JPH1179748A - Continuous production of high-purity vanadium electrolyte solution - Google Patents

Continuous production of high-purity vanadium electrolyte solution

Info

Publication number
JPH1179748A
JPH1179748A JP9234672A JP23467297A JPH1179748A JP H1179748 A JPH1179748 A JP H1179748A JP 9234672 A JP9234672 A JP 9234672A JP 23467297 A JP23467297 A JP 23467297A JP H1179748 A JPH1179748 A JP H1179748A
Authority
JP
Japan
Prior art keywords
vanadium
trivanadate
ammonium
trioxide
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9234672A
Other languages
Japanese (ja)
Inventor
Masatoshi Sawahata
政利 澤幡
Masato Nakajima
正人 中島
Yutaka Nomura
豊 野村
Koichi Furusato
洸一 古里
Kanji Sato
完二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP9234672A priority Critical patent/JPH1179748A/en
Publication of JPH1179748A publication Critical patent/JPH1179748A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an economical and continuous production method of tervalent, quadrivalent and tervalent/quadrivalent mixture vanadium electrolytic solns. SOLUTION: Ammonium trivanadate is crystallized from a sulfuric acid soln. of ammonium methavanadate containing impurities, and the obtd. slurry is concentrated, subjected to centrifugal separation 10 and dried 11 to collect ammonium trivanadate. The collected material is heated in an oxidative atmosphere in a sealed rotary kiln 15 to remove ammonia to produce vanadium pentoxide, while ammonium trivanadate is reduced in the presence of hydrogen to produce vanadium trioxide. By dissolving the obtd. vanadium trioxide and vanadium pentoxide (or, only vanadium trioxide) in sulfuric acid and water and by controlling the mixing proportions of vanadium trioxide and vanadium pentoxide, tervalent, quadrivalent and tervalent/quadrivalent mixture vanadium electrolytic solns. can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レドックス電池の
電解液、特に高純度の、3価、4価および3価/4価混
合のバナジウム電解液を製造する方法に関すものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a redox battery electrolyte, in particular, a high-purity trivalent, tetravalent, and trivalent / tetravalent mixed vanadium electrolyte.

【0002】[0002]

【従来の技術】近年、酸性雨、フロンのオゾン層破壊、
大気中の炭酸ガスの増加による温室化現象など地球環境
問題が人類全体の問題としてクローズアップされてきて
いる。この様な状況下にもかかわらず、世界の人口は特
に第3世界を中心に増加し続けており、それに伴ってエ
ネルギーの需要も増加し続けることが予想される。これ
に対応するためには、無尽蔵な太陽エネルギーの利用、
例えば太陽電池、太陽熱を利用した発電や熱回収、風力
発電、波力発電(波のエネルギー、海水の温度差を利用
した発電)と既存の発電設備の省エネルギー化が必要で
ある。
2. Description of the Related Art In recent years, acid rain, destruction of the ozone layer of CFCs,
Global environmental issues, such as greenhouse phenomena due to an increase in atmospheric carbon dioxide, have been highlighted as problems for all humankind. Despite these circumstances, the world's population continues to increase, especially in the third world, and it is expected that the demand for energy will continue to increase. To cope with this, inexhaustible use of solar energy,
For example, it is necessary to reduce the power consumption of existing power generation facilities such as solar cells, power generation and heat recovery using solar heat, wind power generation, and wave power generation (power generation using wave energy and seawater temperature difference).

【0003】また、電力は各種のエネルギーへの変換が
容易で制御し易く、消費時の環境汚染がないので、エネ
ルギー消費に占める割合が年々増加している。電力供給
の特異な点は、生産と消費が同時に行われ貯蔵ができな
い事にある。そのため、効率の高い、原子力発電や新鋭
火力発電をなるべく最高効率の定格で運転し、昼間の大
きな電力需要の増加を電力消費の変動に応じて発電を行
うのに適している小型の火力発電や水力発電等でまかな
っており、夜間に余剰電力が発生しているのが現状であ
る。この夜間の余剰電力を貯蔵し昼間において効率的に
使用可能とする技術の開発が電力業界の悲願でもある。
Further, electric power can be easily converted into various kinds of energy and easily controlled, and there is no environmental pollution at the time of consumption. Therefore, the ratio of electric power to energy consumption is increasing year by year. The unique point of power supply is that production and consumption are performed simultaneously and storage is not possible. For this reason, small-scale thermal power generation, which is suitable for operating high-efficiency nuclear power generation and advanced thermal power generation with the highest efficiency rating as much as possible and for generating a large increase in daytime power demand in response to fluctuations in power consumption, At present, surplus power is generated at night due to hydropower generation. The development of technology for storing the surplus power at night and making it available efficiently during the day is also a longing for the power industry.

【0004】以上のような実状から、環境汚染がなく、
しかも汎用性の高いエネルギーである電力を貯蔵する方
法として、各種の二次電池が研究され、なかでも常温、
常圧で操作が可能で大容量の据置型電池であるレドック
ス電池が注目されている。レドックス電池は液状の正、
負極の電池活物質を液透過型の電解槽に流通させ、酸化
還元反応を利用して充放電を行うものであり、従来の二
次電池に比較して寿命が長い、自己放電が少ない、信頼
性及び安全性が高い、酸化還元反応を行う電池セルと電
気を貯蔵するタンクが分離しているため電気容量を自由
に変えることができるなどの利点を有しており、特に
正、負極ともにバナジウムを使用するバナジウムレドッ
クスフロー電池が出力が大きく、イオン交換膜を介して
の正、負電解液の相互混合に対しても電池内で簡単に再
生できるため、実用化に最も近いものとして注目されて
いる。
[0004] From the above situation, there is no environmental pollution,
In addition, various secondary batteries have been studied as a method of storing electric power, which is a highly versatile energy.
A redox battery, which is a large-capacity stationary battery that can be operated at normal pressure, is attracting attention. Redox batteries are liquid positive,
The battery active material of the negative electrode is passed through a liquid permeation type electrolytic cell to charge and discharge using an oxidation-reduction reaction, and has a longer life, less self-discharge, and reliability compared to conventional secondary batteries. It has the advantage that the battery cell that performs the oxidation-reduction reaction and the tank that stores electricity are separated, so that the electric capacity can be freely changed.In particular, both the positive and negative electrodes have vanadium. Vanadium redox flow batteries that use high power, and can be easily regenerated in the battery even with the mutual mixing of positive and negative electrolytes through an ion exchange membrane, attracting attention as the closest to practical use I have.

【0005】しかしながら、原料のバナジウムが高価で
あり、更に5価のバナジウムを4価と3価のバナジウム
に還元する方法、特に3価に還元する方法は、小規模な
電解還元法しか実施されておらず、バナジウム電解液の
経済的な製造が出来ず、バナジウムレドックスフロー電
池の実用化の大きなネックとなっていた。
[0005] However, vanadium as a raw material is expensive, and a method of reducing pentavalent vanadium to tetravalent and trivalent vanadium, particularly a method of reducing trivalent vanadium, is performed only by a small-scale electrolytic reduction method. As a result, economic production of a vanadium electrolyte was not possible, and this was a major bottleneck in the practical application of vanadium redox flow batteries.

【0006】このため、本発明者らは、さきに重質油燃
料を燃焼した際に発生する燃焼媒から回収される安価で
不純物を多く含むバナジウム化合物を出発物質として、
硫酸の存在下でバナジウムイオンを重合析出させて精製
し、水素還元操作を付す事により、安価にバナジウム電
解液を製造する基本的方法(特開平8−148177号
公報)を提案した。本発明はこの方法に基づく連続的な
バナジウム電解液製造プロセスに関するものである。本
発明によって、バナジウム電解液の製造コストは大幅に
低下し、バナジウムレドックスフロー電池の実用化への
大きな前進となった。
[0006] Therefore, the present inventors, starting from a vanadium compound containing a large amount of impurities, which is inexpensive and contains a large amount of impurities, which is recovered from a combustion medium generated when heavy oil fuel is burned earlier.
A basic method (JP-A-8-148177) has been proposed in which a vanadium ion is polymerized and precipitated in the presence of sulfuric acid, purified, and subjected to a hydrogen reduction operation, thereby producing a vanadium electrolyte at low cost. The present invention relates to a continuous vanadium electrolyte production process based on this method. According to the present invention, the production cost of the vanadium electrolyte solution has been greatly reduced, and this has made a great step toward the practical use of the vanadium redox flow battery.

【0007】[0007]

【発明が解決しようとする課題】バナジウムレドックス
フロー電池の工業化に当たって、バナジウム電池のコス
トの大きな部分を占める電解液のコストを低下させるこ
とが大きな課題である。本発明者等は、安価な回収バナ
ジウムを原料として、原料精製工程、固液分離・乾燥工
程、脱アンモニア及び還元工程、並びに溶解工程の連続
した混合バナジウム電解液の製造プロセスを開発し、バ
ナジウム電解液の経済的な製造を可能にした。
In the industrialization of vanadium redox flow batteries, it is a major problem to reduce the cost of the electrolyte, which accounts for a large part of the cost of vanadium batteries. The present inventors have developed a process for producing a mixed vanadium electrolytic solution in which a raw material refining step, a solid-liquid separation / drying step, a deammonification and reduction step, and a dissolving step are continuously performed using inexpensive recovered vanadium as a raw material. Allows economical production of liquids.

【0008】[0008]

【課題を解決するための手段】本発明はによれば、 (1)不純物を含むメタバナジン酸アンモニウムの水溶
液に硫酸を加えてそのpHを1.5〜2.0に調製し、
80〜100℃の温度で0.5〜3時間滞留させて該溶
液中のバナジウムイオンを重合させることによりトリバ
ナジン酸アンモニウムを析出させる工程; (2)得られたスラリーを濃縮した後、遠心分離、乾燥
してトリバナジン酸アンモニウムを回収する工程; (3)一つの密閉式ロータリーキルン炉を使用して、ト
リバナジン酸アンモニウムを酸化性雰囲気下で400〜
690℃に加熱して脱アンモニアさせることにより五酸
化バナジウムを生成させ、且つトリバナジン酸アンモニ
ウムを水素の存在下に450〜750℃の温度で還元し
て三酸化バナジウムを製造する工程; (4)得られた三酸化バナジウム及び五酸化バナジウム
(又は三酸化バナジウムのみ)、並びに硫酸および水を
電解液調製槽に供給して該酸化バナジウムに溶解させ、
その際、三酸化バナジウムと五酸化バナジウムの混合割
合を調整することにより、3価、4価及び3価/4価の
混合バナジウム電解液を製造する工程;を包含する、高
純度バナジウム電解液の連続的製造法が提供される。
According to the present invention, (1) sulfuric acid is added to an aqueous solution of ammonium metavanadate containing impurities to adjust its pH to 1.5 to 2.0,
Depositing ammonium trivanadate by allowing the solution to stay at a temperature of 80 to 100 ° C for 0.5 to 3 hours to polymerize vanadium ions in the solution; (2) concentrating the obtained slurry, followed by centrifugation; Drying and recovering ammonium trivanadate; (3) using one closed rotary kiln furnace, ammonium trivanadate is removed under an oxidizing atmosphere for 400-
A step of producing vanadium pentoxide by heating to 690 ° C. to remove ammonia and reducing vanadium trivanadate at a temperature of 450 to 750 ° C. in the presence of hydrogen to produce vanadium trioxide; (4) obtaining The obtained vanadium trioxide and vanadium pentoxide (or only vanadium trioxide), sulfuric acid and water are supplied to an electrolytic solution preparation tank and dissolved in the vanadium oxide,
At this time, by adjusting the mixing ratio of vanadium trioxide and vanadium pentoxide to produce a mixed trivalent, tetravalent and trivalent / 4-valent vanadium electrolyte solution, a high-purity vanadium electrolyte solution comprising: A continuous manufacturing method is provided.

【0009】[0009]

【発明の実施の形態】図1に本発明による電解液の製造
法の一態様を示す。図1に沿って本発明を説明する。原
料のバナジウム(五酸化バナジウムまたはメタバナジン
酸アンモニウム)を原料貯蔵ホッパー1に入れる。原料
が五酸化バナジウム(V25)である場合は、ホッパー
1の下部から定量供給機2で定量的に溶解槽3へ供給す
る。この溶解槽3へアンモニア及び水(又はアンモニア
水)を供給し、原料V25をメタバナジン酸アンモニウ
ムとして溶解させる。そのときのバナジウムの濃度は、
3〜5容量%、溶解温度は60〜100℃、滞留時間は
0.5〜2時間が好ましい。得られたメタバナジン酸ア
ンモニウム溶液は、ポンプ4によって溶解槽3から連続
的に抜き出され、フィルター5によって固形物を除去
し、精製反応槽6へ移送する。
FIG. 1 shows one embodiment of a method for producing an electrolytic solution according to the present invention. The present invention will be described with reference to FIG. The raw material vanadium (vanadium pentoxide or ammonium metavanadate) is put into the raw material storage hopper 1. When the raw material is vanadium pentoxide (V 2 O 5 ), the raw material is quantitatively supplied from the lower part of the hopper 1 to the dissolving tank 3 by the quantitative feeder 2. Ammonia and water (or aqueous ammonia) are supplied to the dissolution tank 3 to dissolve the raw material V 2 O 5 as ammonium metavanadate. At that time, the concentration of vanadium
Preferably, the dissolution temperature is 3 to 5% by volume and the residence time is 0.5 to 2 hours. The obtained ammonium metavanadate solution is continuously withdrawn from the dissolution tank 3 by the pump 4, solids are removed by the filter 5, and transferred to the purification reaction tank 6.

【0010】原料がメタバナジン酸アンモニウム(NH
4VO3)の場合には、ホッパー1の下部から定量供給機
2で定量的に原料メタバナジン酸アンモニウムと水を溶
解槽3へ供給して溶解し、ポンプ4によって溶解槽3か
ら連続的に抜き出され、フィルター5によって固形物を
除去し、精製反応槽6へ移送する。
The starting material is ammonium metavanadate (NH
In the case of 4 VO 3 ), the raw material ammonium metavanadate and water are quantitatively supplied from the lower part of the hopper 1 by the quantitative feeder 2 to the dissolving tank 3 for dissolution, and the pump 4 continuously removes the raw material from the dissolving tank 3. The solid is removed by the filter 5 and transferred to the purification reaction tank 6.

【0011】溶解槽3から精製反応槽6へ送られてきた
メタバナジン酸アンモニウム溶液は、硫酸を加えてpH
メーターAによってpHを1.5〜2に調整する。この
精製反応槽6にて、80〜100℃の温度、0.5〜3
時間の滞留時間で重合反応が進行して、トリバナジン酸
アンモニウム(NH438)が析出し、トリバナジン
酸アンモニウムを含有すスラリーが得られる。このと
き、原料中に含まれていた不純物は該スラリーの液部分
に溶解して存在する。ついで、ポンプ7によりスラリー
を連続的に抜き出し、冷却器8で冷却した後、沈降槽9
へ移送する。この時のスラリー濃度は通常、5〜10%
であり、かなり希薄なスラリーであるので、これを沈降
槽9で静置し、トリバナジン酸アンモニムのスラリーを
濃縮する。不純物を含む上澄み液は槽外に排出させ、濃
縮されたスラリーは遠心分離器10で固液分離する。
The ammonium metavanadate solution sent from the dissolving tank 3 to the refining reaction tank 6 is added with sulfuric acid to adjust the pH.
Adjust the pH to 1.5-2 with meter A. In the purification reaction tank 6, a temperature of 80 to 100 ° C., 0.5 to 3
The polymerization reaction proceeds during the residence time, and ammonium trivanadate (NH 4 V 3 O 8 ) precipitates, whereby a slurry containing ammonium trivanadate is obtained. At this time, the impurities contained in the raw material are dissolved and exist in the liquid portion of the slurry. Next, the slurry was continuously withdrawn by the pump 7 and cooled by the cooler 8, and then settled in the settling tank 9
Transfer to The slurry concentration at this time is usually 5 to 10%.
Since this is a very dilute slurry, it is allowed to stand in the settling tank 9 to concentrate the ammonium trivanadate slurry. The supernatant liquid containing impurities is discharged out of the tank, and the concentrated slurry is separated into a solid and a liquid by the centrifugal separator 10.

【0012】ついで、得られたトリバナジン酸アンモニ
ウムを含有するケーキの乾燥を行う。該ケーキの乾燥は
慣用の乾燥機11を使用して行うことができるが、他の
手段として、該ケーキを押出成形機12を通して乾燥し
且つ顆粒の形態にすることもできる。乾燥されたトリバ
ナジン酸アンモニウムはいったんホッパー13へ貯えら
れ、ついで、ロードセル(図示せず)によって重量を測
定し、スクリューフィーダー14によって定量的に密閉
式ロタリーキルン炉15へ供給する。
Next, the obtained cake containing ammonium trivanadate is dried. Drying of the cake can be carried out using a conventional dryer 11, but as an alternative, the cake can be dried through an extruder 12 and formed into granules. The dried ammonium trivanadate is once stored in a hopper 13, then weighed by a load cell (not shown), and quantitatively supplied to a closed rotary kiln 15 by a screw feeder 14.

【0013】本発明の方法においては、一つの密閉式ロ
タリーキルン炉15を使用して、トリバナジン酸アンモ
ニウムからV25とV23が製造される。トリバナジン
酸アンモニウムからアンモニアを除去してV25を製造
する場合は、空気を流通させながら、400〜690℃
の温度で、0.5〜6時間処理することにより、V25
を製造する。反応式を次に示す。 4NH438+3O2=6V25+2N2+8H2O アンモニアの大部分は、トリバナジン酸アンモニウムか
ら脱離する時、バナジウム中の酸素と反応して次のよう
な反応で窒素となる。 2NH438=3V24+N2+4H2O 2V24+O2=2V25 生成したV24は、酸化されてV25となる。廃ガス中
のアンモニア量は非常に少ないので、廃ガス処理が非常
に簡単になる。
In the method of the present invention, V 2 O 5 and V 2 O 3 are produced from ammonium trivanadate using one closed rotary kiln furnace 15. When V 2 O 5 is produced by removing ammonia from ammonium trivanadate, 400 to 690 ° C. while flowing air.
At a temperature of 0.5 to 6 hours to obtain V 2 O 5
To manufacture. The reaction formula is shown below. 4NH 4 V 3 O 8 + 3O 2 = 6V 2 O 5 + 2N 2 + 8H 2 O When most of ammonia is desorbed from ammonium trivanadate, it reacts with oxygen in vanadium to become nitrogen in the following reaction. . 2NH 4 V 3 O 8 = 3V 2 O 4 + N 2 + 4H 2 O 2V 2 O 4 + O 2 = 2V 2 O 5 The generated V 2 O 4 is oxidized to V 2 O 5 . Since the amount of ammonia in the waste gas is very small, waste gas treatment becomes very simple.

【0014】一方、トリバナジン酸アンモニウムの還元
反応によってV23を製造する場合は、定量的にトリバ
ナジン酸アンモニムをロータリーキルン炉15に供給し
ながら、水素又は水素と窒素の混合ガスを流通させる。
炉内では還元反応とアンモニアの脱離反応が起こる。還
元温度は450〜750℃、滞留時間は1〜4時間程度
が好ましい。反応式は次の通りである。 2NH438+6H2=3V23+2NH3+7H2O 本発明で使用される密閉式ロータリーキルン炉は、回転
軸受け部を完全にシールされてため、脱アンモニア反応
と水素還元反応の何れにも使用することができるので、
設備コストが軽減され、経済的に非常に有利である。V
25の製造とV23の製造の切り替え時には、炉内を窒
素パージし、また、炉内に次ぎの反応に好ましくない付
着物や残存物などがあるときは、これらを除去する。
On the other hand, when V 2 O 3 is produced by a reduction reaction of ammonium trivanadate, hydrogen or a mixed gas of hydrogen and nitrogen is passed while quantitatively supplying ammonium trivanadate to the rotary kiln 15.
In the furnace, a reduction reaction and a desorption reaction of ammonia occur. The reduction temperature is preferably from 450 to 750 ° C, and the residence time is preferably from about 1 to 4 hours. The reaction formula is as follows. 2NH 4 V 3 O 8 + 6H 2 = 3V 2 O 3 + 2NH 3 + 7H 2 O The sealed rotary kiln used in the present invention has a completely sealed rotary bearing. Can be used for
The equipment cost is reduced, which is very economical. V
At the time of switching between the production of 2 O 5 and the production of V 2 O 3 , the inside of the furnace is purged with nitrogen, and if there are any undesired deposits or residues in the furnace in the next reaction, these are removed.

【0015】得られたV25、V23は冷却器16で冷
却した後、それぞれホッパー17、18へ移送、貯蔵す
る。定量供給機19、20によりV25、V23ホッパ
ー17、18から電解液調製槽21へ、V25及びV2
3を定量供給すると共に、硫酸及びを水を加えて該酸
化バナジウムを溶解させて電解液とする。この時発生す
る硫酸の希釈熱は反応溶液の加熱に使用することができ
る。良く攪拌をしながら、100〜150℃の温度範囲
で、2〜8時間反応させる。
The obtained V 2 O 5 and V 2 O 3 are cooled in a cooler 16 and then transferred to hoppers 17 and 18 and stored. V 2 O 5 and V 2 O 5 and V 2 are fed from the V 2 O 5 and V 2 O 3 hoppers 17 and 18 to the electrolytic solution preparation tank 21 by the constant-rate feeders 19 and 20.
While supplying O 3 quantitatively, sulfuric acid and water are added to dissolve the vanadium oxide to form an electrolyte. The heat of dilution of the sulfuric acid generated at this time can be used for heating the reaction solution. The reaction is carried out in a temperature range of 100 to 150 ° C. for 2 to 8 hours with good stirring.

【0016】バナジウムを正及び負極活物質とするバナ
ジウムレドックス電池用電解液としては、正極に4価の
バナジウム溶液、負極に3価のバナジウム溶液を張り込
む場合と、正極と負極に3価と4価の1:1の混合電解
液を張り込む場合の両方がある。電解液の製造の立場か
らは、3価と4価の1:1の混合電解液を製造する方が
タンクの数も1種類で済み好ましいが、電池において
は、正極において3価バナジウムが4価へ、一方負極で
は4価バナジウムが3価へ、全て変換されるので、どち
らの方法であつても支障はない。電解液の工業的製造法
においては、3価と4価の割合を正確に一定することは
プロセスを複雑し、生産性が低下することとなる。その
ため、通常は、V23とV25の混合割合をモル比で
2.9:1.1〜3.2:0.8に調整することによ
り、45〜55モル%の3価のバナジウムおよび55〜
45モル%の4価のバナジウムからなる混合バナジウム
電解液が得られる。3価と4価の等量電解液(V3+/V
4+=1/1)は次記の反応により得られる。 3V23+V25+10H2SO4=4VOSO4+2V2
(SO43+6H2SO4+10H2
The electrolyte solution for a vanadium redox battery using vanadium as the positive and negative electrode active materials includes a case where a tetravalent vanadium solution is applied to the positive electrode and a case where a trivalent vanadium solution is applied to the negative electrode, and a case where trivalent and tetravalent are applied to the positive and negative electrodes. There is a case where a mixed electrolyte having a valence of 1: 1 is applied. From the viewpoint of the production of an electrolyte, it is preferable to produce a mixed electrolyte of 1: 1 of trivalent and tetravalent, since only one tank is required, but in a battery, trivalent vanadium is converted to tetravalent in the positive electrode. In the negative electrode, on the other hand, tetravalent vanadium is all converted to trivalent, so that there is no problem in either method. In an industrial production method of an electrolytic solution, if the ratio between trivalent and tetravalent is exactly constant, the process becomes complicated and the productivity is reduced. Therefore, usually, the mixing ratio of V 2 O 3 and V 2 O 5 is adjusted to a molar ratio of 2.9: 1.1 to 3.2: 0.8 to make a trivalent of 45 to 55 mol%. Of vanadium and 55-
A mixed vanadium electrolyte comprising 45 mol% of tetravalent vanadium is obtained. Equivalent electrolytic solution of trivalent and tetravalent (V 3+ / V
4 + = 1/1) can be obtained by the following reaction. 3V 2 O 3 + V 2 O 5 + 10H 2 SO 4 = 4VOSO 4 + 2V 2
(SO 4 ) 3 + 6H 2 SO 4 + 10H 2 O

【0017】また、三酸化バナジウムと五酸化バナジウ
ムの混合割合をモル比で0.9:1.1〜1.1:0.
9に調整することにより90〜100モル%の4価のバ
ナジウムおよび0〜10モル%の3価のバナジウムから
なる混合バナジウム電解液を製造することができる。さ
らに、三酸化バナジウムのみを水に溶解させることによ
り、3価のバナジウム電解液を製造することができる。
The mixing ratio of vanadium trioxide and vanadium pentoxide is from 0.9: 1.1 to 1.1: 0.
By adjusting the value to 9, a mixed vanadium electrolyte comprising 90 to 100 mol% of tetravalent vanadium and 0 to 10 mol% of trivalent vanadium can be produced. Furthermore, a trivalent vanadium electrolyte can be produced by dissolving only vanadium trioxide in water.

【0018】[0018]

【実施例】【Example】

実施例13+/V4+=1/1電解液の製造 鹿島北共同発電製の回収メタバナジン酸アンモニウムを
貯槽1に約800kg供給した。定量供給機2でメタバ
ナジン酸アンモニウムを60kg/hr、純水1.5m
3/hrの供給速度で2m3の溶解槽3へ供給した。溶解
槽を低圧蒸気で85〜97℃の温度に加熱し、メタバナ
ジン酸アンモニウムを完全に溶解させた。溶解槽の下部
からポンプ4で1.5m3/hrの速度でメタバナジン
酸アンモニウム溶液を抜き出した。溶解槽における滞留
時間は約1.3時間であった。溶液はフィルター5で固
形物を除去した後、精製反応槽6へ送った。精製反応槽
へ低圧蒸気で85〜97℃の温度に加熱し、硫酸と純水
をpH計AでモニターしながらpHが1.8前後になる
ように加えた。精製反応槽の下部から1.5m3/hr
の速度でトリバナジン酸アンモニウムのスラリー液を抜
き出し、冷却器8で冷却した後、沈降槽9へ送った。沈
降槽でトリバナジン酸アンモニウムを沈降させ、上澄み
液は廃酸処理施設へ送った。約25%程度に濃縮された
トリバナジン酸アンモニウムのスラリー液を遠心分離機
10へ送った。遠心分離機において水を分離し、約20
%程度の含水率を有するトリバナジン酸アンモニウムの
ケーキにした後、乾燥機11へ送った。乾燥機において
水分を0〜5%程度に調整した後、ホッパー13へ送っ
た。フィーダー14でトリバナジン酸アンモニウムを5
0kg/hrの速度で密閉式ロータリーキルン炉15に
供給し、空気を6Nm3/hrの速度で流しながら、6
50℃の温度、滞留時間2時間でV25を製造し、これ
を冷却器16で冷却した後、ホッパー17へ送った。ホ
ッパーが一杯になったとき、トリバナジン酸アンモニウ
ムの供給を止め、ロータリーキルン炉内を完全に窒素パ
ージした。
Example 1 Production of V 3+ / V 4+ = 1/1 Electrolyte Approximately 800 kg of recovered ammonium metavanadate manufactured by Kashima Kita Kyodo was supplied to the storage tank 1. 60 kg / hr of ammonium metavanadate and 1.5 m of pure water by the fixed quantity feeder 2
The solution was supplied to the 2 m 3 dissolving tank 3 at a supply speed of 3 / hr. The dissolution tank was heated to a temperature of 85-97 ° C. with low pressure steam to completely dissolve ammonium metavanadate. The ammonium metavanadate solution was withdrawn from the lower part of the dissolution tank by the pump 4 at a rate of 1.5 m 3 / hr. The residence time in the dissolution tank was about 1.3 hours. The solution was sent to a purification reaction tank 6 after removing solids with a filter 5. The purified reaction vessel was heated to a temperature of 85 to 97 ° C. with low-pressure steam, and sulfuric acid and pure water were added so that the pH became about 1.8 while monitoring with a pH meter A. 1.5 m 3 / hr from the bottom of the purification reactor
The slurry liquid of ammonium trivanadate was taken out at the speed of, cooled in the cooler 8 and sent to the sedimentation tank 9. Ammonium trivanadate was settled in the settling tank, and the supernatant was sent to a waste acid treatment facility. The slurry of ammonium trivanadate concentrated to about 25% was sent to the centrifuge 10. Separate the water in a centrifuge,
After forming a cake of ammonium trivanadate having a water content of about%, the cake was sent to the dryer 11. After the water content was adjusted to about 0 to 5% in the dryer, it was sent to the hopper 13. Feeder 14 is used to remove ammonium trivanadate
While supplying the air to the closed rotary kiln furnace 15 at a speed of 0 kg / hr and flowing air at a speed of 6 Nm 3 / hr,
V 2 O 5 was produced at a temperature of 50 ° C. and a residence time of 2 hours, cooled by a cooler 16 and sent to a hopper 17. When the hopper became full, the supply of ammonium trivanadate was stopped, and the inside of the rotary kiln furnace was completely purged with nitrogen.

【0019】水素と窒素(7:3)の混合ガスを10N
3/hrの流量で供給し、再びトリバナジン酸アンモ
ニウムを50kg/hrの速度でロータリーキルン炉に
供給した。還元温度650℃、滞留時間4時間でV23
を製造し、これを冷却器16で冷却した後、ホッパー1
8へ送って貯蔵した。ホッパーにV23がある程度溜ま
ってから、3m3の加圧型電解液調製槽21に純水24
83.4kgを張り込み、供給機19,20からV25
122.9kg,V23 303.8kgを供給し、よ
く撹拌した。ついで、濃硫酸1260kgを約1時間か
けて供給した。希釈熱で発熱し、温度が100℃になっ
たところでバルブを開けて、調製槽内の蒸気をパージ
し、デッドスペース内の空気を除いた。濃硫酸を添加し
終わってから、蒸気で加熱し、温度を135℃程度に上
昇させた。その温度で1時間反応させた後、加熱蒸気を
止め、ジャケットに水を流して冷却した。冷却後、0.
45μmのカートリッジタイプのメンブレンフィルター
で精密濾過を行った後、製品タンク24に送液した。得
られた電解液の分析結果を以下のとおりである。 全V濃度 V3+4+ SO4 2- 1.8 0.95 0.85 4.27 (52.8%) (47.2%)
A mixed gas of hydrogen and nitrogen (7: 3) is
The mixture was supplied at a flow rate of m 3 / hr, and ammonium trivanadate was supplied again to the rotary kiln furnace at a rate of 50 kg / hr. V 2 O 3 at a reduction temperature of 650 ° C. and a residence time of 4 hours
After cooling with the cooler 16, the hopper 1
8 and stored. After some extent accumulated V 2 O 3 in the hopper, pure water 24 to the pressure type electrolyte preparation tank 21 3m 3
83.4kg was loaded and V 2 O 5 was supplied from feeders 19 and 20.
122.9 kg and 303.8 kg of V 2 O 3 were supplied and stirred well. Then, 1260 kg of concentrated sulfuric acid was supplied over about 1 hour. When the temperature became 100 ° C. due to the heat of dilution, the valve was opened, the steam in the preparation tank was purged, and the air in the dead space was removed. After the addition of concentrated sulfuric acid, the mixture was heated with steam to raise the temperature to about 135 ° C. After reacting at that temperature for 1 hour, the heated steam was stopped and water was flowed through the jacket to cool. After cooling, 0.
After fine filtration with a 45 μm cartridge type membrane filter, the solution was sent to the product tank 24. The analysis results of the obtained electrolytic solution are as follows. Total V concentration V 3+ V 4+ SO 4 2- 1.8 0.95 0.85 4.27 (52.8%) (47.2%)

【0020】実施例24+バナジウム電解液の製造 3m3の加圧型出調整槽21に純水2335kgを張り
込み、供給機19,20から、V25 245.7k
g,V23 310kg、濃硫酸1260kgを供給し
たほかは、実施例1と同様に実施した。得られた電解液
の分析結果を以下のとおりである。 全V濃度 V4+3+ SO4 2- 1.81 1.76 0.05 4.26 (97.2%) (2.8%)
Example 2 Production of V 4 + Vanadium Electrolyte Solution 2335 kg of pure water was charged into a 3 m 3 pressurized discharge control tank 21, and V 2 O 5 245.7 k was supplied from feeders 19 and 20.
g, V 2 O 3 310 kg and concentrated sulfuric acid 1260 kg were supplied in the same manner as in Example 1. The analysis results of the obtained electrolytic solution are as follows. Total V concentration V 4+ V 3+ SO 4 2- 1.81 1.76 0.05 4.26 (97.2%) (2.8%)

【0021】実施例33+バナジウム電解液の製造 3m3の加圧型出調整槽21に純水2300kgを張り
込み、供給機20から、V25 450kg、濃硫酸1
260kgを供給したほかは、実施例1と同様に実施し
た。得られた電解液の分析結果を以下のとおりである。 全V濃度 V3+4+ SO4 2- 1.81 1.77 0.04 4.26 (98.0%) (2.0%)
Example 3 Production of V 3 + Vanadium Electrolyte 2300 kg of pure water was poured into a 3 m 3 pressurized discharge adjusting tank 21, and 450 kg of V 2 O 5 and concentrated sulfuric acid 1 were supplied from a feeder 20.
Except supplying 260 kg, it carried out similarly to Example 1. The analysis results of the obtained electrolytic solution are as follows. Total V concentration V 3+ V 4+ SO 4 2- 1.81 1.77 0.04 4.26 (98.0%) (2.0%)

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の一実施態様を示す概略図である。FIG. 1 is a schematic view showing one embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原料貯蔵ホッパー 2,19,20 定量供給機 3 溶解槽 4,7,22 ポンプ 5 フィルター 6 精製反応槽 8,16,23 冷却器 9 沈降槽 10 遠心分離機 11 乾燥機 12 押出成形機 13 トリバナジン酸アンモニウムホッパー 14 フィーダー 15 密閉式ロータリーキルン炉 17,18 V25、V23ホッパー 21 電解液調製槽 24 製品タンクDESCRIPTION OF SYMBOLS 1 Raw material storage hopper 2,19,20 Quantitative feeder 3 Dissolution tank 4,7,22 Pump 5 Filter 6 Purification reaction tank 8,16,23 Cooler 9 Sedimentation tank 10 Centrifuge 11 Dryer 12 Extruder 13 Trivanazine Ammonium hopper 14 Feeder 15 Closed rotary kiln furnace 17, 18 V 2 O 5 , V 2 O 3 hopper 21 Electrolyte preparation tank 24 Product tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古里 洸一 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 (72)発明者 佐藤 完二 茨城県稲敷郡阿見町中央8丁目3番1号 鹿島北共同発電株式会社V電池開発室内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Furusato V-Battery Development Office, Kashima Kita Kyodo Co., Ltd. 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture (72) Inventor Kanji Sato Inashiki-gun, Ibaraki 8-3 Chuo Amicho Kashima Kita Kyodo Co., Ltd. V Battery Development Room

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(1)不純物を含むメタバナジン酸アンモ
ニウムの水溶液に硫酸を加えてそのpHを1.5〜2.
0に調製し、80〜100℃の温度で0.5〜3時間滞
留させて該溶液中のバナジウムイオンを重合させること
によりトリバナジン酸アンモニウムを析出させる工程; (2)得られたスラリーを濃縮した後、遠心分離、乾燥
してトリバナジン酸アンモニウムを回収する工程; (3)一つの密閉式ロータリーキルン炉を使用して、ト
リバナジン酸アンモニウムを酸化性雰囲気下で400〜
690℃に加熱して脱アンモニアさせることにより五酸
化バナジウムを生成させ、且つトリバナジン酸アンモニ
ウムを水素の存在下に450〜750℃の温度で還元し
て三酸化バナジウムを製造する工程; (4)得られた三酸化バナジウム及び五酸化バナジウ
ム、並びに硫酸および水を電解液調製槽に供給して該酸
化バナジウムに溶解させ、その際、三酸化バナジウムと
五酸化バナジウムの混合割合をモル比で2.9:1.1
〜3.2:0.8に調整することにより45〜55モル
%の3価のバナジウムおよび55〜45モル%の4価の
バナジウムからなる混合バナジウム電解液を製造する工
程;を包含する、3価/4価混合バナジウム電解液の連
続的製造法。
(1) Sulfuric acid is added to an aqueous solution of ammonium metavanadate containing impurities to adjust the pH to 1.5 to 2.
0, and allowed to stay at a temperature of 80 to 100 ° C. for 0.5 to 3 hours to polymerize vanadium ions in the solution to precipitate ammonium trivanadate; (2) concentrating the obtained slurry Thereafter, a step of recovering ammonium trivanadate by centrifugation and drying; (3) ammonium trivanadate is oxidized in an oxidizing atmosphere by using one closed rotary kiln furnace under an oxidizing atmosphere.
A step of producing vanadium pentoxide by heating to 690 ° C. to remove ammonia and reducing vanadium trivanadate at a temperature of 450 to 750 ° C. in the presence of hydrogen to produce vanadium trioxide; (4) obtaining The obtained vanadium trioxide and vanadium pentoxide, and sulfuric acid and water were supplied to an electrolytic solution preparation tank and dissolved in the vanadium oxide. At this time, the mixing ratio of vanadium trioxide and vanadium pentoxide was 2.9 by molar ratio. : 1.1
To 3.2: 0.8 to produce a mixed vanadium electrolyte comprising 45 to 55 mol% of trivalent vanadium and 55 to 45 mol% of tetravalent vanadium. Continuous production method of mixed vanadium / tetravalent electrolyte.
【請求項2】(1)不純物を含むメタバナジン酸アンモ
ニウムの水溶液に硫酸を加えてそのpHを1.5〜2.
0に調製し、80〜100℃の温度で0.5〜3時間滞
留させて該溶液中のバナジウムイオンを重合させること
によりトリバナジン酸アンモニアを析出させる工程; (2)得られたスラリーを濃縮した後、遠心分離、乾燥
してトリバナジン酸アンモニアを回収する工程; (3)一つの密閉式ロータリーキルン炉を使用して、ト
リバナジン酸アンモニアを酸化性雰囲気下で400〜6
90℃に加熱して脱アンモニアさせることにより五酸化
バナジウムを生成させ、且つトリバナジン酸アンモニウ
ムを水素の存在下に450〜750℃の温度で還元して
三酸化バナジウムを製造する工程; (4)得られた三酸化バナジウム及び五酸化バナジウ
ム、並びに硫酸及び水を電解液調製槽に供給して該酸化
バナジウムに溶解させ、その際、三酸化バナジウムと五
酸化バナジウムの混合割合をモル比で0.9:1.1〜
1.1:0.9に調整することにより90〜100モル
%の4価のバナジウムおよび0〜10モル%の3価のバ
ナジウムからなる混合バナジウム電解液を製造する工
程;を包含する、3価/4価混合バナジウム電解液の連
続的製造法。
(1) Sulfuric acid is added to an aqueous solution of ammonium metavanadate containing impurities to adjust the pH to 1.5 to 2.
0, and allowed to stay at a temperature of 80 to 100 ° C. for 0.5 to 3 hours to polymerize vanadium ions in the solution to precipitate ammonium trivanadate; (2) concentrating the obtained slurry Thereafter, a step of recovering ammonia trivanadate by centrifugation and drying; (3) ammonia trivanadate in an oxidizing atmosphere using an enclosed rotary kiln furnace in an oxidizing atmosphere for 400 to 6;
A step of producing vanadium pentoxide by heating to 90 ° C. to remove ammonia and reducing vanadium trivanadate at a temperature of 450 to 750 ° C. in the presence of hydrogen to produce vanadium trioxide; (4) obtaining The obtained vanadium trioxide and vanadium pentoxide, and sulfuric acid and water were supplied to an electrolytic solution preparation tank and dissolved in the vanadium oxide, and at this time, the mixing ratio of vanadium trioxide and vanadium pentoxide was 0.9 in molar ratio. : 1.1-
1.1: producing a mixed vanadium electrolyte solution consisting of 90 to 100 mol% of tetravalent vanadium and 0 to 10 mol% of trivalent vanadium by adjusting to 0.9. A continuous method for producing a mixed tetravalent vanadium electrolyte.
【請求項3】(1)不純物を含むメタバナジン酸アンモ
ニウムの水溶液に硫酸を加えてそのpHを1.5〜2.
0に調製し、80〜100℃の温度で0.5〜3時間滞
留させて該溶液中のバナジウムイオンを重合させること
によりトリバナジン酸アンモニウムを析出させる工程; (2)得られたスラリーを濃縮した後、遠心分離、乾燥
してトリバナジン酸アンモニウムを回収する工程; (3)一つの密閉式ロータリーキルン炉を使用して、ト
リバナジン酸アンモニウムを酸化性雰囲気下で400〜
690℃に加熱して脱アンモニアさせることにより五酸
化バナジウムを生成させ、且つトリバナジン酸アンモニ
ウム水素の存在下に450〜750℃の温度で還元して
三酸化バナジウムを製造する工程; (4)得られた三酸化バナジウム、並びに硫酸および水
を電解液調製槽に供給して該酸化バナジウムに溶解さ
せ、3価のバナジウム電解液を製造する工程;を包含す
る、3価バナジウム電解液の連続的製造法。
(1) Sulfuric acid is added to an aqueous solution of ammonium metavanadate containing impurities to adjust the pH to 1.5 to 2.
0, and allowed to stay at a temperature of 80 to 100 ° C. for 0.5 to 3 hours to polymerize vanadium ions in the solution to precipitate ammonium trivanadate; (2) concentrating the obtained slurry Thereafter, a step of recovering ammonium trivanadate by centrifugation and drying; (3) ammonium trivanadate is oxidized in an oxidizing atmosphere by using one closed rotary kiln furnace under an oxidizing atmosphere.
A step of producing vanadium pentoxide by heating to 690 ° C. to remove ammonia and producing vanadium trioxide by reduction at a temperature of 450 to 750 ° C. in the presence of ammonium hydrogen trivanadate; Supplying vanadium trioxide, sulfuric acid, and water to an electrolytic solution preparation tank to dissolve the vanadium oxide in the vanadium oxide to produce a trivalent vanadium electrolytic solution. .
【請求項4】 前記(1)工程におけるメタバナジン酸
アンモニウム水溶液が、不純物を含む五酸化バナジウ
ム、アンモニア及び水を60〜100℃の温度で0.5
〜2時間反応させて得られたものである請求項1〜3の
いずれか1項に記載の方法。
4. An aqueous solution of ammonium metavanadate in the step (1) is prepared by adding vanadium pentoxide containing impurities, ammonia and water at a temperature of 60 to 100 ° C. for 0.5 hour.
The method according to any one of claims 1 to 3, which is obtained by reacting for 2 to 2 hours.
JP9234672A 1997-08-29 1997-08-29 Continuous production of high-purity vanadium electrolyte solution Pending JPH1179748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9234672A JPH1179748A (en) 1997-08-29 1997-08-29 Continuous production of high-purity vanadium electrolyte solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9234672A JPH1179748A (en) 1997-08-29 1997-08-29 Continuous production of high-purity vanadium electrolyte solution

Publications (1)

Publication Number Publication Date
JPH1179748A true JPH1179748A (en) 1999-03-23

Family

ID=16974670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9234672A Pending JPH1179748A (en) 1997-08-29 1997-08-29 Continuous production of high-purity vanadium electrolyte solution

Country Status (1)

Country Link
JP (1) JPH1179748A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015317A1 (en) * 2000-08-16 2002-02-21 Squirrel Holdings Ltd. Vanadium electrolyte preparation using asymmetric vanadium reduction cells and use of an asymmetric vanadium reduction cell for rebalancing the state of charge of the electrolytes of an operating vanadium redox battery
WO2002095855A1 (en) * 2001-05-18 2002-11-28 Unisearch Limited Vanadium redox battery electrolyte
WO2002101861A1 (en) * 2001-06-07 2002-12-19 Sumitomo Electric Industries, Ltd. Redox-flow cell electrolyte and redox-flow cell
JP2005528314A (en) * 2002-05-31 2005-09-22 ハイベルド スティール アンド バナディウム コーポレーション リミテッド Method for producing vanadyl sulfate solution
JP2009512622A (en) * 2005-10-24 2009-03-26 ハイベルド スティール アンド バナディウム コーポレーション リミテッド Preparation method of electrolyte
CN103708552A (en) * 2013-12-18 2014-04-09 陕西科技大学 Preparation method for positive electrode material of ball-flower-shaped lithium ion battery
CN103904343A (en) * 2014-04-02 2014-07-02 四川大学 Preparation method of electrolyte for all-vanadium redox flow battery
CN106257726A (en) * 2016-01-28 2016-12-28 中国科学院过程工程研究所 A kind of system and method producing high-purity high-activity V electrolyte
EP3324474A4 (en) * 2015-10-20 2018-05-23 Le System Co., Ltd. Method for producing vanadium electrolytic solution for redox flow cell
CN111333111A (en) * 2020-04-23 2020-06-26 攀钢集团钒钛资源股份有限公司 Vanadium trioxide preparation device
CN112542603A (en) * 2021-01-04 2021-03-23 贵州义信矿业有限公司 Method for preparing energy storage vanadium electrolyte by using low-purity vanadium pentoxide
CN112941540A (en) * 2021-01-28 2021-06-11 湖南钒谷新能源技术有限公司 Vanadium electrolyte production system and production method
CN113644304A (en) * 2021-10-14 2021-11-12 中国科学院过程工程研究所 All-vanadium redox flow battery electrolyte and preparation method and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015317A1 (en) * 2000-08-16 2002-02-21 Squirrel Holdings Ltd. Vanadium electrolyte preparation using asymmetric vanadium reduction cells and use of an asymmetric vanadium reduction cell for rebalancing the state of charge of the electrolytes of an operating vanadium redox battery
WO2002095855A1 (en) * 2001-05-18 2002-11-28 Unisearch Limited Vanadium redox battery electrolyte
WO2002101861A1 (en) * 2001-06-07 2002-12-19 Sumitomo Electric Industries, Ltd. Redox-flow cell electrolyte and redox-flow cell
US7258947B2 (en) 2001-06-07 2007-08-21 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery, and redox flow battery
JP2005528314A (en) * 2002-05-31 2005-09-22 ハイベルド スティール アンド バナディウム コーポレーション リミテッド Method for producing vanadyl sulfate solution
JP4686184B2 (en) * 2002-05-31 2011-05-18 バンケム バナジウム プロダクツ (ピーティーワイ) リミテッド Method for producing vanadyl sulfate solution
JP2009512622A (en) * 2005-10-24 2009-03-26 ハイベルド スティール アンド バナディウム コーポレーション リミテッド Preparation method of electrolyte
CN103708552A (en) * 2013-12-18 2014-04-09 陕西科技大学 Preparation method for positive electrode material of ball-flower-shaped lithium ion battery
CN103904343A (en) * 2014-04-02 2014-07-02 四川大学 Preparation method of electrolyte for all-vanadium redox flow battery
EP3324474A4 (en) * 2015-10-20 2018-05-23 Le System Co., Ltd. Method for producing vanadium electrolytic solution for redox flow cell
CN106257726A (en) * 2016-01-28 2016-12-28 中国科学院过程工程研究所 A kind of system and method producing high-purity high-activity V electrolyte
CN106257726B (en) * 2016-01-28 2018-03-23 中国科学院过程工程研究所 A kind of system and method for producing high-purity high-activity V electrolyte
CN111333111A (en) * 2020-04-23 2020-06-26 攀钢集团钒钛资源股份有限公司 Vanadium trioxide preparation device
CN112542603A (en) * 2021-01-04 2021-03-23 贵州义信矿业有限公司 Method for preparing energy storage vanadium electrolyte by using low-purity vanadium pentoxide
CN112542603B (en) * 2021-01-04 2022-09-13 贵州义信矿业有限公司 Method for preparing energy storage vanadium electrolyte by using low-purity vanadium pentoxide
CN112941540A (en) * 2021-01-28 2021-06-11 湖南钒谷新能源技术有限公司 Vanadium electrolyte production system and production method
CN112941540B (en) * 2021-01-28 2024-01-26 湖南钒谷新能源技术有限公司 Vanadium electrolyte production system and production method
CN113644304A (en) * 2021-10-14 2021-11-12 中国科学院过程工程研究所 All-vanadium redox flow battery electrolyte and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3085634B2 (en) Manufacturing method of high purity vanadium electrolyte
US5368762A (en) Method for producing vanadium electrolytic solution
JPH1179748A (en) Continuous production of high-purity vanadium electrolyte solution
EP3401991B1 (en) System and method for producing 3.5-valent highly pure vanadium electrolyte
Li et al. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries
AU2017210929B2 (en) System and method for preparing high purity vanadium electrolyte
CN109504861B (en) Method for recycling residual lithium in electrode material reaction mother liquor prepared by hydrothermal method
JP6578068B2 (en) Production system and method of vanadium electrolyte having high purity and high activity
RU2690012C1 (en) System and method of producing high purity electrolyte for vanadium battery
JP2000247645A (en) Production of vanadium-based electrolytic solution
US20230332273A1 (en) Method for recovering lithium from waste lithium iron phosphate (lfp) material
CN108588737B (en) Method for preparing sodium metavanadate by treating vanadium-containing waste liquid
CN113054889A (en) System for generating hydrogen by utilizing abandoned wind and abandoned light
CN107565153B (en) system and method for preparing high-activity high-purity specific valence vanadium electrolyte
CN106129441A (en) The cleaning fast preparation method of a kind of vanadium oxysulfate solution and purposes
NAKAJIMA et al. Vanadium redox flow battery with resources saving recycle ability I. Production of electrolytic solution for vanadium redox flow battery from boiler soot
Ding et al. Advances in recycling LiFePO4 from spent lithium batteries: a critical review
CN115522072A (en) Device for producing metal magnesium lithium by utilizing renewable energy sources
CN115295907A (en) Method for removing impurities from waste positive electrode material leachate and regenerating positive electrode material
JPH08273692A (en) Manufacture of vanadium type electrolyte