrigerant compressed to a high temperature and a high pressure is sent to the vessel 2.

【0004】そして、凝縮器2は、圧縮機1から送り込
まれた高温高圧のガス状冷媒を、空気または水等で冷却
することによって、高温高圧のガス状冷媒から熱を奪
い、ガス状冷媒を液化する。
The condenser 2 cools the high-temperature and high-pressure gaseous refrigerant sent from the compressor 1 with air or water, thereby removing heat from the high-temperature and high-pressure gaseous refrigerant and converting the gaseous refrigerant. Liquefy.

【0005】減圧器3は、金属配管を介して凝縮器2に
接続されており、凝縮器2から高圧の液冷媒が送り込ま
れる。そして、この減圧器3では、高温高圧の液冷媒
を、減圧することによって蒸発しやすい低温の気液二相
状態の冷媒にしている。
[0005] The pressure reducer 3 is connected to the condenser 2 via a metal pipe, and a high-pressure liquid refrigerant is sent from the condenser 2. The decompressor 3 converts the high-temperature and high-pressure liquid refrigerant into a low-temperature gas-liquid two-phase refrigerant that is easily evaporated by decompression.

【0006】蒸発器4は、金属配管を介して減圧器3に
接続されており、減圧器3から低温の気液二相状態の冷
媒が送り込まれる。この蒸発器4内に送り込まれた気液
二相状態の冷媒は、蒸発器4内を通過する間に周囲から
熱を奪うことによって蒸発し、低圧のガス状冷媒が圧縮
機1内に再び送り込まれる。
[0006] The evaporator 4 is connected to the decompressor 3 via a metal pipe, from which a low-temperature gas-liquid two-phase refrigerant is sent. The gas-liquid two-phase refrigerant sent into the evaporator 4 evaporates by removing heat from the surroundings while passing through the evaporator 4, and the low-pressure gaseous refrigerant is sent back into the compressor 1. It is.

【0007】以上の冷凍サイクルを繰り返すことによっ
て、凝縮器2で放熱を行い、蒸発器4で吸熱を行うこと
により冷凍を発生させる。次に、図6を参照して、上記
冷凍サイクルにおけるそれぞれの要素機器による冷媒の
状態変化について説明する。図6は、上記冷凍サイクル
のモリエル線図を示しており、縦軸に圧力、横軸にエン
タルピーをとっている。尚、図中、xは冷媒の気相状
態、液相状態および気液二相状態の境界を示す曲線であ
り、頂点yより右側の曲線部分は飽和蒸気線を示し、頂
点yより左側の曲線部分は飽和液線を示している。
By repeating the above refrigeration cycle, heat is radiated by the condenser 2 and heat is absorbed by the evaporator 4 to generate refrigeration. Next, with reference to FIG. 6, a change in the state of the refrigerant by each element device in the refrigeration cycle will be described. FIG. 6 shows a Mollier diagram of the refrigeration cycle, in which the vertical axis represents pressure and the horizontal axis represents enthalpy. In the drawing, x is a curve indicating the boundary between the gas phase state, the liquid phase state, and the gas-liquid two-phase state of the refrigerant, the curve part on the right side from the vertex y indicates the saturated vapor line, and the curve on the left side from the vertex y. The part shows the saturated liquid line.

【0008】そして、上記の飽和蒸気線の右側の領域で
は冷媒は過熱蒸気であり、飽和蒸気線の左側の領域では
冷媒は気液二相状態(液冷媒と蒸気冷媒)の湿り蒸気と
なっている。また、上記の飽和液線の左側の領域では冷
媒は液体状態であり、飽和液線の右側の領域では冷媒は
湿り蒸気となっている。よって、図中a−b間では、冷
媒は圧縮機1で圧縮されることによって、高温高圧の過
熱蒸気となっている。また、図中b−c間では、冷媒は
凝縮器2内で凝縮されることによって、過熱蒸気状態か
ら液体状態になる。そして、図中c−d間では、冷媒は
減圧器3で減圧されることによって気液二相状態とな
る。図中d−a間では、気液二相状態の冷媒は蒸発器4
内で周囲から熱を奪うことによって蒸発し、過熱蒸気と
なる。そして、過熱蒸気となった冷媒が、再び圧縮機1
内へ送り込まれることになる。
In the region on the right side of the saturated vapor line, the refrigerant is superheated vapor, and in the region on the left side of the saturated vapor line, the refrigerant is wet vapor in a gas-liquid two-phase state (liquid refrigerant and vapor refrigerant). I have. Further, the refrigerant is in a liquid state in a region on the left side of the saturated liquid line, and is in a wet vapor in a region on the right side of the saturated liquid line. Therefore, between a and b in the figure, the refrigerant is compressed by the compressor 1 to become high-temperature and high-pressure superheated steam. Further, between bc in the figure, the refrigerant is condensed in the condenser 2 to change from a superheated vapor state to a liquid state. Then, between cd in the figure, the refrigerant is decompressed by the decompressor 3 to be in a gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state is between the e-
Evaporates by removing heat from the surroundings and becomes superheated steam. Then, the refrigerant that has become the superheated steam is again compressed by the compressor 1.
Will be sent inside.

【0009】次に、凝縮器2での熱交換動作について説
明する。図7は凝縮器2内部での冷媒の状態変化を示す
概略断面図である。図7から分かるように、圧縮機1か
ら送り込まれた過熱蒸気の気相冷媒が、凝縮器2内を通
過する間に周囲へ放熱することによって凝縮し、凝縮器
2出口では液冷媒のみとなる。そして、この際の凝縮器
2内部での熱交換効率が、凝縮器2内部での冷媒の状態
によって異なることが実験的に確認されている。具体的
には、図8に示すように、冷媒中の液冷媒の割合が小さ
い凝縮器2の冷媒流入側ではその個所での熱伝達率が大
きく、液冷媒の割合が大きくなる、即ち、冷媒中の蒸気
冷媒の割合が小さくなるに連れて熱伝達率が低下する傾
向を有している。そして、一般に冷媒中の蒸気冷媒の割
合、即ち、液冷媒と蒸気冷媒が混在する気液二相状態の
冷媒に対する蒸気冷媒の割合を乾き度と呼称している。
Next, the heat exchange operation in the condenser 2 will be described. FIG. 7 is a schematic sectional view showing a state change of the refrigerant inside the condenser 2. As can be seen from FIG. 7, the gaseous refrigerant of the superheated vapor sent from the compressor 1 is condensed by radiating heat to the surroundings while passing through the inside of the condenser 2, and becomes only the liquid refrigerant at the outlet of the condenser 2. . It has been experimentally confirmed that the heat exchange efficiency inside the condenser 2 at this time differs depending on the state of the refrigerant inside the condenser 2. Specifically, as shown in FIG. 8, on the refrigerant inflow side of the condenser 2 in which the ratio of the liquid refrigerant in the refrigerant is small, the heat transfer coefficient at that point is large, and the ratio of the liquid refrigerant is large. The heat transfer coefficient has a tendency to decrease as the ratio of the vapor refrigerant inside decreases. In general, the ratio of the vapor refrigerant in the refrigerant, that is, the ratio of the vapor refrigerant to the refrigerant in the gas-liquid two-phase state in which the liquid refrigerant and the vapor refrigerant coexist is called dryness.

【0010】[0010]

【発明が解決しようとする課題】このため、従来の凝縮
器2では、図8に示すように冷媒流入側から遠ざかるに
つれて熱伝達率が低下して行き、特に乾き度が30%以
下となる冷媒吐出側の冷媒流路管部分では熱伝達率がか
なり低い状態での熱交換が行われており、その結果、凝
縮器2の冷媒流路管の全長を長くしなければならなかっ
た。
For this reason, in the conventional condenser 2, as shown in FIG. 8, the heat transfer coefficient decreases as the distance from the refrigerant inflow side increases, and particularly, the refrigerant whose dryness becomes 30% or less is used. Heat exchange is performed in a state where the heat transfer coefficient is considerably low in the refrigerant flow path pipe portion on the discharge side. As a result, the total length of the refrigerant flow path pipe of the condenser 2 has to be increased.

【0011】本発明は、斯かる点に鑑みてなされたもの
であって、凝縮器内での熱交換効率を高め、従来装置に
比べ凝縮器の冷媒流路管の全長を短くした蒸気圧縮式冷
凍装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has been made in view of the above circumstances. The present invention has a vapor compression type in which the heat exchange efficiency in a condenser is increased and the total length of a refrigerant flow pipe of the condenser is shorter than that of a conventional apparatus. An object is to provide a refrigeration apparatus.

【0012】[0012]

【課題を解決するための手段】本発明は、蒸気圧縮式冷
凍装置において、凝縮器内で蒸気冷媒を再循環させるも
のであり、具体的には、凝縮器の冷媒流路管に並列して
バイパス管を設け、該バイパス管に蒸気冷媒を再循環さ
せる循環手段を備えている。
SUMMARY OF THE INVENTION The present invention relates to a vapor compression refrigeration system in which a vapor refrigerant is recirculated in a condenser. Specifically, the refrigerant is arranged in parallel with a refrigerant flow pipe of the condenser. A bypass pipe is provided, and circulation means for recirculating the vapor refrigerant is provided in the bypass pipe.

【0013】この構成を用いることにより、凝縮器内で
の気液二相状態の冷媒に対する蒸気冷媒の割合が高めに
なるように設定することにより、高乾き度の状態におい
て周囲と熱交換されることになる。
By using this configuration, by setting the ratio of the vapor refrigerant to the refrigerant in the gas-liquid two-phase state in the condenser to be higher, heat exchange is performed with the surroundings in a state of high dryness. Will be.

【0014】また、冷媒としてジフルオロメタン及びペ
ンタフルオロエタンをそれぞれ略50重量%にて混合さ
せた混合冷媒を使用する構成としても良い。この構成を
用いることにより、凝縮器内での蒸気冷媒の再循環によ
る圧力損失を少なくでき、再循環による圧縮機1の仕事
量が増加することがない。
Further, it is possible to use a mixed refrigerant in which difluoromethane and pentafluoroethane are mixed at approximately 50% by weight, respectively. By using this configuration, the pressure loss due to the recirculation of the vapor refrigerant in the condenser can be reduced, and the work of the compressor 1 due to the recirculation does not increase.

【0015】[0015]

【発明の実施の形態】以下、本発明の蒸気圧縮式冷凍装
置の一実施の形態例について、以下に示す図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a vapor compression refrigeration system according to the present invention will be described below with reference to the accompanying drawings.

【0016】図1は本発明の一実施の形態を示す蒸気圧
縮式冷凍装置の冷媒回路の概略構成図である。尚、上述
の従来例(図5)と同じ構成については、同一符号を付
してある。
FIG. 1 is a schematic configuration diagram of a refrigerant circuit of a vapor compression refrigeration apparatus showing one embodiment of the present invention. The same components as those in the above-described conventional example (FIG. 5) are denoted by the same reference numerals.

【0017】図において、5は凝縮器2の冷媒流路管6
に並列して設けられたバイパス管であり、7はバイパス
管5の途中に設けられ、凝縮器2内の蒸気冷媒を冷媒流
路管6の下流側から上流側へ再循環させる循環手段とし
ての循環ポンプである。
In the drawing, reference numeral 5 denotes a refrigerant flow pipe 6 of the condenser 2.
The bypass pipe 7 is provided in the middle of the bypass pipe 5 and serves as a circulating means for recirculating the vapor refrigerant in the condenser 2 from the downstream side of the refrigerant flow pipe 6 to the upstream side. It is a circulation pump.

【0018】具体的には、凝縮器2内において高乾き度
の領域が広くなるように、乾き度が約60%となる冷媒
流路管6の上流側部分6aにバイパス管7の一端を接続
し、他端を凝縮器2の冷媒流出側の下流側部分6bに接
続している。そして、循環ポンプ7により冷媒流路管6
の上流側部分6aでの乾き度が約75%となるように循
環ポンプ7によって供給される蒸気冷媒量を調節してい
る。
Specifically, one end of the bypass pipe 7 is connected to the upstream portion 6a of the refrigerant flow pipe 6 where the dryness is about 60% so that the region of high dryness in the condenser 2 is widened. The other end is connected to the downstream portion 6b of the condenser 2 on the refrigerant outflow side. Then, the refrigerant flow pipe 6 is moved by the circulation pump 7.
The amount of the vapor refrigerant supplied by the circulation pump 7 is adjusted so that the dryness in the upstream portion 6a of the circulating fluid is about 75%.

【0019】次に、上記構成の蒸気圧縮式冷凍装置にお
ける凝縮器2での熱交換動作について、本実施形態の凝
縮器2内部での冷媒の状態変化を示す概略断面図(図
2)を参照して説明する。尚、本発明の冷凍サイクルの
基本的な動作原理は、上述した従来例と同一であるので
詳細説明は省略する。
Next, with regard to the heat exchange operation in the condenser 2 in the vapor compression refrigeration system having the above-mentioned configuration, refer to a schematic sectional view (FIG. 2) showing the state change of the refrigerant inside the condenser 2 of the present embodiment. I will explain. Note that the basic operation principle of the refrigeration cycle of the present invention is the same as that of the above-described conventional example, and thus detailed description is omitted.

【0020】図2に示すように、圧縮機1から供給され
た高温の蒸気冷媒は凝縮器2の冷媒流入部6cに供給さ
れている。そして、バイパス管5、循環ポンプ7が凝縮
器2の冷媒流路管6の途中の上流側部分6aと下流側部
分6bとの間に接続されている。これにより、凝縮器2
の上流側部分6aにおいて凝縮器2内の気液二相状態の
冷媒に、バイパス管5からの蒸気冷媒が混合された状態
となり、この前後で乾き度が15%程度増加するように
循環ポンプ7による再循環蒸気冷媒量が調節されてい
る。この結果、本実施形態例では、上流側部分6a前後
で乾き度が約60%から約75%に増加する。
As shown in FIG. 2, the high-temperature vapor refrigerant supplied from the compressor 1 is supplied to a refrigerant inlet 6c of the condenser 2. The bypass pipe 5 and the circulation pump 7 are connected between the upstream part 6 a and the downstream part 6 b in the middle of the refrigerant flow pipe 6 of the condenser 2. Thereby, the condenser 2
In the upstream portion 6a, the refrigerant in the gas-liquid two-phase state in the condenser 2 is mixed with the vapor refrigerant from the bypass pipe 5, and before and after this, the circulating pump 7 increases the dryness by about 15%. Is adjusted. As a result, in the present embodiment, the dryness increases from about 60% to about 75% around the upstream portion 6a.

【0021】また、バイパス管5の他端が接続される凝
縮器2の下流側部分6bでは、周囲との熱交換により蒸
気冷媒が凝縮して乾き度が60%まで低下し、その気液
二相状態の冷媒中の蒸気冷媒をほとんどを上流側部分6
aへ再循環させている。このため、下流側部分6bの後
領域では乾き度が急減し、その後直ぐに凝縮器2の冷媒
吐出部分となる。
In the downstream portion 6b of the condenser 2 to which the other end of the bypass pipe 5 is connected, the vapor refrigerant is condensed by heat exchange with the surroundings, and the dryness is reduced to 60%. Most of the vapor refrigerant in the refrigerant in the phase state is
a. For this reason, the dryness sharply decreases in the area after the downstream portion 6b, and immediately after that, the portion becomes the refrigerant discharge portion of the condenser 2.

【0022】次に、図3に凝縮器での乾き度と熱伝達率
との関係図を示す。ここで、図3の縦軸は熱伝達率を、
横軸は(1−乾き度)の%表示を表している。図に示す
ように、乾き度が30%ぐらいまでは、乾き度が小さく
なるにつれてかなりの割合で熱伝達率が低下して行き、
乾き度30%以下では熱伝達率があまり急激には変化せ
ず、徐々に減少する傾向を有している。
Next, FIG. 3 shows the relationship between the degree of dryness in the condenser and the heat transfer coefficient. Here, the vertical axis of FIG.
The horizontal axis represents (1-dryness) in%. As shown in the figure, when the dryness is about 30%, the heat transfer coefficient decreases at a considerable rate as the dryness decreases,
When the dryness is 30% or less, the heat transfer coefficient does not change so rapidly, but tends to decrease gradually.

【0023】従って、上記図5に示す従来装置では図3
からも明らかなように、凝縮器2での単位長当たりでの
平均熱伝達率が低く抑えられていた。これに対して、本
願の上記構成によると前述したように、凝縮器2の冷媒
流路管の殆どの領域において乾き度が60%以上に設定
されていると共に、蒸気冷媒の再循環による凝縮器2内
部での流速増加による熱伝達率の上昇によって、図4に
実線で示すように凝縮器2の各位置での熱伝達率が大き
くなり、単位長当りの平均熱伝達率が従来装置に比べて
かなり上昇する。
Therefore, in the conventional apparatus shown in FIG.
As is clear from FIG. 2, the average heat transfer coefficient per unit length in the condenser 2 was suppressed to be low. On the other hand, according to the above-described configuration of the present application, as described above, the dryness is set to 60% or more in most of the area of the refrigerant flow pipe of the condenser 2 and the condenser is recirculated by the vapor refrigerant. The heat transfer coefficient at each position of the condenser 2 increases as shown by the solid line in FIG. 4 due to the increase of the heat transfer coefficient due to the increase in the flow velocity inside the 2, and the average heat transfer coefficient per unit length is smaller than that of the conventional device. And rise considerably.

【0024】本実施の形態例では、凝縮器2内での殆ど
の領域において乾き度が60%以上となるように構成し
た場合について説明しているが、蒸気冷媒を再循環させ
ることによって再循環領域での乾き度が上昇し、単位長
当りの平均熱伝達率が従来装置に比べて上昇するため、
必ずしもこの範囲内に構成する必要はない。
In the present embodiment, a case is described in which the dryness is 60% or more in most of the area in the condenser 2. However, the recirculation is performed by recirculating the vapor refrigerant. Since the dryness in the area increases and the average heat transfer coefficient per unit length increases compared to the conventional device,
It is not always necessary to configure within this range.

【0025】また、冷媒としてジフルオロメタン(R3
2)とペンタフルオロエタン(R125)とを50:5
0の重量比で混合させた混合冷媒(R410A)を用い
る場合には、R410A冷媒が他の冷媒、例えばR22
やR32、R125及び1,1,1,2-テトラフルオロエタン
(R134a)の混合冷媒であるR407Cなどに比べ
て蒸気冷媒の再循環による圧力損失が少なくなるため、
再循環による圧縮機1の仕事量が増加することがない。
As a refrigerant, difluoromethane (R3
2) and pentafluoroethane (R125) in a ratio of 50: 5
When a mixed refrigerant (R410A) mixed at a weight ratio of 0 is used, the R410A refrigerant is replaced with another refrigerant, for example, R22.
Pressure loss due to recirculation of the vapor refrigerant is smaller than that of R407C which is a mixed refrigerant of R32, R125 and 1,1,1,2-tetrafluoroethane (R134a).
The work load of the compressor 1 due to recirculation does not increase.

【0026】以上のように、本発明によれば凝縮器にお
いて高乾き度の状態で熱交換することにより、従来に比
べ熱伝達率を向上させた熱交換を行うことができる。
尚、上記実施の形態の説明は、本発明を説明するための
ものであって、特許請求の範囲に記載の発明を限定し、
或は範囲を減縮する様に解すべきではない。又、本発明
の各部構成は上記実施の形態に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
As described above, according to the present invention, by exchanging heat in a state of high dryness in the condenser, it is possible to perform heat exchange with an improved heat transfer coefficient as compared with the prior art.
The description of the above embodiments is for describing the present invention, and limits the invention described in the claims.
Or should not be construed as reducing the range. In addition, the configuration of each part of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【0027】例えば、上記実施の形態の説明では、凝縮
器の上流側部分6aと下流側部分6bとをバイパス管5
で連結して蒸気冷媒を再循環させる場合について説明し
たが、この他に、冷媒流路の複数箇所に再循環させる構
成としても構わない。
For example, in the description of the above embodiment, the upstream part 6a and the downstream part 6b of the condenser are connected to the bypass pipe 5
Although the case where the refrigerant is connected and recirculated is described above, a configuration in which the refrigerant is recirculated to a plurality of locations in the refrigerant flow path may be used.

【0028】[0028]

【発明の効果】以上のとおり本発明によれば、凝縮器内
での気液二相状態の冷媒に対する蒸気冷媒の割合が高め
になるように設定することにより、高乾き度の状態にお
いて周囲と熱交換されることになり、従来装置に比べて
蒸発器での熱伝達率を飛躍的に向上させることができ
る。
As described above, according to the present invention, by setting the ratio of the vapor refrigerant to the refrigerant in the gas-liquid two-phase state in the condenser to be high, it is possible to maintain a high dryness with the surroundings. Heat is exchanged, and the heat transfer coefficient in the evaporator can be remarkably improved as compared with the conventional apparatus.

【0029】このため、従来装置に比べて、凝縮器の冷
媒流路管の全長を短くすることが出来、冷凍装置の小型
化を図ることが可能となる。
As a result, the total length of the refrigerant flow pipe of the condenser can be reduced as compared with the conventional apparatus, and the size of the refrigeration apparatus can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蒸気圧縮式冷凍装置の冷媒回路の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a refrigerant circuit of a vapor compression refrigeration apparatus of the present invention.

【図2】本発明の凝縮器内部での冷媒の状態変化を示す
概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a state change of a refrigerant inside a condenser of the present invention.

【図3】凝縮器での乾き度と熱伝達率との関係図であ
る。
FIG. 3 is a diagram illustrating a relationship between dryness and heat transfer coefficient in a condenser.

【図4】本発明の凝縮器内部での熱伝達率の変化を示す
図である。
FIG. 4 is a diagram showing a change in heat transfer coefficient inside the condenser of the present invention.

【図5】従来の蒸気圧縮式冷凍装置の冷媒回路の概略構
成図である。
FIG. 5 is a schematic configuration diagram of a refrigerant circuit of a conventional vapor compression refrigeration apparatus.

【図6】蒸気圧縮式冷凍装置における冷凍サイクルのモ
リエル線図である。
FIG. 6 is a Mollier chart of a refrigeration cycle in the vapor compression refrigeration apparatus.

【図7】凝縮器内部での冷媒の状態変化を示す概略断面
図である。
FIG. 7 is a schematic sectional view showing a state change of a refrigerant inside the condenser.

【図8】従来の凝縮器内部での熱伝達率の変化を示す図
である。
FIG. 8 is a diagram showing a change in heat transfer coefficient inside a conventional condenser.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧器(膨張弁) 4 蒸発器 5 バイパス管 6 冷媒流路管 7 循環ポンプ(循環手段) DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Pressure reducer (expansion valve) 4 Evaporator 5 Bypass pipe 6 Refrigerant flow path pipe 7 Circulation pump (Circulation means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 益川 貴之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 宮村 幸雄 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 名迫 賢二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Maskawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Yukio Miyamura 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5 Sanyo Electric Co., Ltd. (72) Inventor Kenji Nasako 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、凝縮器と、減圧器と、蒸発器と
を接続して冷凍サイクルを構成する蒸気圧縮式冷凍装置
において、 前記凝縮器内で蒸気冷媒を再循環させることを特徴とす
る蒸気圧縮式冷凍装置。
1. A vapor compression refrigeration system comprising a compressor, a condenser, a decompressor, and an evaporator to constitute a refrigeration cycle, wherein a vapor refrigerant is recirculated in the condenser. Vapor compression refrigeration equipment.
【請求項2】前記凝縮器の冷媒流路管に並列してバイパ
ス管を設け、該バイパス管に蒸気冷媒を再循環させる循
環手段を備えていることを特徴とする請求項1記載の蒸
気圧縮式冷凍装置。
2. The vapor compression system according to claim 1, wherein a bypass pipe is provided in parallel with the refrigerant flow pipe of the condenser, and the bypass pipe is provided with a circulating means for recirculating the vapor refrigerant. Type refrigeration equipment.
【請求項3】ジフルオロメタン及びペンタフルオロエタ
ンをそれぞれ略50重量%にて混合させた混合冷媒を使
用することを特徴とする請求項1ないし2のいずれかに
記載の蒸気圧縮式冷凍装置。
3. The vapor compression refrigeration system according to claim 1, wherein a mixed refrigerant in which difluoromethane and pentafluoroethane are mixed at approximately 50% by weight, respectively.
JP26442296A 1996-10-04 1996-10-04 Vapor compression refrigerator Pending JPH10111029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26442296A JPH10111029A (en) 1996-10-04 1996-10-04 Vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26442296A JPH10111029A (en) 1996-10-04 1996-10-04 Vapor compression refrigerator

Publications (1)

Publication Number Publication Date
JPH10111029A true JPH10111029A (en) 1998-04-28

Family

ID=17402965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26442296A Pending JPH10111029A (en) 1996-10-04 1996-10-04 Vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JPH10111029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251323A1 (en) * 2000-01-26 2002-10-23 Honda Giken Kogyo Kabushiki Kaisha Condenser
CN103075846A (en) * 2013-01-15 2013-05-01 顺德职业技术学院 Condenser for forcibly transferring heat by reboiling
KR102087249B1 (en) * 2020-01-29 2020-03-10 (주)수성이엔지 An air cooling type improved cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251323A1 (en) * 2000-01-26 2002-10-23 Honda Giken Kogyo Kabushiki Kaisha Condenser
EP1251323A4 (en) * 2000-01-26 2005-03-30 Honda Motor Co Ltd Condenser
CN103075846A (en) * 2013-01-15 2013-05-01 顺德职业技术学院 Condenser for forcibly transferring heat by reboiling
CN103075846B (en) * 2013-01-15 2015-07-01 顺德职业技术学院 Condenser for forcibly transferring heat by reboiling
KR102087249B1 (en) * 2020-01-29 2020-03-10 (주)수성이엔지 An air cooling type improved cooling system

Similar Documents

Publication Publication Date Title
JP2554208B2 (en) Heat pump water heater
JP2005083741A (en) Air conditioner having heat exchanger and refrigerant switching means
JP2011512509A (en) Refrigerant vapor compression system
JP2001116376A (en) Supercritical vapor compression type refrigerating cycle
WO2021065944A1 (en) Air conditioning apparatus
JPH0875290A (en) Heat pump type air conditioner
JP4442237B2 (en) Air conditioner
JP3599770B2 (en) Heat transfer device
JP2552555B2 (en) How to operate the heat pump
KR101823469B1 (en) High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
JP2013257057A (en) Heat pump type air-conditioning water heater
JP2000304380A (en) Heat exchanger
JPH10111029A (en) Vapor compression refrigerator
JPH10103796A (en) Steam compression type refrigerating device
CN217274955U (en) System and device for energy recovery
JP2016095039A (en) Refrigeration cycle device
JP3203145B2 (en) Vapor compression refrigeration equipment
JPH0275863A (en) Room heating/cooling apparatus
JPH05240511A (en) Refrigerating plant
KR101487740B1 (en) Duality Cold Cycle of Heat pump system
CN209857414U (en) Partially-overlapped full-CO 2 working medium heat pump system
WO2021166126A1 (en) Air-conditioning device
JPH04268165A (en) Double-stage compression and freezing cycle device
JP2018194200A (en) Refrigeration cycle device and liquid circulation device provided with the same
JPH08303879A (en) Refrigerating unit