JPH10125345A - Manufacture of vanadium electrolyte - Google Patents

Manufacture of vanadium electrolyte

Info

Publication number
JPH10125345A
JPH10125345A JP8299604A JP29960496A JPH10125345A JP H10125345 A JPH10125345 A JP H10125345A JP 8299604 A JP8299604 A JP 8299604A JP 29960496 A JP29960496 A JP 29960496A JP H10125345 A JPH10125345 A JP H10125345A
Authority
JP
Japan
Prior art keywords
vanadium
vanadium oxide
solution
oxide
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8299604A
Other languages
Japanese (ja)
Inventor
Yukio Makiyama
行夫 牧山
Hiroaki Ono
浩昭 小野
Shunji Tada
俊二 多田
Junji Asai
純二 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOUKOU KK
Original Assignee
TAIYO KOUKOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOUKOU KK filed Critical TAIYO KOUKOU KK
Priority to JP8299604A priority Critical patent/JPH10125345A/en
Publication of JPH10125345A publication Critical patent/JPH10125345A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for easily manufacturing a high- concentration solution of vanadium for a redox battery at low cost, with a low-cost vanadium oxide as the raw material. SOLUTION: This method includes a process for reducing a vanadium oxide (composed chiefly of V2 O5 or V6 O13 ), which is the raw material to a vanadium oxide composed chiefly of V2 O3 by heating the same material in a reducing atmosphere and a process for obtaining a solution of tetravalent vanadium sulfate (VOSO4 ), by dispersing equal moles of V2 O5 and the V2 O3 in the obtained vanadium oxide into water and thereafter dissolving them in sulfuric acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レドックス電池に
用いられる高濃度のバナジウム系電解液の製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-concentration vanadium electrolyte used for a redox battery.

【0002】[0002]

【従来の技術】最近、環境汚染の問題が深刻化するにつ
れ、各種エネルギーのなかで比較的クリーンな電気エネ
ルギーの利用が増大している。この電気エネルギーは、
汎用性が高く、消費時の環境汚染もないので、将来さら
に需要が増加することが考えられる。
2. Description of the Related Art Recently, as the problem of environmental pollution has become more serious, the use of relatively clean electric energy among various types of energy has increased. This electrical energy
Because of high versatility and no environmental pollution at the time of consumption, demand is expected to increase further in the future.

【0003】電気エネルギーの貯蔵法として、各種の二
次電池が研究開発されているが、なかでも操作性が良
く、大容量の電池であるレドックス電池が注目されてい
る。このレドックス電池は、液状の正・負極の電池活性
物質を液透過型の電解槽に入れ、酸化・還元反応により
充・放電を行うものであり、従来の二次電池に比べて寿
命が長く、信頼性および安全性が高い等の利点がある。
[0003] Various secondary batteries have been researched and developed as a method of storing electric energy. Among them, a redox battery, which has a good operability and a large capacity, has attracted attention. In this redox battery, a liquid positive / negative battery active material is put into a liquid permeable electrolytic cell and charged / discharged by an oxidation / reduction reaction, and has a longer life than a conventional secondary battery. There are advantages such as high reliability and safety.

【0004】[0004]

【発明が解決しようとする課題】上記レドックス電池の
うち、硫酸溶液に溶解したバナジウムイオン対を正・負
極液としたレドックス電池は、1.5V程度の出力電圧
を得られるので、エネルギー密度が高く効率的である。
レドックス電池用の電解液を得る方法として例えば、メ
タバナジン酸アンモニウムまたは五酸化バナジウムを無
機酸存在下に亜硫酸などで還元し、得られた飽和液に濃
硫酸等の無機酸を添加し、ついでバナジウム化合物を追
加するバナジウム系電解液の製法(特開平5−3039
73号公報参照)が提案されているが、この方法は、工
程が煩雑で、安定した電解液の製造が比較的困難である
という問題がある。
Among the above redox batteries, a redox battery using a vanadium ion pair dissolved in a sulfuric acid solution as a positive / negative electrode solution can obtain an output voltage of about 1.5 V, and therefore has a high energy density. It is efficient.
As a method of obtaining an electrolyte solution for redox batteries, for example, ammonium metavanadate or vanadium pentoxide is reduced with sulfurous acid or the like in the presence of an inorganic acid, and an inorganic acid such as concentrated sulfuric acid is added to the obtained saturated solution, and then a vanadium compound is added. For producing a vanadium-based electrolyte (Japanese Patent Laid-Open No. 5-3039)
No. 73) has been proposed, but this method has a problem that the steps are complicated and it is relatively difficult to produce a stable electrolyte solution.

【0005】上記従来の方法を改良するものとして、本
出願人は、原料であるバナジウム酸化物を還元雰囲気中
で加熱してV23 またはV24 を主成分とするバナ
ジウム酸化物に還元し、さらにこれを硫酸溶液に溶解さ
せるバナジウム系電解液の製法(特願平7−97902
号)をすでに提案している。
As an improvement on the above-mentioned conventional method, the present applicant has heated vanadium oxide as a raw material in a reducing atmosphere to convert the vanadium oxide into a vanadium oxide containing V 2 O 3 or V 2 O 4 as a main component. A vanadium-based electrolyte solution which is reduced and then dissolved in a sulfuric acid solution (Japanese Patent Application No. 7-97902).
No.) has already been proposed.

【0006】しかしながら、V23 は酸化物の還元に
より比較的容易に得ることができるが、V23 および
25 はそれぞれ単独で硫酸に溶解するのは必ずしも
容易ではなく、実用上のネックとなっていた。そこで本
発明は、入手容易なV613やV25 を原料として、
レドックス電池用の高濃度のバナジウム溶液を、容易か
つ安価に製造する新規の方法を提供することを課題とし
ている。
However, although V 2 O 3 can be obtained relatively easily by reduction of oxides, it is not always easy to dissolve V 2 O 3 and V 2 O 5 alone in sulfuric acid, and it is not practical. It was the upper neck. Therefore, the present invention uses readily available V 6 O 13 and V 2 O 5 as raw materials,
An object of the present invention is to provide a new method for easily and inexpensively producing a high-concentration vanadium solution for a redox battery.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明はバナジウム酸化物を硫酸に溶解する方法に
ついて種々試行錯誤を行った結果、V23 とV25
との等モル混合物は速やかに硫酸に溶解し4価のバナジ
ウム溶液が得られることを見出した。すなわち、本発明
にかかるバナジウム系電解液の製造方法は、原料である
バナジウム酸化物(主成分がV25 またはV613
を還元雰囲気中で加熱して、V23 を主成分とするバ
ナジウム酸化物に還元する工程と、V25 と上記で得
られたバナジウム酸化物中のV23 との等モルを水に
分散させた後硫酸に溶解させて4価の硫酸バナジウム
(VOSO4 )溶液を得る工程とを有することを特徴と
している。
In order to solve the above problems, the present invention has conducted various trial and error on a method of dissolving vanadium oxide in sulfuric acid. As a result, V 2 O 3 and V 2 O 5 were obtained.
It has been found that an equimolar mixture of the above is rapidly dissolved in sulfuric acid to obtain a tetravalent vanadium solution. That is, the method for producing a vanadium-based electrolytic solution according to the present invention uses the vanadium oxide (main component of which is V 2 O 5 or V 6 O 13 )
Is heated in a reducing atmosphere to reduce V 2 O 3 to a vanadium oxide containing V 2 O 3 as a main component, and equimolar between V 2 O 5 and V 2 O 3 in the vanadium oxide obtained above. Is dispersed in water and then dissolved in sulfuric acid to obtain a tetravalent vanadium sulfate (VOSO 4 ) solution.

【0008】上記原料であるバナジウム酸化物として
は、入手容易なバナジン酸アンモニウムを密閉容器に入
れて加熱分解させることにより得られる酸化物(主成分
がV613)を使用するのが経済的である。
As the vanadium oxide as the raw material, it is economical to use an oxide (main component is V 6 O 13 ) obtained by putting readily available ammonium vanadate into a closed vessel and subjecting it to thermal decomposition. It is.

【0009】[0009]

【発明の実施の形態】以下、この製法について具体例を
あげつつ詳細に説明する。本発明で使用するバナジウム
酸化物は、例えば、廃触媒から回収されたバナジウム化
合物の分解によって得られる。この廃触媒からの回収に
よって得られるバナジウム化合物としては、メタバナジ
ン酸アンモニウム(NH4 VO3 )が一般的であるが、
これを使用する場合は、得られたメタバナジン酸アンモ
ニウムを耐熱性を有する密閉容器に入れて加熱分解す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, this production method will be described in detail with reference to specific examples. The vanadium oxide used in the present invention is obtained, for example, by decomposition of a vanadium compound recovered from a spent catalyst. As a vanadium compound obtained by recovery from the spent catalyst, ammonium metavanadate (NH 4 VO 3 ) is generally used.
When this is used, the obtained ammonium metavanadate is placed in a heat-resistant closed container and thermally decomposed.

【0010】分解温度は440〜470℃とするのが好
ましく、この温度で7時間以上保持することにより、メ
タバナジン酸アンモニウム自身のアンモニアが簡単に分
解し、このアンモニアによって還元が行われる。分解後
は適当な温度、例えば室温程度に冷却して中間製品であ
るバナジウム酸化物を取り出す。
[0010] The decomposition temperature is preferably 440 to 470 ° C. By maintaining the temperature at this temperature for 7 hours or more, the ammonia of ammonium metavanadate itself is easily decomposed, and the ammonia is used for reduction. After the decomposition, the mixture is cooled to an appropriate temperature, for example, about room temperature, and a vanadium oxide as an intermediate product is taken out.

【0011】上記メタバナジン酸アンモニウムの分解に
よって得られる酸化物は、通常、V613を主成分とす
るものである。この酸化物をボートに入れて、還元性雰
囲気、例えば、水素雰囲気の電気炉中で還元すると低級
のバナジウム酸化物が得られる。この酸化物は、還元条
件(加熱温度等)を調節することによってV23 を主
成分とすることが可能である。
The oxide obtained by the decomposition of the above ammonium metavanadate is usually one containing V 6 O 13 as a main component. When this oxide is put in a boat and reduced in an electric furnace in a reducing atmosphere, for example, a hydrogen atmosphere, a low-grade vanadium oxide is obtained. The oxide may be a main component V 2 0 3 by adjusting the reduction conditions (heating temperature, etc.).

【0012】次に、V25 と上記還元によって得られ
た酸化物中のV23 との等モルを水に分散させた後、
硫酸を加えて80〜120℃で加温し、溶解する。硫酸
の濃度は、30W/V%以上とするのが適当であり、5
0W/V%以上が好ましく、50〜70W/V%とする
のがより好ましい。この場合、レドックス電池用電解液
のバナジウムの濃度は実用的な範囲内で任意の濃度に調
節することが可能であるが、1〜3モル/l程度が好ま
しい。均一に溶解したのち、ろ過し、バナジウム溶液の
レドックス電池用電解液を得る。
Next, after dispersing equimolar amounts of V 2 O 5 and V 2 O 3 in the oxide obtained by the above reduction in water,
Add sulfuric acid and heat at 80-120 ° C to dissolve. It is appropriate that the concentration of sulfuric acid is 30 W / V% or more.
0 W / V% or more is preferable, and 50 to 70 W / V% is more preferable. In this case, the concentration of vanadium in the electrolyte for a redox battery can be adjusted to an arbitrary concentration within a practical range, but is preferably about 1 to 3 mol / l. After uniformly dissolving, filtration is performed to obtain a redox battery electrolyte solution of a vanadium solution.

【0013】本発明においては、V23 (3価のV)
とV25 (5価のV)とを硫酸に溶解するのである
が、3価と5価の各バナジウム酸化物間で酸化還元反応
が生じるため、硫酸への溶解が速やかに進み、化学式1
に示すように、4価の硫酸バナジウム溶液を容易に得る
ことができる。この点、前記の特願平7−97902号
記載の方法のように、V23 単独では硫酸に溶解し難
いのに比べて、本発明の方法は明らかに有利である。な
お、出発原料であるバナジウム化合物としてV25
使用する場合は、図1の破線で示すように、そのまま水
素還元工程からスタートすればよい。
In the present invention, V 2 O 3 (trivalent V)
And V 2 O 5 (pentavalent V) are dissolved in sulfuric acid. However, since a redox reaction occurs between the trivalent and pentavalent vanadium oxides, the dissolution in sulfuric acid proceeds rapidly, and the chemical formula 1
As shown in (4), a tetravalent vanadium sulfate solution can be easily obtained. In this regard, the method of the present invention is clearly advantageous as compared with the method described in the above-mentioned Japanese Patent Application No. 7-97902, in which V 2 O 3 alone is hardly dissolved in sulfuric acid. When V 2 O 5 is used as a vanadium compound as a starting material, the process may be started as it is from the hydrogen reduction step as shown by the broken line in FIG.

【0014】[0014]

【化1】Embedded image

【0015】[0015]

【実施例】図1の工程図にしたがって、廃触媒から回取
した固形物であるバナジン酸アンモニウム(メタバナジ
ン酸アンモニウム)を出発原料としてレドックス電池用
電解液を製造した。まず、メタバナジン酸アンモニウム
6000gを黒鉛の密閉容器に入れ、電気炉中で昇温、
加熱した。昇温は、室温から470℃まで20分をかけ
て行った。
EXAMPLE According to the process diagram of FIG. 1, an electrolyte solution for a redox battery was manufactured using ammonium vanadate (ammonium metavanadate), which is a solid recovered from a spent catalyst, as a starting material. First, 6000 g of ammonium metavanadate was placed in a graphite sealed container, and heated in an electric furnace.
Heated. The temperature was raised from room temperature to 470 ° C. over 20 minutes.

【0016】引き続き、440〜470℃の温度で7.
5時間保持し、分解を行った。分解後は密閉容器を取り
出して冷却し、内部の中間製品である低級酸化物V6
13粉末を取り出した。得られた酸化物V613の重量は
5280gであった。
Subsequently, at a temperature of 440 to 470 ° C., 7.
After holding for 5 hours, decomposition was performed. After decomposition removed and cooled closed containers, lower oxides V 6 0 is an internal intermediate product
13 powder was taken out. The weight of the obtained oxide V 6 O 13 was 5,280 g.

【0017】次に、得られたV613粉末を小分けして
水素還元用のボートに入れ、水素(気流)雰囲気の電気
炉で700℃に昇温し、その温度で40〜60分かけて
還元を行った。水素流量は、電気炉のボート挿入用還元
バイプ1本当たり2.0m3/hrであった。水素還元
を終えた粉末は冷却し、バナジウム酸化物V23 を得
た。得られた酸化物の重量は3770gであった。
Next, the obtained V 6 O 13 powder is divided into small portions, placed in a boat for hydrogen reduction, heated to 700 ° C. in an electric furnace in a hydrogen (air flow) atmosphere, and heated at that temperature for 40 to 60 minutes. To reduce. The hydrogen flow rate was 2.0 m 3 / hr per reduction pipe for inserting a boat into an electric furnace. Powder having been subjected to hydrogen reduction is cooled to obtain a vanadium oxide V 2 0 3. The weight of the obtained oxide was 3770 g.

【0018】さらに、V25 の546gと上記で得た
バナジウム酸化物V23 の450gとの混合物に、純
水4500mlを加えて分散させた後、濃硫酸5350
gを加えて80〜120℃に加温した。溶解したバナジ
ウム溶液をろ過し、所望の製品である4価のバナジウム
溶液からなるレドックス電池用電解液を得た。得られた
電解液のバナジウム濃度は、51〜153g/l(1〜
3モル/l)の範囲で任意に設定可能であった。
Furthermore, a mixture of 450g of V 2 vanadium oxide obtained in 546g and above O 5 V 2 O 3, were dispersed by the addition of purified water 4500 ml, concentrated sulfuric acid 5350
g and heated to 80-120 ° C. The dissolved vanadium solution was filtered to obtain a desired product, a redox battery electrolyte comprising a tetravalent vanadium solution. The vanadium concentration of the obtained electrolyte was 51 to 153 g / l (1 to
(3 mol / l).

【0019】このバナジウム系電解液の製造方法によれ
ば、安価なバナジン酸アンモニウムを用いて、高濃度の
4価バナジウム硫酸溶液を簡単に製造することができる
ので、経済的である。
According to this method for producing a vanadium-based electrolytic solution, a high-concentration tetravalent vanadium sulfate solution can be easily produced using inexpensive ammonium vanadate, which is economical.

【0020】[0020]

【発明の効果】以上に説明した如く、本発明にかかるバ
ナジウム系電解液の製造方法によれば、原料となる安価
なバナジウム酸化物から、高濃度のバナジウム系レドッ
クス電池用電解液を経済的かつ容易に製造することが可
能となった。
As described above, according to the method for producing a vanadium-based electrolyte according to the present invention, a high-concentration vanadium-based redox battery electrolyte can be economically produced from inexpensive vanadium oxide as a raw material. It became possible to manufacture easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を表す製造工程図である。FIG. 1 is a manufacturing process diagram showing an embodiment of the present invention.

【化学式1】 [Chemical formula 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 純二 兵庫県赤穂市中広字東沖1603−1 太陽鉱 工株式会社赤穂研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Junji Asai 1603-1 Naka-hiroji Higashi-oki, Ako City, Hyogo Prefecture Taiyo Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原料であるバナジウム酸化物(主成分がV
25 またはV613)を還元雰囲気中で加熱して、V
23 を主成分とするバナジウム酸化物に還元する工程
と、V25 と上記で得られたバナジウム酸化物中のV
23 との等モルを水に分散させた後硫酸に溶解させて
4価の硫酸バナジウム(VOSO4 )溶液を得る工程と
を有することを特徴とするバナジウム系電解液の製造方
法。
A vanadium oxide (main component is V)
2 O 5 or V 6 O 13 ) is heated in a reducing atmosphere to
A step of reducing the 2 O 3 in the vanadium oxide as a main component, V 2 O 5 and V of the vanadium oxide obtained above
Dispersing an equimolar amount of 2 O 3 in water and then dissolving the same in sulfuric acid to obtain a tetravalent vanadium sulfate (VOSO 4 ) solution.
【請求項2】原料であるバナジウム酸化物が、メタバナ
ジン酸アンモニウム(NH4 VO3)を密閉容器に入れ
て加熱分解して得られる酸化物(主成分がV613)で
ある請求項1に記載のバナジウム系電解液の製造方法。
2. A vanadium oxide as a raw material is an oxide (main component is V 6 O 13 ) obtained by putting ammonium metavanadate (NH 4 VO 3 ) into an airtight container and thermally decomposing the vanadium oxide. 4. The method for producing a vanadium-based electrolytic solution according to 1.
JP8299604A 1996-10-23 1996-10-23 Manufacture of vanadium electrolyte Pending JPH10125345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8299604A JPH10125345A (en) 1996-10-23 1996-10-23 Manufacture of vanadium electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8299604A JPH10125345A (en) 1996-10-23 1996-10-23 Manufacture of vanadium electrolyte

Publications (1)

Publication Number Publication Date
JPH10125345A true JPH10125345A (en) 1998-05-15

Family

ID=17874793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8299604A Pending JPH10125345A (en) 1996-10-23 1996-10-23 Manufacture of vanadium electrolyte

Country Status (1)

Country Link
JP (1) JPH10125345A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357520A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for vanadium-based redox flow battery
WO2002095855A1 (en) * 2001-05-18 2002-11-28 Unisearch Limited Vanadium redox battery electrolyte
JP2005528314A (en) * 2002-05-31 2005-09-22 ハイベルド スティール アンド バナディウム コーポレーション リミテッド Method for producing vanadyl sulfate solution
WO2013058375A1 (en) * 2011-10-21 2013-04-25 株式会社ギャラキシー Non-circulating redox battery
CN103427103A (en) * 2013-07-29 2013-12-04 大连博融新材料有限公司 Production method for electrolyte for high-purity all-vanadium flow batteries
CN103904343A (en) * 2014-04-02 2014-07-02 四川大学 Preparation method of electrolyte for all-vanadium redox flow battery
US9525164B1 (en) 2016-04-29 2016-12-20 King Abdulaziz University Method of reducing vanadium pentoxide to vanadium(III) oxide
CN108878944A (en) * 2018-03-08 2018-11-23 湖南三丰钒业有限公司 A method of electrolyte of vanadium redox battery is prepared using waste vanadium catalyst
EP3410526A4 (en) * 2016-01-28 2019-01-02 Institute of Process Engineering, Chinese Academy of Sciences System and method for preparing high-activity specific-valence-state electrolyte of all-vanadium flow battery
KR20190124865A (en) 2018-04-27 2019-11-06 주식회사케이세라셀 Preparation method of high concentration vanadium electrolyte for vanadium redox flow battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357520A (en) * 1999-06-11 2000-12-26 Toyobo Co Ltd Carbon electrode material for vanadium-based redox flow battery
WO2002095855A1 (en) * 2001-05-18 2002-11-28 Unisearch Limited Vanadium redox battery electrolyte
JP2005528314A (en) * 2002-05-31 2005-09-22 ハイベルド スティール アンド バナディウム コーポレーション リミテッド Method for producing vanadyl sulfate solution
JP4686184B2 (en) * 2002-05-31 2011-05-18 バンケム バナジウム プロダクツ (ピーティーワイ) リミテッド Method for producing vanadyl sulfate solution
WO2013058375A1 (en) * 2011-10-21 2013-04-25 株式会社ギャラキシー Non-circulating redox battery
JP5422083B2 (en) * 2011-10-21 2014-02-19 株式会社ギャラキシー Non-flow redox battery
CN103427103A (en) * 2013-07-29 2013-12-04 大连博融新材料有限公司 Production method for electrolyte for high-purity all-vanadium flow batteries
CN103904343A (en) * 2014-04-02 2014-07-02 四川大学 Preparation method of electrolyte for all-vanadium redox flow battery
EP3410526A4 (en) * 2016-01-28 2019-01-02 Institute of Process Engineering, Chinese Academy of Sciences System and method for preparing high-activity specific-valence-state electrolyte of all-vanadium flow battery
US9525164B1 (en) 2016-04-29 2016-12-20 King Abdulaziz University Method of reducing vanadium pentoxide to vanadium(III) oxide
CN108878944A (en) * 2018-03-08 2018-11-23 湖南三丰钒业有限公司 A method of electrolyte of vanadium redox battery is prepared using waste vanadium catalyst
KR20190124865A (en) 2018-04-27 2019-11-06 주식회사케이세라셀 Preparation method of high concentration vanadium electrolyte for vanadium redox flow battery

Similar Documents

Publication Publication Date Title
JP3085634B2 (en) Manufacturing method of high purity vanadium electrolyte
JPH05290871A (en) Manufacture of vanadium electrolyte
CN109075407A (en) The method for recycling electrode material of lithium battery
CN114538404B (en) Method for preparing lithium iron phosphate from titanium white byproduct ferrous sulfate
GB2620048A (en) Preparation method for sodium ferrovanadium phosphate material and application thereof
CN110775951A (en) Preparation method of high-purity phosphate of electrode material
JP6704459B2 (en) High purity vanadium electrolyte manufacturing system and method
JPH10125345A (en) Manufacture of vanadium electrolyte
WO2022247572A1 (en) Method and device for preparing all-vanadium redox flow battery electrolyte
JP2019510338A (en) Production system and method of high purity electrolyte in vanadium battery
JP3001659B2 (en) Method for producing vanadium-based electrolyte
JPH1179748A (en) Continuous production of high-purity vanadium electrolyte solution
CN116259811B (en) Method for preparing vanadium electrolyte from sodium vanadate solution
JP3610473B2 (en) Method for producing redox flow battery electrolyte
CN116053546B (en) Method for preparing electrolyte of all-vanadium redox flow battery by recycling waste denitration catalyst
CN115882021B (en) Preparation method of 3.5-valent sulfuric acid hydrochloric acid system vanadium electrolyte
CN113277550B (en) Lead-containing solid waste treatment method, and preparation method and application of lead dioxide powder
JPH07211346A (en) Manufacture of electrolyte for vanadium redox flow type battery and manufacture of vanadium redox flow type battery
JP3525231B2 (en) Method for producing vanadium-based electrolyte
JPH06132034A (en) Alloy catalyst for phosphoric acid fuel cell and manufacture of catalyst therefor
CN107732236A (en) Utilize the method for siderite Hydrothermal Synthesiss anode material for lithium-ion batteries
JP3692422B2 (en) Method for recovering vanadium from vanadium electrolyte
CN112551493A (en) Method for preparing vanadium nitride from failure vanadium battery electrolyte
WO2019206121A1 (en) Manufacturing method and device of flow battery electrolyte
CN112551581A (en) Method for preparing vanadium pentoxide by recovering electrolyte of failed vanadium battery