JP3692422B2 - Method for recovering vanadium from vanadium electrolyte - Google Patents

Method for recovering vanadium from vanadium electrolyte Download PDF

Info

Publication number
JP3692422B2
JP3692422B2 JP31472495A JP31472495A JP3692422B2 JP 3692422 B2 JP3692422 B2 JP 3692422B2 JP 31472495 A JP31472495 A JP 31472495A JP 31472495 A JP31472495 A JP 31472495A JP 3692422 B2 JP3692422 B2 JP 3692422B2
Authority
JP
Japan
Prior art keywords
vanadium
solution
electrolyte
filtrate
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31472495A
Other languages
Japanese (ja)
Other versions
JPH09125171A (en
Inventor
浩昭 小野
純二 浅井
芳明 和田
行夫 牧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO., LTD.
Original Assignee
TAIYO KOKO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO., LTD. filed Critical TAIYO KOKO CO., LTD.
Priority to JP31472495A priority Critical patent/JP3692422B2/en
Publication of JPH09125171A publication Critical patent/JPH09125171A/en
Application granted granted Critical
Publication of JP3692422B2 publication Critical patent/JP3692422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、レドックス電池等に用いられたバナジウム系電解液からバナジウムを回収するための回収方法に関するものである。
【0002】
【従来の技術】
近年、各種エネルギーのなかで、汎用性が高く、消費時の環境汚染もない電気エネルギーに対する期待が深まっており、将来さらに需要が増加することが考えられるが、電気エネルギ−は適当な貯蔵法が開発されていないため、十分に利用することができていないのが現状である。
【0003】
このため、電気エネルギ−の貯蔵法として、各種の二次電池が研究開発されており、なかでも操作性が良く大容量の電池であるレドックス電池が注目されている。このレドックス電池は、液状の正・負極の電池活性物質を液透過型の電解槽に入れ、酸化・還元反応により充・放電を行うものであり、従来の二次電池に比べて寿命が長く、信頼性および安全性が高い等の利点がある。
【0004】
上記レドックス電池としては、クロム2価、3価対鉄2価、3価系をレドックス対とするもの、クロム、塩素系のレドックス対を用いるもの等、種々のものが提案されているが、これらは未だ十分に実用性を備えたものとは云えない。
【0005】
【発明が解決しようとする課題】
最近、上記レドックス電池のうち、硫酸溶液に溶解したバナジウムイオン対を正・負極液としたレドックス電池が注目されるようになった。このバナジウムイオン対を用いるレドックス電池は、1.5V程度の出力電圧を得られ、エネルギ−密度が高く効率的であるため、種々の研究がなされており、これに使用するバナジウム系電解液の製法も提案されている(特開平5−303973号公報参照)。一方、バナジウムは高価であるため、電解液を使い捨てするのは不経済であり、使用済の電池の電解液からバナジウムを効率よく回収することができる回収方法に対する要望が強くなっている。そこで、本発明は、レドックス電池用のバナジウム溶液からバナジウムを簡単かつ効率よく回収することのできる回収方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明は次のような構成とした。すなわち、本発明にかかるバナジウム系電解液からのバナジウムの回収方法は、バナジウム系電解液に酸化剤を添加して5価のバナジウム酸化物を含む溶液とする工程と、該溶液に水酸化アルカリまたは炭酸アルカリを加えて中和し、pHを1〜12に調整する中和工程と、生成した沈殿物を濾過して除去する工程と、濾液にアンモニウム塩類を加えてバナジウムをアンモニウム塩として回収する工程と、当該アンモニウム塩として回収した後の濾液中に残存するバナジウムを陰イオン交換樹脂で吸着し、水酸化アルカリで溶離して回収する工程とを含み、前記水酸化アルカリで溶離して回収されたバナジウム含有液を前記中和工程に戻して処理することを特徴としている。以下、具体例を挙げつつ詳細に説明する。
【0007】
図1は本発明の具体的フローシートを例示するもので、原料であるバナジウム系電解液は、使用済のレドックス電池の電解液である。この電解液には、通常、有機物や不溶性分が固形物として浮遊しているので、まず濾過して浮遊する固形分を除去する。
【0008】
固形物を濾過除去した濾液には酸化剤を加えて3価、4価のバナジウムを5価の酸化物とする。添加する酸化剤としては、過酸化水素、次亜塩素酸塩類、過塩素酸塩類、過硫酸塩類、過酸化ナトリウム等を使用することができる。
【0009】
つぎに、上記酸化した溶液に水酸化アルカリまたは炭酸アルカリを加えて中和し、pHを1〜12、好ましくは7〜10に調整する。これによって鉄、ニッケル、アルミニウム、シリカ等の水酸化物または炭酸塩類の沈殿物が生じるが、この生成した沈殿物は、濾過して除去する。
【0010】
上記濾液にアンモニウム塩類を加えてバナジウムをアンモニウム塩として回収する。添加するアンモニウム塩としては、例えば塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム等アンモニウムを含む塩類であればよい。
【0011】
バナジウムを回収した濾液には、1〜3%のバナジウムが残留しているが、これは陰イオン交換樹脂で吸着して水酸化アルカリで溶離し、回収して上記中和工程に戻すことにより、回収率をほぼ100%とすることもできる。
【0012】
上記のようにして回収されたバナジウムをレドックス電池用電解液として再使用する場合は、バナジウムのアンモニウム塩(メタバナジン酸アンモニウム等)を耐熱性を有する密閉容器に入れて加熱分解する。この分解温度は440〜470℃とするのが好ましく、この温度で7時間以上保持することにより、メタバナジン酸アンモニウム等のアンモニウム塩のアンモニアが簡単に分解し、このアンモニアによって還元が行われる。分解後は、適当な温度に冷却して、中間製品であるバナジウム酸化物を取り出す。
【0013】
上記バナジン酸アンモニウムの分解によって得られる酸化物は、通常V613を主成分とするものである。この酸化物をボートに入れて、還元性雰囲気、例えば水素雰囲気の電気炉中で還元すると、低級のバナジウム酸化物が得られる。この酸化物は、還元条件(加熱温度等)を調節することによってV23 とすることも、V24 とすることも可能である。
【0014】
次に、上記還元によって得られた酸化物に硫酸溶液を加えて80〜120℃に加温し、硫酸溶液に溶解する。硫酸溶液の濃度(重量%)は、30%以上とするのが適当であり、50%以上が好ましく、50〜70%とするのがより好ましい。この場合、バナジウムの濃度は実用的な範囲内で任意の濃度に調節することが可能であるが、1〜3モル程度が好ましい。十分に溶解したら濾過し、バナジウム溶液のレドックス電池用電解液を得る。
【0015】
【実施例】
(実施例1) 濾過して浮遊物等の固形物を除去した3価のバナジウム系電解液1000ml(バナジウムV含有量は53.98g/l)に次亜塩素酸ナトリウム(有効塩素12%)700mlを加えて室温で60分間酸化した。3価のバナジウムが5価に酸化したことを確認した後、水酸化ナトリウム(30%溶液)800mlを加えてpHを9.0に調整した。
【0016】
この溶液を1時間攪拌して、生成した沈殿を濾過して除去した。濾液は2500mlであった。この濾液は30℃以下に冷却し、塩化アンモニウム210gを加えて、バナジウムをバナジン酸アンモニウムとして沈殿させ、回収した。得られたバナジン酸アンモニウムを50℃で乾燥した結果125gであった。また、バナジウムの回収率は99%であった。
【0017】
なお、バナジウムを回収した濾液中には1%のバナジウムが残留していたが、陰イオン交換樹脂(三菱化成工業製ダイヤイオンWA−30)で吸着し、水酸化ナトリウムで溶離して回収し、中和工程に戻した。したがって、回収率は100%であった。回収したバナジン酸アンモニウムの品質は表1に示す通り、高純度のものであった。
【0018】
【表1】

Figure 0003692422
【0019】
(実施例2) 濾過して浮遊物等の固形物を除去した4価のバナジウム系電解液1000ml(バナジウムV含有量は51.83g/l)に次亜塩素酸ナトリウム(有効塩素12%)350mlを加えて室温で60分間酸化した。4価のバナジウムが5価に酸化したことを確認した後、水酸化ナトリウム(30%溶液)860mlを加えてpHを9.0に調整した。
【0020】
この溶液を1時間攪拌して、生成した沈殿を濾過して除去した。濾液は2800mlであった。この濾液は30℃以下に冷却し、塩化アンモニウム200gを加えて、バナジウムをバナジン酸アンモニウムとして沈殿させ、回収した。得られたバナジン酸アンモニウムを50℃で乾燥した結果120gであった。また、バナジウムの回収率は97%であった。
【0021】
バナジウムを回収した濾液には3%のバナジウムが残留していたが、上記実施例1と同様に、陰イオン交換樹脂で吸着して回収し、中和工程に戻した。その結果、回収率は100%となった。なお、得られた回収バナジン酸アンモニウムの品質は、表2に示す通りであった。
【0022】
【表2】
Figure 0003692422
【0023】
【発明の効果】
以上に説明した如く、本発明にかかるバナジウムの回収方法によれば、レドックス電池用電解液等、バナジウムを含む溶液からバナジウムを簡単な工程で効率よく回収することが可能となった。この回収方法を用いて、レドックス電池用電解液以外の溶液からバナジウムを回収することができることは明らかである。
【図面の簡単な説明】
【図1】本発明の実施例を表すフローシートである。[0001]
[Industrial application fields]
The present invention relates to a recovery method for recovering vanadium from a vanadium electrolyte used in a redox battery or the like.
[0002]
[Prior art]
In recent years, among various types of energy, there is a growing expectation for electric energy that is highly versatile and has no environmental pollution during consumption, and it is thought that demand will increase further in the future. Since it has not been developed, it cannot be fully used.
[0003]
For this reason, various secondary batteries have been researched and developed as electrical energy storage methods, and among them, redox batteries, which are batteries with high operability and large capacity, are attracting attention. This redox battery is one in which a liquid positive / negative battery active substance is placed in a liquid permeable electrolytic cell and charged / discharged by oxidation / reduction reactions, and has a longer life than conventional secondary batteries. There are advantages such as high reliability and high safety.
[0004]
Various types of redox batteries have been proposed, such as those using chromium bivalent, trivalent iron bivalent and trivalent redox pairs, and those using chromium and chlorine redox pairs. Is not yet practical enough.
[0005]
[Problems to be solved by the invention]
Recently, among the above redox batteries, a redox battery using a vanadium ion pair dissolved in a sulfuric acid solution as a positive / negative electrode solution has attracted attention. Since the redox battery using the vanadium ion pair can obtain an output voltage of about 1.5 V and has a high energy density and is efficient, various studies have been made, and a method for producing a vanadium electrolyte used for the redox battery has been studied. Has also been proposed (see Japanese Patent Laid-Open No. 5-303973). On the other hand, since vanadium is expensive, it is uneconomical to dispose of the electrolyte, and there is a strong demand for a recovery method that can efficiently recover vanadium from the electrolyte of a used battery. Then, this invention makes it a subject to provide the collection | recovery method which can collect | recover vanadium easily and efficiently from the vanadium solution for redox batteries.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration. That is, the method for recovering vanadium from the vanadium electrolyte according to the present invention includes a step of adding an oxidizing agent to the vanadium electrolyte to obtain a solution containing pentavalent vanadium oxide, Neutralization step of adding alkali carbonate to neutralize and adjusting pH to 1 to 12, a step of removing the generated precipitate by filtration, a step of adding ammonium salts to the filtrate and recovering vanadium as an ammonium salt If, adsorb vanadium remaining in the filtrate was recovered as the ammonium salt anion exchange resin, saw including a step of recovering eluting with alkali hydroxide, it is recovered by elution with the alkali hydroxide The vanadium-containing liquid is returned to the neutralization step and processed . Hereinafter, it demonstrates in detail, giving a specific example.
[0007]
FIG. 1 illustrates a specific flow sheet of the present invention, and the vanadium electrolyte as a raw material is an electrolyte of a used redox battery. In this electrolytic solution, since organic matter and insoluble matter are usually suspended as solid matter, first, the suspended solid matter is removed by filtration.
[0008]
An oxidant is added to the filtrate from which the solid matter has been removed by filtration to convert trivalent and tetravalent vanadium into a pentavalent oxide. As the oxidizing agent to be added, hydrogen peroxide, hypochlorites, perchlorates, persulfates, sodium peroxide and the like can be used.
[0009]
Next, the oxidized solution is neutralized with alkali hydroxide or alkali carbonate, and the pH is adjusted to 1 to 12, preferably 7 to 10. This produces precipitates of hydroxides or carbonates such as iron, nickel, aluminum, silica, etc., and the produced precipitates are removed by filtration.
[0010]
Ammonium salts are added to the filtrate to recover vanadium as an ammonium salt. The ammonium salt to be added may be a salt containing ammonium such as ammonium chloride, ammonium sulfate, ammonium nitrate, or ammonium carbonate.
[0011]
In the filtrate from which vanadium has been recovered, 1 to 3% of vanadium remains, which is adsorbed with an anion exchange resin, eluted with alkali hydroxide, recovered and returned to the neutralization step. The recovery rate can be almost 100%.
[0012]
When the vanadium recovered as described above is reused as an electrolyte for a redox battery, an ammonium salt of vanadium (such as ammonium metavanadate) is placed in a heat-resistant sealed container and thermally decomposed. The decomposition temperature is preferably 440 to 470 ° C. By holding at this temperature for 7 hours or more, ammonia of an ammonium salt such as ammonium metavanadate is easily decomposed, and reduction is performed by this ammonia. After decomposition, the mixture is cooled to an appropriate temperature, and vanadium oxide as an intermediate product is taken out.
[0013]
The oxide obtained by decomposing ammonium vanadate is usually composed mainly of V 6 O 13 . When this oxide is put in a boat and reduced in an electric furnace in a reducing atmosphere, for example, a hydrogen atmosphere, lower vanadium oxide is obtained. This oxide can be made V 2 O 3 or V 2 O 4 by adjusting the reducing conditions (heating temperature, etc.).
[0014]
Next, a sulfuric acid solution is added to the oxide obtained by the reduction, heated to 80 to 120 ° C., and dissolved in the sulfuric acid solution. The concentration (% by weight) of the sulfuric acid solution is suitably 30% or more, preferably 50% or more, and more preferably 50 to 70%. In this case, the vanadium concentration can be adjusted to an arbitrary concentration within a practical range, but is preferably about 1 to 3 mol. When it is sufficiently dissolved, it is filtered to obtain a redox battery electrolyte solution of vanadium solution.
[0015]
【Example】
(Example 1) 1000 ml of a trivalent vanadium electrolyte from which solid matters such as suspended solids were removed by filtration (the vanadium V content is 53.98 g / l) and 700 ml of sodium hypochlorite (effective chlorine 12%) Was added and oxidized at room temperature for 60 minutes. After confirming that trivalent vanadium was oxidized to pentavalent, 800 ml of sodium hydroxide (30% solution) was added to adjust the pH to 9.0.
[0016]
The solution was stirred for 1 hour and the resulting precipitate was removed by filtration. The filtrate was 2500 ml. The filtrate was cooled to 30 ° C. or lower, 210 g of ammonium chloride was added, and vanadium was precipitated as ammonium vanadate and collected. The obtained ammonium vanadate was dried at 50 ° C. and found to be 125 g. The recovery rate of vanadium was 99%.
[0017]
In addition, 1% vanadium remained in the filtrate from which vanadium was recovered, but it was adsorbed with an anion exchange resin (Diaion WA-30 manufactured by Mitsubishi Kasei Kogyo Co., Ltd.) and recovered by elution with sodium hydroxide. It returned to the neutralization process. Therefore, the recovery rate was 100%. As shown in Table 1, the quality of the recovered ammonium vanadate was high purity.
[0018]
[Table 1]
Figure 0003692422
[0019]
(Example 2) 1000 ml of a tetravalent vanadium electrolyte from which solid matters such as suspended matters were removed by filtration (vanadium V content was 51.83 g / l) and 350 ml of sodium hypochlorite (effective chlorine 12%) Was added and oxidized at room temperature for 60 minutes. After confirming that tetravalent vanadium was oxidized to pentavalent, 860 ml of sodium hydroxide (30% solution) was added to adjust the pH to 9.0.
[0020]
The solution was stirred for 1 hour and the resulting precipitate was removed by filtration. The filtrate was 2800 ml. The filtrate was cooled to 30 ° C. or lower, and 200 g of ammonium chloride was added to precipitate vanadium as ammonium vanadate and collected. The obtained ammonium vanadate was dried at 50 ° C. and found to be 120 g. The recovery rate of vanadium was 97%.
[0021]
Although 3% vanadium remained in the filtrate from which vanadium was recovered, it was recovered by adsorption with an anion exchange resin in the same manner as in Example 1 above, and returned to the neutralization step. As a result, the recovery rate was 100%. In addition, the quality of the obtained recovered ammonium vanadate was as shown in Table 2.
[0022]
[Table 2]
Figure 0003692422
[0023]
【The invention's effect】
As described above, according to the vanadium recovery method of the present invention, it has become possible to efficiently recover vanadium from a solution containing vanadium, such as a redox battery electrolyte, in a simple process. It is clear that vanadium can be recovered from a solution other than the redox battery electrolyte using this recovery method.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of the present invention.

Claims (1)

バナジウム系電解液に酸化剤を添加して5価のバナジウム酸化物を含む溶液とする工程と、該溶液に水酸化アルカリまたは炭酸アルカリを加えて中和し、pHを1〜12に調整する中和工程と、生成した沈殿物を濾過して除去する工程と、濾液にアンモニウム塩類を加えてバナジウムをアンモニウム塩として回収する工程と、当該アンモニウム塩として回収した後の濾液中に残存するバナジウムを陰イオン交換樹脂で吸着し、水酸化アルカリで溶離して回収する工程とを含み、前記水酸化アルカリで溶離して回収されたバナジウム含有液を前記中和工程に戻して処理することを特徴とするバナジウム系電解液からのバナジウムの回収方法。A step of the solution containing the vanadium addition to pentavalent vanadium oxide oxidant to the electrolyte solution, and neutralized by the addition of alkali or alkali carbonate hydroxide to the solution, during which the pH is adjusted to 1-12 A step of removing the precipitate formed by filtration, a step of adding ammonium salts to the filtrate to recover vanadium as an ammonium salt, and the vanadium remaining in the filtrate after recovering the ammonium salt as a negative solution. adsorbed with ion-exchange resin, and characterized in that viewed including the step of recovering eluting with alkali hydroxide, processing returns the vanadium-containing solution which is recovered by elution with the alkali hydroxide in the neutralization step To recover vanadium from the vanadium electrolyte.
JP31472495A 1995-11-07 1995-11-07 Method for recovering vanadium from vanadium electrolyte Expired - Fee Related JP3692422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31472495A JP3692422B2 (en) 1995-11-07 1995-11-07 Method for recovering vanadium from vanadium electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31472495A JP3692422B2 (en) 1995-11-07 1995-11-07 Method for recovering vanadium from vanadium electrolyte

Publications (2)

Publication Number Publication Date
JPH09125171A JPH09125171A (en) 1997-05-13
JP3692422B2 true JP3692422B2 (en) 2005-09-07

Family

ID=18056814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31472495A Expired - Fee Related JP3692422B2 (en) 1995-11-07 1995-11-07 Method for recovering vanadium from vanadium electrolyte

Country Status (1)

Country Link
JP (1) JP3692422B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328954B (en) * 2011-08-04 2013-06-26 佛山市邦普循环科技有限公司 Method for recovering vanadium from lithium vanadium phosphate power battery for electric automobile
WO2017010437A1 (en) * 2015-07-15 2017-01-19 国立大学法人群馬大学 Vanadium recovery method, method for producing electrolytic solution for redox flow batteries, vanadium recovery device, and device for producing electrolytic solution for redox flow batteries
CN110994061B (en) * 2019-10-29 2023-04-07 大连融科储能集团股份有限公司 Method for recovering vanadium electrolyte
CN110867592A (en) * 2019-11-01 2020-03-06 四川星明能源环保科技有限公司 Treatment method of failure vanadium electrolyte

Also Published As

Publication number Publication date
JPH09125171A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
US5587132A (en) Method for producing high purity vanadium electrolytic solution
KR102398421B1 (en) How to Recycle Lithium Battery Electrode Material
CN111187913B (en) Method for selectively recovering lithium and copper in waste lithium iron phosphate batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
JPH01294368A (en) Preparation of electrolyte for redox flow battery
JPH1154159A (en) Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
KR101325176B1 (en) Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
CN111115662B (en) Lithium battery material recovery method
KR20200139692A (en) Lithium and transition metal recovery method using heat
CN114538404B (en) Method for preparing lithium iron phosphate from titanium white byproduct ferrous sulfate
CN112867813A (en) Battery recycling for copper contaminant removal with electrolytic leach solution
KR20220142079A (en) Method of producing lithium-condensed solution with high yield and method of producing lithium compound including same method
US20240088468A1 (en) Method for extracting lithium from waste lithium battery
JP3692422B2 (en) Method for recovering vanadium from vanadium electrolyte
CN114243041A (en) Regeneration method of waste vanadium energy storage medium
JP4215547B2 (en) Cobalt recovery method
CN113584309A (en) Method for separating manganese in ternary lithium ion battery anode leachate
JPH10125345A (en) Manufacture of vanadium electrolyte
KR100443416B1 (en) A method for recovering cobalt and lithium from organic wastesludge including LiCoO2
CN115149140B (en) Method for recovering iron and lithium from waste lithium iron phosphate batteries
CN217323729U (en) System for ferric phosphate contains full element resourceful treatment of ammonia nitrogen waste water
JP2889537B2 (en) Method of separating iron from waste containing one or more of nickel and cadmium
CN107128973B (en) Method for preparing ammonium metavanadate from sodium vanadate
CN111484076A (en) Method for recovering high-purity vanadium from failure vanadium electrolyte

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees