JPH08273692A - Manufacture of vanadium type electrolyte - Google Patents

Manufacture of vanadium type electrolyte

Info

Publication number
JPH08273692A
JPH08273692A JP7097902A JP9790295A JPH08273692A JP H08273692 A JPH08273692 A JP H08273692A JP 7097902 A JP7097902 A JP 7097902A JP 9790295 A JP9790295 A JP 9790295A JP H08273692 A JPH08273692 A JP H08273692A
Authority
JP
Japan
Prior art keywords
vanadium
temperature
oxide
solution
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7097902A
Other languages
Japanese (ja)
Other versions
JP3525231B2 (en
Inventor
Hiroaki Ono
浩昭 小野
Tsukushi Yamamoto
筑紫 山本
Yukio Makiyama
行夫 牧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOUKOU KK
Original Assignee
TAIYO KOUKOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOUKOU KK filed Critical TAIYO KOUKOU KK
Priority to JP09790295A priority Critical patent/JP3525231B2/en
Publication of JPH08273692A publication Critical patent/JPH08273692A/en
Application granted granted Critical
Publication of JP3525231B2 publication Critical patent/JP3525231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To easily manufacture electrolyte for a vanadium type redox battery having the high concentration by dissolving an oxide of vanadium being a raw material in a concentrated sulfuric acid solution after it is reduced by hydrogen. CONSTITUTION: Ammonium methavanadate being a raw material, for example, 6000g is put in a sealed vessel of graphite, and a temperature is raised in an electric furnace, and it is heated. In this case, the temperature is raised for 20 minutes up to 470 deg.C from a room temperature. In succession, it is held at a temperature of 440 to 470 deg.C, and it is decomposed. After it is decomposed, the sealed vessel is taken out, and is cooled, and sub-oxide V6 O13 powder being an inside intermediate product is taken out. Next, the obtained V6 O13 powder is subdivided, and is put in a hydrogen reducing boat, and a temperature is raised, for example, to 700 deg.C in the electric furnace in a hydrogen atmosphere, and it is reduced for 40 to 60 minutes. The hydrogen reduction-finished powder is cooled, and a vanadium oxide V2 O3 is obtained. For example, pure water 4500ml and concentrated sulfuric acid 5350g are added to this V2 O3 , and it is heated to 80 to 120 deg.C, and a dissolved vanadium solution is filtered, and electrolyte composed of a trivalent vanadium solution is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レドックス電池に用い
られる高濃度のバナジウム系電解液の製造法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-concentration vanadium-based electrolytic solution used in a redox battery.

【0002】[0002]

【従来の技術】最近、環境汚染の問題が深刻化するにつ
れ、各種エネルギ−のなかで比較的クリ−ンな電気エネ
ルギ−の利用が増大している。この電気エネルギ−は、
汎用性が高く、消費時の環境汚染もないので、将来さら
に需要が増加することが考えられるが、この電気エネル
ギ−の適当な貯蔵法が開発されていないため、十分に利
用することができていないのが現状である。
2. Description of the Related Art Recently, as the problem of environmental pollution becomes more serious, the use of relatively clean electric energy among various kinds of energy is increasing. This electrical energy is
Since it has high versatility and there is no environmental pollution during consumption, it is expected that demand will increase further in the future, but since adequate storage method of this electric energy has not been developed, it can be fully used. The current situation is that there are none.

【0003】[0003]

【発明が解決しようとする課題】このため、電気エネル
ギ−の貯蔵法として、各種の二次電池が研究開発されて
いるが、なかでも操作性が良く、大容量の電池であるレ
ドックス電池が注目されている。このレドックス電池
は、液状の正・負極の電池活性物質を液透過型の電解槽
に入れ、酸化・還元反応により充・放電を行うものであ
り、従来の二次電池に比べて寿命が長く、信頼性および
安全性が高い等の利点がある。
For this reason, various secondary batteries have been researched and developed as a method for storing electric energy. Among them, redox batteries, which are batteries with good operability and large capacity, are of particular interest. Has been done. This redox battery is one in which liquid positive and negative battery active substances are placed in a liquid-permeable electrolytic cell and charged and discharged by an oxidation / reduction reaction, which has a longer life than conventional secondary batteries. There are advantages such as high reliability and safety.

【0004】上記レドックス電池としては、クロム2
価、3価対鉄2価、3価系をレドックス対とするもの、
クロム、塩素系のレドックス対を用いるもの等、種々の
ものが提案されているが、未だ十分実用に耐えるものは
得られていない。
As the redox battery, chromium 2 is used.
, Trivalent vs. iron divalent, trivalent redox pair,
Various materials have been proposed, such as those using a redox pair of chromium or chlorine, but none have been obtained that can withstand practical use.

【0005】上記レドックス電池のうち、硫酸溶液に溶
解したバナジウムイオン対を正・負極液としたレドック
ス電池は、1.5V程度の出力電圧を得られるので、エ
ネルギ−密度が高く効率的であるが、高価なバナジウム
を用いるため、実用上問題がある。これを改良するもの
として、メタバナジン酸アンモニウムまたは五酸化バナ
ジウムを無機酸存在下に亜硫酸などで還元し、得られた
飽和液に濃硫酸等の無機酸を添加し、ついでバナジウム
化合物を追加するバナジウム系電解液の製法が提案され
ている(特開平5−303973号公報参照)が、この
方法は、工程が煩雑で、安定した電解液の製造が比較的
困難であるという問題がある。そこで、本発明は、レド
ックス電池用の高濃度のバナジウム溶液を比較的容易か
つ安価に製造する方法を提供することを課題としてい
る。
Among the redox batteries described above, the redox battery using a vanadium ion pair dissolved in a sulfuric acid solution as a positive and negative electrode liquid can obtain an output voltage of about 1.5 V, so that it has high energy density and is efficient. However, since expensive vanadium is used, there is a practical problem. To improve this, ammonium metavanadate or vanadium pentoxide is reduced with sulfurous acid or the like in the presence of an inorganic acid, an inorganic acid such as concentrated sulfuric acid is added to the obtained saturated solution, and then a vanadium compound is added to the vanadium compound. Although a method for producing an electrolytic solution has been proposed (see Japanese Patent Laid-Open No. 5-303973), this method has a problem that the steps are complicated and stable production of an electrolytic solution is relatively difficult. Therefore, it is an object of the present invention to provide a method for producing a high-concentration vanadium solution for a redox battery relatively easily and inexpensively.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次のような構成とした。すなわち、本発明
にかかるバナジウム系電解液の製造方法は、原料である
バナジウム酸化物を還元雰囲気中で加熱してV23
たはV24 を主成分とするバナジウム酸化物に還元す
る工程と、得られたバナジウム酸化物を硫酸溶液に溶解
させる工程とを有することを特徴としている。
In order to solve the above problems, the present invention has the following constitution. That is, the method for producing a vanadium-based electrolytic solution according to the present invention is a step of heating vanadium oxide as a raw material in a reducing atmosphere to reduce vanadium oxide containing V 2 O 3 or V 2 O 4 as a main component. And a step of dissolving the obtained vanadium oxide in a sulfuric acid solution.

【0007】上記原料であるバナジウム酸化物として
は、バナジン酸アンモニウムを密閉容器に入れて加熱分
解させることにより得られる酸化物を使用するのが経済
的である。
As the vanadium oxide as the above-mentioned raw material, it is economical to use an oxide obtained by placing ammonium vanadate in a closed container and thermally decomposing it.

【0008】以下、この製法について具体例をあげつつ
詳細に説明する。本発明で使用するバナジウム酸化物
は、例えば、廃触媒から回収されたバナジウム化合物の
分解によって得られる。この廃触媒からの回収によって
得られるバナジウム化合物としては、メタバナジン酸ア
ンモニウム(NH4 VO3 )が一般的であるが、これを
使用する場合は、得られたメタバナジン酸アンモニウム
を耐熱性を有する密閉容器に入れて加熱分解する。
The manufacturing method will be described in detail below with reference to specific examples. The vanadium oxide used in the present invention is obtained, for example, by decomposing a vanadium compound recovered from a waste catalyst. Ammonium metavanadate (NH 4 VO 3 ) is generally used as the vanadium compound obtained by recovery from the spent catalyst, but when using this, the obtained ammonium metavanadate is a heat-resistant closed container. Put in and decompose by heating.

【0009】分解温度は440〜470℃とするのが好
ましく、この温度で7時間以上保持することにより、メ
タバナジン酸アンモニウム自身のアンモニアが簡単に分
解し、このアンモニアによって還元が行われる。分解後
は適当な温度、例えば室温程度に冷却して中間製品であ
るバナジウム酸化物を取り出す。
The decomposition temperature is preferably 440 to 470 ° C. By keeping the temperature at this temperature for 7 hours or more, the ammonia of ammonium metavanadate itself easily decomposes and the reduction is carried out by this ammonia. After the decomposition, the vanadium oxide as an intermediate product is taken out by cooling to an appropriate temperature, for example, about room temperature.

【0010】上記メタバナジン酸アンモニウムの分解に
よって得られる酸化物は、通常、V613を主成分とす
るものである。この酸化物をボ−トに入れて、還元性雰
囲気、例えば水素雰囲気の電気炉中で還元すると低級の
バナジウム酸化物が得られる。この酸化物は、還元条件
(加熱温度等)を調節することによってV23 とする
こともV24 とすることも可能である。
The oxide obtained by decomposing ammonium metavanadate usually contains V 6 O 13 as a main component. When this oxide is put in a boat and reduced in an electric furnace in a reducing atmosphere such as a hydrogen atmosphere, a lower vanadium oxide is obtained. This oxide can be made into V 2 O 3 or V 2 O 4 by adjusting the reducing conditions (heating temperature etc.).

【0011】次に、上記還元によって得られた酸化物に
硫酸溶液を加えて80〜120℃に加温し、硫酸溶液に
溶解する。硫酸溶液の濃度(重量%)は、30%以上と
するのが適当であり、50%以上が好ましく、50〜7
0%とするのがより好ましい。この場合、バナジウムの
濃度は実用的な範囲内で任意の濃度に調節することが可
能であるが、1〜3モル程度が好ましい。十分に溶解し
たら、ろ過し、バナジウム溶液のレドックス電池用電解
液を得る。なお、出発原料であるバナジウム化合物とし
てV25 を使用する場合は、図1の破線で示すよう
に、そのまま水素還元工程からスタ−トすればよい。
Next, a sulfuric acid solution is added to the oxide obtained by the above reduction, heated to 80 to 120 ° C., and dissolved in the sulfuric acid solution. The concentration (% by weight) of the sulfuric acid solution is suitably 30% or more, preferably 50% or more, and 50 to 7
It is more preferably 0%. In this case, the concentration of vanadium can be adjusted to any concentration within a practical range, but it is preferably about 1 to 3 mol. When sufficiently dissolved, the solution is filtered to obtain a redox battery electrolyte solution of vanadium solution. When V 2 O 5 is used as the vanadium compound as the starting material, the hydrogen reduction step may be started as it is, as shown by the broken line in FIG.

【0012】[0012]

【実施例】図1の工程図にしたがって、廃触媒から回収
した固形物であるバナジン酸アンモニウム(メタバナジ
ン酸アンモニウム)を出発原料としてレドックス電池用
電解液を製造した。まず、メタバナジン酸アンモニウム
6000gを黒鉛の密閉容器に入れ、電気炉中で昇温、
加熱した。昇温は、室温から470℃まで20分をかけ
て行った。
[Examples] According to the process chart of FIG. 1, a redox battery electrolyte was produced using ammonium vanadate (ammonium metavanadate), which is a solid substance recovered from a waste catalyst, as a starting material. First, 6000 g of ammonium metavanadate was placed in a graphite airtight container and heated in an electric furnace.
Heated. The temperature was raised from room temperature to 470 ° C. over 20 minutes.

【0013】引き続き、440〜470℃の温度で7.
5時間保持し、分解を行った。分解後は密閉容器を取り
出して冷却し、内部の中間製品である低級酸化物V6
13粉末を取り出した。得られた酸化物V613の重量は
5280gであった。
Subsequently, at a temperature of 440 to 470 ° C., 7.
It was held for 5 hours for decomposition. After decomposition removed and cooled closed containers, lower oxides V 6 O is an internal intermediate product
13 powder was taken out. The weight of the obtained oxide V 6 O 13 was 5280 g.

【0014】次に、得られたV613粉末を小分けして
水素還元用のボ−トに入れ、水素(気流)雰囲気の電気
炉で700℃に昇温し、その温度で40〜60分かけて
還元を行った。水素流量は、電気炉のボ−ト挿入用還元
パイプ1本当たり2.0m3/hrであった。水素還元
を終えた粉末は冷却し、バナジウム酸化物V23 を得
た。得られた酸化物の重量は3770gであった。
Next, the obtained V 6 O 13 powder was divided into small pieces and put in a boat for hydrogen reduction, and the temperature was raised to 700 ° C. in an electric furnace in a hydrogen (air flow) atmosphere, and the temperature was 40 to 60. The reduction was carried out in minutes. The hydrogen flow rate was 2.0 m 3 / hr per one reduction pipe for inserting a boat in an electric furnace. The powder after hydrogen reduction was cooled to obtain vanadium oxide V 2 O 3 . The weight of the obtained oxide was 3770 g.

【0015】このバナジウム酸化物V23 1000g
に純水4500mlと濃硫酸5350gを加えて80〜
120℃に加温した。最適加温温度は120℃であっ
た。溶解したバナジウム溶液をろ過し、所望の製品であ
る3価のバナジウム溶液からなるレドックス電池用電解
液を得た。得られた電解液のバナジウム濃度は、51〜
153g/l(1〜3モル)の範囲で任意に設定可能で
あった。
1000 g of this vanadium oxide V 2 O 3
Add 4500 ml of pure water and 5350 g of concentrated sulfuric acid to 80 ~
Heated to 120 ° C. The optimum heating temperature was 120 ° C. The dissolved vanadium solution was filtered to obtain an electrolyte solution for a redox battery, which was a desired product and consisted of a trivalent vanadium solution. The vanadium concentration of the obtained electrolytic solution is 51-
It could be arbitrarily set within the range of 153 g / l (1 to 3 mol).

【0016】このレドックス電池用電解液の製法によれ
ば、安価なバナジン酸アンモニウムを用いて、高濃度の
バナジウム溶液を簡単に製造することができるので、経
済的である。
According to this method for producing a redox battery electrolyte, a high-concentration vanadium solution can be easily produced using inexpensive ammonium vanadate, which is economical.

【0017】[0017]

【発明の効果】以上に説明した如く、本発明にかかるレ
ドックス電池用電解液の製法は、原料となるバナジウム
の酸化物を一旦水素還元した後、濃硫酸溶液に溶解する
ものであるから、高濃度のバナジウム系レドックス電池
用電解液を経済的かつ容易に製造することが可能となっ
た。
As described above, according to the method for producing an electrolyte for a redox battery according to the present invention, the oxide of vanadium as a raw material is once hydrogen-reduced and then dissolved in a concentrated sulfuric acid solution. It has become possible to economically and easily manufacture a concentrated vanadium-based redox battery electrolyte.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表す製造工程図である。FIG. 1 is a manufacturing process diagram showing an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原料であるバナジウム酸化物を還元雰囲気
中で加熱して、V23 またはV24 を主成分とする
バナジウム酸化物に還元する工程と、得られたバナジウ
ム酸化物を硫酸溶液に溶解させる工程とを有することを
特徴とするバナジウム系電解液の製造方法。
1. A step of heating a vanadium oxide as a raw material in a reducing atmosphere to reduce the vanadium oxide containing V 2 O 3 or V 2 O 4 as a main component, and the obtained vanadium oxide. And a step of dissolving the solution in a sulfuric acid solution.
【請求項2】バナジン酸アンモニウムを密閉容器に入れ
て加熱分解させ、バナジウム酸化物を得る工程と、該分
解によって得られたバナジウム酸化物を還元雰囲気中で
加熱して、V23 またはV24 を主成分とするバナ
ジウム酸化物に還元する工程と、該還元によって得られ
たバナジウム酸化物を硫酸溶液に溶解させる工程とを有
することを特徴とするバナジウム系電解液の製造方法。
2. A step of placing ammonium vanadate in a closed container and thermally decomposing it to obtain vanadium oxide, and heating the vanadium oxide obtained by the decomposition in a reducing atmosphere to produce V 2 O 3 or V 2. A method for producing a vanadium-based electrolytic solution, comprising: a step of reducing vanadium oxide containing 2 O 4 as a main component; and a step of dissolving the vanadium oxide obtained by the reduction in a sulfuric acid solution.
JP09790295A 1995-03-30 1995-03-30 Method for producing vanadium-based electrolyte Expired - Fee Related JP3525231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09790295A JP3525231B2 (en) 1995-03-30 1995-03-30 Method for producing vanadium-based electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09790295A JP3525231B2 (en) 1995-03-30 1995-03-30 Method for producing vanadium-based electrolyte

Publications (2)

Publication Number Publication Date
JPH08273692A true JPH08273692A (en) 1996-10-18
JP3525231B2 JP3525231B2 (en) 2004-05-10

Family

ID=14204669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09790295A Expired - Fee Related JP3525231B2 (en) 1995-03-30 1995-03-30 Method for producing vanadium-based electrolyte

Country Status (1)

Country Link
JP (1) JP3525231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187720A (en) * 2000-12-15 2002-07-05 Chiyoda Corp Method of manufacturing high purity vanadium compound from carbonaceous residue containing vanadium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525164B1 (en) 2016-04-29 2016-12-20 King Abdulaziz University Method of reducing vanadium pentoxide to vanadium(III) oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187720A (en) * 2000-12-15 2002-07-05 Chiyoda Corp Method of manufacturing high purity vanadium compound from carbonaceous residue containing vanadium

Also Published As

Publication number Publication date
JP3525231B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
EP0713257B1 (en) Method for producing high purity vanadium electrolytic solution
JPH05290871A (en) Manufacture of vanadium electrolyte
JPH04149965A (en) Manufacture of vanadium electrolyte
CN102354762A (en) Method for manufacturing high-purity vanadium battery electrolyte
KR100275259B1 (en) METHOD FOR PREPARING COMPOUND OXIDE USED AS CATALYST ACTIVE MATERIAL OF LITHIUM SECONDARY BAT
CN107069066B (en) All-vanadium redox flow battery electrolyte and preparation method thereof
GB2620048A (en) Preparation method for sodium ferrovanadium phosphate material and application thereof
JPH10125345A (en) Manufacture of vanadium electrolyte
JP3001659B2 (en) Method for producing vanadium-based electrolyte
JP3590178B2 (en) Electrolytic manganese dioxide, method for producing the same, and manganese dry battery
US5728367A (en) Process for fabricating a lithiated transition metal oxide
CN115744857B (en) Method for preparing lithium iron phosphate positive electrode material by directional circulation of waste lithium iron phosphate battery
JPH08273692A (en) Manufacture of vanadium type electrolyte
JPH11263624A (en) Production of lamellar halite-type lithium cobalt oxide by hydrothermal oxidation
JPH07211346A (en) Manufacture of electrolyte for vanadium redox flow type battery and manufacture of vanadium redox flow type battery
JPS636496B2 (en)
JP3692422B2 (en) Method for recovering vanadium from vanadium electrolyte
CN112551493A (en) Method for preparing vanadium nitride from failure vanadium battery electrolyte
JPH06132034A (en) Alloy catalyst for phosphoric acid fuel cell and manufacture of catalyst therefor
CN105776332A (en) Preparation method of vanadyl sulfate crystal and application of vanadyl sulfate crystal
CN115799586B (en) High-performance vanadium battery electrolyte of sulfuric acid/hydrochloric acid mixed acid system and preparation method thereof
JP2002100390A (en) Vanadium containing raw material for redox flow cell
JP3087240B2 (en) Lithium secondary battery
CN115286015A (en) Method for recovering lithium and manganese from waste lithium manganate through hydrogen-green reduction separation
JP2835436B2 (en) Method for producing lithium-doped α-manganese dioxide

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees