JPH08273666A - Lithium ion secondary battery and negative electrode material thereof - Google Patents

Lithium ion secondary battery and negative electrode material thereof

Info

Publication number
JPH08273666A
JPH08273666A JP7069616A JP6961695A JPH08273666A JP H08273666 A JPH08273666 A JP H08273666A JP 7069616 A JP7069616 A JP 7069616A JP 6961695 A JP6961695 A JP 6961695A JP H08273666 A JPH08273666 A JP H08273666A
Authority
JP
Japan
Prior art keywords
graphite
fine particles
negative electrode
electrode material
graphite fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7069616A
Other languages
Japanese (ja)
Other versions
JP2849561B2 (en
Inventor
Kenji Fukuda
憲二 福田
Tatsuo Umeno
達夫 梅野
Yoichiro Hara
陽一郎 原
Koji Sakata
康二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP7069616A priority Critical patent/JP2849561B2/en
Publication of JPH08273666A publication Critical patent/JPH08273666A/en
Application granted granted Critical
Publication of JP2849561B2 publication Critical patent/JP2849561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium ion secondary battery which has large energy density and electric capacity according to a theoretical value and has the long cycle service life by specifying a crystal lattice constant, a thickness, a maximum particle length and the ratio of volume resistivity of a graphite particulate. CONSTITUTION: In an material for a lithium ion secondary battery molded by a graphite particulate, a flaky graphite particulate on which a crystal lattice constant Co(002) of a graphite crystal 002 surface of the graphite particulate is 0.670 to 0.673nm and a thickness of the graphite particulate is not more than 1μm and a maximum particle length is not more than 100μm and a value of the ratio of volume resistivity in the molding pressure vertical direction and the molding pressure parallel direction when the graphite particle is molded in 500kg/cm<2> is 1×10<-6> to 1×10<-4> , is provided. Therefore, a lithium ion secondary battery which has large capacity and has high electric potential and is excellent in a charge-discharge cycle characteristic can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大容量かつ高電位で充放
電サイクル特性に優れたリチウムイオン二次電池及び同
二次電池用負極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery having a large capacity, a high potential and excellent charge / discharge cycle characteristics, and a negative electrode material for the secondary battery.

【0002】[0002]

【従来の技術】電子機器の小型軽量化に伴い、電池の高
エネルギー密度化が要求され、また省資源の面からも繰
り返し充放電可能な二次電池の開発が急務になってい
る。この要求に対して、高エネルギー密度、軽量、小
型、かつ充放電サイクル特性に優れたリチウムイオン二
次電池が提案されている。リチウムイオン二次電池はリ
チウム金属二次電池の有する急速充電性に劣る問題、サ
イクル寿命が短い問題、安全性に劣る問題等を解決する
ために開発されたもので、リチウム金属二次電池の場合
には負極に金属リチウムが用いられていたのに対し、リ
チウムイオン二次電池の場合には負極に炭素材料を用い
ることにより、上記の問題を解決しようとするものであ
る。
2. Description of the Related Art As electronic devices are made smaller and lighter, higher energy density of batteries is required, and from the viewpoint of resource saving, there is an urgent need to develop a secondary battery which can be repeatedly charged and discharged. To meet this demand, a lithium ion secondary battery having a high energy density, a light weight, a small size, and excellent charge / discharge cycle characteristics has been proposed. Lithium-ion secondary batteries were developed to solve the problems of lithium metal secondary batteries, such as poor chargeability, short cycle life, and poor safety. In contrast to the case where metallic lithium was used for the negative electrode, a carbon material is used for the negative electrode in the case of a lithium ion secondary battery to solve the above problems.

【0003】即ち、リチウム化合物を正極とし、炭素材
料を負極として充電を行うと、負極ではリチウムイオン
が炭素材料にドーピングされ、いわゆる炭素ーリチウム
層間化合物が形成される。一方、放電時には前記炭素材
料の層間よりリチウムイオンが脱ドーピングして、リチ
ウムイオンは再び正極のリチウム化合物と結合する。こ
れにより充放電可能な電池が形成されるものである。
That is, when a lithium compound is used as a positive electrode and a carbon material is used as a negative electrode for charging, lithium ions are doped into the carbon material at the negative electrode to form a so-called carbon-lithium intercalation compound. On the other hand, during discharge, lithium ions are dedoped from the interlayer of the carbon material, and the lithium ions are recombined with the lithium compound of the positive electrode. As a result, a chargeable / dischargeable battery is formed.

【0004】リチウムイオン二次電池の負極材料として
炭素材料である黒鉛を用いる場合、理論的には炭素原子
6個に対しリチウム原子1個の割合でドーピングされた
黒鉛−リチウムイオン層間化合物が形成される。このと
き、炭素重量当たりの電気容量は372mA・h/gに
なる。しかしながら、市販されているリチウムイオン二
次電池に用いられている黒鉛負極材料の電気容量は12
0〜160mA・h/gであるのが一般で、これは理論
値の約40%に過ぎない。
When graphite, which is a carbon material, is used as a negative electrode material of a lithium ion secondary battery, theoretically a graphite-lithium ion intercalation compound is formed in which 6 carbon atoms are doped with 1 lithium atom. It At this time, the electric capacity per carbon weight is 372 mA · h / g. However, the electric capacity of the graphite negative electrode material used in commercially available lithium ion secondary batteries is 12
It is generally from 0 to 160 mA · h / g, which is only about 40% of the theoretical value.

【0005】[0005]

【発明が解決しようとする課題】本発明者らはリチウム
イオン二次電池の負極材料に適した炭素材料を種々検討
した結果、リチウムドープ量が大きく、放電容量が大き
く、かつサイクル寿命の長い炭素材料は、高結晶性であ
り、かつ外表面積の大きなものであることを知得した。
即ち、高結晶性薄片状黒鉛微粒子をリチウムイオン二次
電池の負極材料に用いることで、本発明の目的である大
きなエネルギー密度と、ほぼ理論値通りの電気容量を具
備し、しかもサイクル寿命が長く、かつ迅速な充放電が
可能なリチウムイオン二次電池を構成できることを見出
し、本発明を完成するに至ったものである。 従って、
その目的とするところは負極として用いる炭素材料を改
良することにより、黒鉛が本来持つ低い電位でリチウム
イオンのドーピングと脱ドーピングが行われ、その結
果、大きなエネルギー密度を有し、かつほぼ理論値通り
の電気容量を有し、更にサイクル寿命の長いリチウムイ
オン二次電池を製造することのできる二次電池用負極材
料及び同負極材料を組み込んだリチウムイオン二次電池
を提供することにある。
As a result of various investigations on carbon materials suitable for the negative electrode material of lithium-ion secondary batteries, the present inventors have found that carbon having a large lithium doping amount, a large discharge capacity and a long cycle life is used. It has been found that the material is highly crystalline and has a large external surface area.
That is, by using highly crystalline flaky graphite fine particles as a negative electrode material of a lithium ion secondary battery, a large energy density, which is the object of the present invention, and an electric capacity almost equal to the theoretical value are provided, and the cycle life is long. Further, they have found that a lithium ion secondary battery capable of rapid charge and discharge can be configured, and have completed the present invention. Therefore,
The purpose is to improve the carbon material used as the negative electrode, so that lithium ions are doped and dedoped at the low potential that graphite originally has, resulting in a large energy density and almost the theoretical value. It is an object of the present invention to provide a negative electrode material for a secondary battery capable of producing a lithium ion secondary battery having the above electric capacity and a long cycle life, and a lithium ion secondary battery incorporating the negative electrode material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、黒鉛微粒子を成形してなるリチウムイオン
二次電池用負極材料において、前記黒鉛微粒子の黒鉛結
晶002面の結晶格子定数C0(002)が0.670〜0.
673nmで、黒鉛微粒子の厚みが1μm以下で、最大
粒子長が100μm以下で、かつ該黒鉛微粒子を500
kg/cm2 で成型したときの成型圧垂直方向と成型圧
平行方向の体積抵抗との比の値が1×10-6〜1×10
-4である薄片状黒鉛微粒子であることを特徴とするリチ
ウムイオン二次電池用負極材料を提案するもので、薄片
状黒鉛微粒子が膨張黒鉛を分散溶媒中で超音波で粉砕し
て得られるものであること、薄片状黒鉛微粒子が膨張黒
鉛をメディアを用いて湿式で磨砕して得られるものであ
ること、薄片状黒鉛微粒子が膨張黒鉛を用いて湿式で一
対の円盤状回転砥石で磨砕して得られるものであるこ
と、薄片状黒鉛微粒子が膨張黒鉛を分散溶媒中で超音波
で粉砕して得られる薄片状黒鉛微粒子、膨張黒鉛をメデ
ィアを用いて湿式で磨砕して得られる薄片状黒鉛微粒子
又は膨張黒鉛を湿式で一対の回転式円盤状砥石で磨砕し
て得られる薄片状黒鉛微粒子をさらに2000〜280
0℃でアニーリングして得られるものであることを含
む。
In order to achieve the above object, the present invention provides a negative electrode material for a lithium-ion secondary battery formed by molding graphite fine particles, wherein the graphite fine particles have a crystal lattice constant C of the 002 plane of the graphite crystal. 0 (002) is 0.670-0.
673 nm, the thickness of the graphite fine particles is 1 μm or less, the maximum particle length is 100 μm or less, and the graphite fine particles are 500 μm or less.
The value of the ratio of the volume resistance in the direction perpendicular to the molding pressure and the volume resistance in the direction parallel to the molding pressure when molded at kg / cm 2 is 1 × 10 −6 to 1 × 10.
-4 is a flaky graphite fine particle, which is a negative electrode material for lithium-ion secondary batteries, characterized in that the flaky graphite fine particle is obtained by ultrasonically crushing expanded graphite in a dispersion solvent. The flaky graphite fine particles are obtained by wet-grinding expansive graphite with a medium, and the flaky graphite fine particles are wet-grinding with expansive graphite with a pair of disk-shaped rotary grindstones. The flaky graphite fine particles are obtained by pulverizing expanded graphite in a dispersion solvent with ultrasonic waves, and flakes obtained by wet-grinding expanded graphite with a medium. Flake graphite fine particles obtained by grinding wet fine graphite fine particles or expanded graphite with a pair of rotary disc-shaped grindstones are further added to 2000 to 280.
Including those obtained by annealing at 0 ° C.

【0007】更に本発明は、前記負極材料を組み込んで
なるリチウムイオン二次電池である。
Further, the present invention is a lithium ion secondary battery incorporating the above negative electrode material.

【0008】[0008]

【作用】リチウムイオン二次電池の負極材料として用い
られる炭素材料がC6 Liなる理論値通りの黒鉛−リチ
ウム層間化合物を形成するためには、黒鉛の結晶性は極
めて高いことが望まれる。かつ迅速な充電が行われるた
めには微粒子であり、かつ外表面積ができる限り大きな
炭素材料であることが望ましい。本発明に用いられる負
極用炭素材料は薄片状黒鉛微粒子であり、天然黒鉛の高
い結晶性を損なうことなく、薄片化し、かつ微粒子化し
たものである。その結果、この薄片状黒鉛微粒子を成型
して電極に用いると、ほぼ理論値通りのリチウムイオン
のドーピングが可能となり、かつ大きな外表面積を有す
るためにリチウムイオンのドーピング、脱ドピーングが
円滑に行われ、大きな充放電容量と短時間充電が可能と
なる。
In order for the carbon material used as the negative electrode material of the lithium ion secondary battery to form a graphite-lithium intercalation compound having a theoretical value of C 6 Li, it is desired that the crystallinity of graphite is extremely high. In addition, in order to perform quick charging, it is desirable that the carbon material be fine particles and have an outer surface area as large as possible. The carbon material for negative electrodes used in the present invention is flaky graphite fine particles, which are exfoliated and finely divided without impairing the high crystallinity of natural graphite. As a result, when the flaky graphite fine particles are molded and used for an electrode, it becomes possible to do the lithium ion doping almost as the theoretical value, and because of the large outer surface area, the lithium ion doping and the dope dope are smoothly performed. A large charge / discharge capacity and short-time charge are possible.

【0009】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0010】本発明のリチウムイオン二次電池の負極材
料に用いられる炭素材料は高結晶性の薄片状黒鉛微粒子
である。該薄片状黒鉛微粒子の002面の結晶格子定数
0( 002)は0.670nm〜0.673nmであること
が望ましい。結晶格子定数C 0(002)が0.673nmを
超える場合、リチウムイオンのドーピング量が不足し、
充分な充電量が得られないのみならず、充電量に対する
放電量の割合(効率)が低くなるため、リチウムイオン
二次電池の電気容量が低下する傾向にある。
The negative electrode material of the lithium ion secondary battery of the present invention
The carbon material used in the material is highly crystalline flaky graphite fine particles.
Is. Crystal lattice constant of 002 plane of the flaky graphite fine particles
C0 ( 002)Is 0.670 nm to 0.673 nm
Is desirable. Crystal lattice constant C 0 (002)Is 0.673 nm
If it exceeds, the doping amount of lithium ions will be insufficient,
Not only can you not get enough charge,
Since the discharge rate (efficiency) becomes low, lithium ion
The electric capacity of the secondary battery tends to decrease.

【0011】該薄片状黒鉛微粒子は結晶格子定数から判
断すると極めて結晶性の高い黒鉛である。これは該薄片
状黒鉛微粒子が黒鉛のC軸方向に拡大し結合力の弱まっ
た膨張黒鉛のAB面に沿って黒鉛結晶性を損なうことな
く剥離して得られた、極めて薄い層状の黒鉛構造物であ
ることに起因する。該薄片状黒鉛微粒子の厚みは1μm
以下であり、好ましくは0.1μm以下であり、かつ最
大粒子長は100μm以下、好ましくは50μm以下で
ある。
The flaky graphite fine particles are graphite having extremely high crystallinity when judged from the crystal lattice constant. This is an extremely thin layered graphite structure obtained by exfoliating the flaky graphite fine particles along the AB plane of the expanded graphite having a weakened binding force by expanding in the C-axis direction of the graphite without impairing the crystallinity of the graphite. It is due to The thickness of the flaky graphite fine particles is 1 μm
Or less, preferably 0.1 μm or less, and the maximum particle length is 100 μm or less, preferably 50 μm or less.

【0012】このように、該薄片状黒鉛微粒子はアスペ
クト比の高い形状を有しているものである。該薄片状黒
鉛微粒子の平均的な粒子サイズを厚さ0.1μm、最大
長を20μmと仮定したとき、該薄片状黒鉛微粒子は同
一体積の球に比べて約14倍、同じく立方体に比べて約
12倍の外表面積を有している。この外表面積の大きさ
がリチウムイオンのドーピング、及び脱ドーピングを迅
速に進めることに有効に寄与している。また結晶性が高
いので、リチウムイオンのドーピングはステージ1で行
われ、ほぼ理論値のリチウムイオンが薄片状黒鉛微粒子
中に導入される。更に、微粒子であることにより外表面
積が大きくなり、ドーピングが速やかに完了する。これ
らのことから、該薄片状黒鉛微粒子を成形して負極とし
て用いれば、高い電位とほぼ理論値通りの電気容量とを
具備し、サイクル寿命が長くかつ迅速な充放電が可能な
リチウムイオン二次電池が得られる。
As described above, the flaky graphite fine particles have a high aspect ratio. Assuming that the average particle size of the flaky graphite fine particles is 0.1 μm in thickness and the maximum length is 20 μm, the flaky graphite fine particles are approximately 14 times as large as a sphere having the same volume, and also approximately as large as a cube. It has 12 times the outer surface area. This large external surface area effectively contributes to the rapid progress of lithium ion doping and dedoping. Moreover, since the crystallinity is high, the doping of lithium ions is performed in stage 1, and lithium ions of approximately the theoretical value are introduced into the flaky graphite fine particles. Further, since the particles are fine particles, the outer surface area is increased, and the doping is completed quickly. From these facts, when the flaky graphite fine particles are molded and used as a negative electrode, a lithium ion secondary battery having a high electric potential and an electric capacity almost as the theoretical value and having a long cycle life and capable of rapid charge and discharge is obtained. A battery is obtained.

【0013】また該薄片状黒鉛を成形して負極とするリ
チウムイオン二次電池の充放電の特徴として、階段状の
電位の変化が認められることが挙げられる。これはリチ
ウムイオンの本薄片状黒鉛微粒子へのドーピング(イン
ターカレイション)、脱ドーピング(ディスインターカ
レイション)のステージに対応しているとみられる。
A feature of charge / discharge of a lithium ion secondary battery in which the flaky graphite is molded into a negative electrode is that a stepwise change in electric potential is recognized. This seems to correspond to the stages of doping (intercalation) and dedoping (disintercalation) of the thin flaky graphite particles with lithium ions.

【0014】本発明に用いられる薄片状黒鉛微粒子は膨
張黒鉛から製造することができる。膨張黒鉛の製造方法
については特に限定されるものではないが、膨張黒鉛
は、例えば、天然鱗片状黒鉛、キッシュ黒鉛、高結晶性
熱分解黒鉛等の黒鉛材料を硫酸と硝酸の混酸で処理する
方法や、硫酸中で電気化学的に黒鉛を酸化して得られる
黒鉛−硫酸の層間化合物や、黒鉛−テトラヒドロフラン
等の黒鉛−有機物の層間化合物を外熱式あるいは内熱式
炉で、更にはレーザー加熱等により急速加熱処理して膨
張化させる等の公知の方法に従って製造することができ
る。
The flaky graphite fine particles used in the present invention can be produced from expanded graphite. The method for producing expanded graphite is not particularly limited, but expanded graphite is, for example, a method of treating a graphite material such as natural flake graphite, Kish graphite, or highly crystalline pyrolytic graphite with a mixed acid of sulfuric acid and nitric acid. Or an intercalation compound of graphite-sulfuric acid obtained by electrochemically oxidizing graphite in sulfuric acid or an intercalation compound of graphite-organic substance such as graphite-tetrahydrofuran in an externally heated or internally heated furnace, and further by laser heating. It can be produced according to a known method such as rapid heat treatment for expansion by the above method.

【0015】使用する膨張黒鉛粒子の嵩密度は該膨張黒
鉛の製造方法、貯蔵あるいは輸送、取扱方法等によって
も異なるが、分散溶媒の浸漬の容易さ、得られる薄片状
黒鉛微粒子の好ましい要求性能の観点から0.01g/
cm3 以下、更に好ましくは0.008g/cm3 以下
である。
The bulk density of the expanded graphite particles to be used varies depending on the manufacturing method of the expanded graphite, storage or transportation, handling method, etc., but it is easy to immerse the dispersion solvent, and preferable performance requirements of the obtained flaky graphite fine particles. From a viewpoint of 0.01 g /
cm 3 or less, more preferably 0.008 g / cm 3 or less.

【0016】該薄片状黒鉛微粒子は、かかる方法等で製
造された膨張黒鉛を薄片化し、かつ微粒子化することに
より得られる。微粒子化の方法としては、例えば膨張黒
鉛を超音波を用いて破砕する方法や、メディアを用いて
磨砕する方法等がある。
The flaky graphite fine particles are obtained by exfoliating expanded graphite produced by such a method into fine particles. Examples of the method of forming fine particles include a method of crushing expanded graphite by using ultrasonic waves, a method of grinding by using a medium, and the like.

【0017】超音波を用いて破砕する方法は、膨張黒鉛
を液体に浸漬し、これに超音波を照射する方法である。
液体としては、水のほか、アセトン等のケトン類、メチ
ルアルコール、エチルアルコール、ブチルアルコール等
のアルコール類、ヘキサン等のパラフィン系溶剤等を用
いることができるが、なかでも水又はアルコール類が好
ましい。照射電力、照射量は本発明において規定する黒
鉛微粒子の形状に破砕されるのに充分な量であり、これ
らは実施に当たり適宜決定するべきものである。
The method of crushing using ultrasonic waves is a method of immersing expanded graphite in a liquid and irradiating it with ultrasonic waves.
As the liquid, in addition to water, ketones such as acetone, alcohols such as methyl alcohol, ethyl alcohol, butyl alcohol, and paraffinic solvents such as hexane can be used, and among them, water or alcohols is preferable. The irradiation power and the irradiation amount are sufficient for crushing into the shape of the graphite fine particles specified in the present invention, and these should be appropriately determined in practice.

【0018】メディアを用いて磨砕する方法は、鋼球や
アルミナ等のセラミックス球、或は棒状の鋼やセラミッ
クスから成る耐摩耗性の高いメディアを用い、ボールミ
ル又はヘンシェルミキサー等の磨砕機で湿式にて膨張黒
鉛を粉砕するものである。
The method of grinding using media is to use a ball having high wear resistance such as steel balls or ceramic balls such as alumina, or rod-shaped steel or ceramics, and wet with a grinding machine such as a ball mill or a Henschel mixer. The crushed expanded graphite is.

【0019】超音波を用いて破砕して得られる黒鉛微粒
子は嵩高く、ハンドリング性に難があるが、これを圧密
化することで本発明の薄片状黒鉛微粒子として使用する
ことができる。超音波法で調製された薄片状黒鉛微粒子
の厚みは通常0.1μm以下であり、アスペクト比の大
きな薄片状黒鉛微粒子が得られるのがこの方法の特徴で
ある。
The graphite fine particles obtained by crushing with ultrasonic waves are bulky and have difficulty in handling, but they can be used as the flaky graphite fine particles of the present invention by consolidating them. The thickness of the flaky graphite fine particles prepared by the ultrasonic method is usually 0.1 μm or less, and the feature of this method is that the flaky graphite fine particles having a large aspect ratio can be obtained.

【0020】また、メディアを用いて膨張黒鉛を磨砕す
る方法により得られる黒鉛微粒子も好ましいものであ
る。磨砕時間が長時間になると黒鉛の結晶性を損なうこ
とがあるが、結晶性が多少損なわれたものでも、黒鉛結
晶格子定数C0(002)が0.673nm以下であり、かつ
黒鉛微粒子の厚みが1μm以下、最大粒子長が100μ
m以下の薄片状のものであれば、用いることのできる場
合がある。最大粒子長が100μmを超えると黒鉛微粒
子の厚みを1μm以下とすることは困難であり、黒鉛微
粒子のアスペクト比は低下する。その結果、外表面積が
低下し、迅速な充放電や理論量のリチウムイオンのドー
ピングが行われ難く、このため充放電容量の大きなリチ
ウムイオン二次電池を製造することが困難になる。
Further, graphite fine particles obtained by a method of grinding expanded graphite using a medium are also preferable. If the grinding time is long, the crystallinity of graphite may be impaired. Even if the crystallinity is somewhat impaired, the graphite crystal lattice constant C 0 (002) is 0.673 nm or less, and Thickness is 1μm or less, maximum particle length is 100μ
If it is a flaky sheet having a size of m or less, it may be used. If the maximum particle length exceeds 100 μm, it is difficult to reduce the thickness of the graphite fine particles to 1 μm or less, and the aspect ratio of the graphite fine particles decreases. As a result, the outer surface area is reduced, and rapid charging / discharging or doping with a theoretical amount of lithium ions is difficult to perform, which makes it difficult to manufacture a lithium ion secondary battery having a large charge / discharge capacity.

【0021】本発明において最も好ましい該薄片状黒鉛
微粒子は、膨張黒鉛を湿式で一対の回転式円盤状砥石で
短時間に磨砕して得られるものである。この方法によれ
ば、天然黒鉛の極めて高い結晶性を維持したままで、厚
みが1μm以下、最大粒子長が100μm以下でありな
がら、電極調製時の計量性、混合性、混練性といったハ
ンドリング性の良好な嵩密度の高い薄片状黒鉛微粒子を
得ることができる。
The most preferable flaky graphite fine particles in the present invention are obtained by wet-grinding expanded graphite with a pair of rotary disc-shaped grindstones in a short time. According to this method, while maintaining the extremely high crystallinity of natural graphite, the thickness is 1 μm or less and the maximum particle length is 100 μm or less. It is possible to obtain fine flaky graphite fine particles having a high bulk density.

【0022】本発明に用いられる薄片状黒鉛微粒子の嵩
密度は0.02g/cm3 〜0.6g/cm3 であるこ
とが望ましく、特に0.2g/cm3 〜0.6g/cm
3 であることがより望ましい。薄片状黒鉛微粒子の嵩密
度が0.02g/cm3 未満の場合でも、負極材料とし
て使用できないことはないが、負極材料を調製するとき
のハンドリング性に劣るのみならず、バインダー等との
均一混合が困難となる。また、均一混合するために長時
間の磨砕混合や粉砕混合を行うと、黒鉛の結晶性が損な
われる虞がある。したがって薄片状黒鉛微粒子はできる
限り圧密化され、嵩密度が0.02g/cm3 以上のも
の、更に好ましくは0.2g/cm3 以上であることが
望ましい。一方、薄片状黒鉛微粒子の嵩密度が0.6g
/cm3を超えることは難しく、工業的に実施可能な嵩
密度の上限は0.6g/cm3 といえる。
[0022] It is desirable bulk density of the flaky graphite particles used in the present invention is 0.02g / cm 3 ~0.6g / cm 3 , especially 0.2g / cm 3 ~0.6g / cm
3 is more preferable. Even if the flake graphite fine particles have a bulk density of less than 0.02 g / cm 3 , they cannot be used as a negative electrode material, but they are not only poor in handleability when preparing a negative electrode material, but also uniformly mixed with a binder or the like. Will be difficult. Further, if milling and grinding and mixing are carried out for a long time for uniform mixing, the crystallinity of graphite may be impaired. Therefore, it is desirable that the flake graphite fine particles are as compacted as possible and have a bulk density of 0.02 g / cm 3 or more, and more preferably 0.2 g / cm 3 or more. On the other hand, the flake graphite fine particles have a bulk density of 0.6 g.
/ Cm 3 is difficult, and the upper limit of the bulk density that can be industrially applied is 0.6 g / cm 3 .

【0023】本発明に用いられる薄片状黒鉛微粒子は前
記方法で製造されたものが好ましいが、更に好ましくは
膨張黒鉛を超音波を用いて破砕する方法、メディアを用
いて磨砕する方法、又は湿式で一対の回転式円盤状砥石
で短時間に磨砕する方法で得られた薄片状黒鉛微粒子を
更に2000℃ないし2800℃で0.1〜10時間程
度、不活性雰囲気中でアニーリングし、更に結晶性を高
めた薄片状黒鉛微粒子である。2000℃未満ではアニ
ーリング効果は充分ではなく、また、2800℃を超え
てもアニーリングの効果は変わらないので同温度を超え
る温度で処理する必要はない。
The flaky graphite fine particles used in the present invention are preferably those produced by the above-mentioned method, but more preferably, a method of crushing expanded graphite using ultrasonic waves, a method of grinding using media, or a wet method. The flaky graphite fine particles obtained by grinding with a pair of rotary disk-shaped grindstones in a short time at 2000 ° C. to 2800 ° C. for about 0.1 to 10 hours are further annealed in an inert atmosphere for further crystallization. It is flake graphite fine particles with improved properties. If it is less than 2000 ° C, the annealing effect is not sufficient, and if it exceeds 2800 ° C, the effect of annealing does not change. Therefore, it is not necessary to treat at a temperature higher than the same temperature.

【0024】上記のようにして得られる薄片状黒鉛微粒
子は電気的に大きな異方性を有しており、薄片状黒鉛微
粒子を加圧成型すると成型圧と垂直方向に黒鉛のAB面
が配向するため、成型圧と垂直方向の体積抵抗は著しく
低くなる。本発明においては、500kg/cm2 の圧
力で成型した場合、成型圧と垂直方向の体積抵抗と成型
圧と平行方向の体積抵抗との比の値が1×10-6〜10
-4のものが好ましい。この異方性は薄片状黒鉛微粒子の
形態的な特徴に加え、薄片状黒鉛微粒子が極めて結晶性
が高く、黒鉛結晶のAB面内方向とC軸方向との電気抵
抗の著しい異方性を反映することからなる薄片状黒鉛微
粒子の特性である。
The flaky graphite fine particles obtained as described above have a large electrical anisotropy, and when the flaky graphite fine particles are pressure-molded, the AB plane of the graphite is oriented in the direction perpendicular to the molding pressure. Therefore, the molding pressure and the volume resistance in the vertical direction are significantly reduced. In the present invention, when molding is performed at a pressure of 500 kg / cm 2 , the ratio of the molding pressure to the vertical volume resistance and the molding pressure to the parallel volume resistance is 1 × 10 −6 to 10 6.
-4 is preferable. This anisotropy reflects not only the morphological characteristics of the flaky graphite fine particles but also the extremely high crystallinity of the flaky graphite fine particles, which reflects the remarkable anisotropy of electric resistance between the in-plane direction of the graphite crystal and the C-axis direction. Is a characteristic of flake graphite fine particles.

【0025】上記の薄片状黒鉛微粒子を用いてリチウム
イオン二次電池の負極材料を調製する方法は特に限定さ
れないが、例えば該薄片状黒鉛微粒子にバインダーと溶
剤を加え充分に混練後、金属メッシュ等の集電体に圧着
して負極とすることができる。 バインダーには公知の
材料、例えば各種ピッチ、ポリテトラフルオロエチレン
等が用いられるが、中でもポリビニリデンフルオライド
(PVDF)が最適である。黒鉛微粒子とバインダーと
の配合比(重量)は100:2〜100:10とするこ
とが好ましい。又、圧着圧力は500〜10000kg
f/cm2とすることが好ましい。
The method for preparing a negative electrode material for a lithium ion secondary battery using the above flaky graphite fine particles is not particularly limited. For example, a binder and a solvent are added to the flaky graphite fine particles and sufficiently kneaded, and then a metal mesh or the like is used. It can be used as a negative electrode by pressure bonding to the current collector. Known materials such as various pitches and polytetrafluoroethylene are used for the binder, and among them, polyvinylidene fluoride (PVDF) is most suitable. The compounding ratio (weight) of the graphite fine particles and the binder is preferably 100: 2 to 100: 10. Also, the crimping pressure is 500 to 10,000 kg
It is preferably f / cm 2 .

【0026】超音波を用いて破砕して得られる黒鉛微粒
子と、湿式で一対の回転式円盤状砥石で短時間に磨砕し
て得られる黒鉛微粒子とは圧縮成形性に富むので、バイ
ンダーを用いることなく集電体に圧着して負極材料とす
ることができる場合がある。この場合には、バインダー
を用いていないのでハイレートな性能を発現することが
できる。
Since graphite fine particles obtained by crushing using ultrasonic waves and graphite fine particles obtained by grinding with a pair of wet rotary disk-shaped grindstones in a short time have high compression moldability, a binder is used. In some cases, the negative electrode material can be obtained by pressure-bonding to the current collector. In this case, since no binder is used, high rate performance can be exhibited.

【0027】上記の本発明の負極材料は、正極と、負極
と、電解液とを用いる公知の構成のリチウムイオン二次
電池の負極として二次電池に組み込まれ、使用されるも
のである。
The above-mentioned negative electrode material of the present invention is used by being incorporated in a secondary battery as a negative electrode of a lithium ion secondary battery having a known structure using a positive electrode, a negative electrode and an electrolytic solution.

【0028】正極材料は特に限定されないが、LiCo
2 ,LiNiO2 ,LiMn2 4 等のリチウム含有
酸化物等が好適である。粉末状の正極材料はバインダー
のほかに必要があれば導電材、溶剤等を加えて充分に混
練後、集電材と共に成型して調製することができる。こ
れらは公知の技術である。
The positive electrode material is not particularly limited, but LiCo
O2 , LiNiO2 , LiMn2 O Four Lithium content such as
Oxides and the like are preferable. Powder positive electrode material is binder
In addition to the above, add conductive materials, solvents, etc., if necessary, and mix thoroughly.
After kneading, it can be prepared by molding together with a current collector. This
These are known techniques.

【0029】またセパレーターについても特に限定はな
く、公知の材料を用いることができる。
The separator is also not particularly limited, and known materials can be used.

【0030】本発明に用いられる非水溶媒としては、リ
チウム塩を溶解できる非プロトン性低誘電率の公知の溶
媒が用いられる。例えばエチレンカーボネイト、プロピ
レンカーボネイト、ジエチレンカーボネイト、アセトニ
トリル、プロピオニトリル、テトラヒドロフラン、γ−
ブチロラクトン、2−メチルテトラヒドロフラン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラ
ン、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、ニトロメタン、N,N−ジメチルホルムアミド、ジ
メチルスルホキシド等の溶媒が単独で、あるいは二種類
以上が混合して用いられる。
As the non-aqueous solvent used in the present invention, a known aprotic solvent having a low dielectric constant and capable of dissolving a lithium salt is used. For example, ethylene carbonate, propylene carbonate, diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-
Butyrolactone, 2-methyltetrahydrofuran, 1,
3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methylsulfolane, nitromethane, N, N-dimethylformamide, dimethylsulfoxide, etc. The solvent may be used alone or in combination of two or more kinds.

【0031】電解質として用いられるリチウム塩にはL
iClO4 ,LiAsF5 ,LiPF6 ,LiBF4
LiB(C654 ,LiCl,LiBr,CH3
3Li,CF3 SO3 Li等があり、これらの塩が単
独に、あるいは二種類以上の塩が混合して用いられる。
The lithium salt used as the electrolyte is L
iClO 4 , LiAsF 5 , LiPF 6 , LiBF 4 ,
LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 S
There are O 3 Li, CF 3 SO 3 Li and the like, and these salts may be used alone or as a mixture of two or more kinds.

【0032】なお、各物性値は以下の方法で測定した。Each physical property value was measured by the following methods.

【0033】嵩密度: 嵩密度は50mlのガラス製メ
スシリンダーに解砕し乾燥した試料を入れてタッピング
し、容量が変化しなくなったところでサンプル容量を測
定し、サンプル重量をサンプル容量で除した値を嵩密度
とした。
Bulk Density: The bulk density is a value obtained by dividing the sample weight by the sample volume when the sample that has been crushed and dried is put into a 50 ml glass graduated cylinder and tapped, and when the volume does not change, the sample volume is measured. Was defined as the bulk density.

【0034】真比重: ブタノール置換法により測定し
た。
True specific gravity: Measured by the butanol substitution method.

【0035】結晶格子定数C(002) 、結晶子の大きさL
C(002):東芝製X線回折装置XC−4OHを用い、Cu
−Kα線をNiで単色化し、高純度シリコンを標準物質
として学振法で結晶格子定数C(002) 及び結晶子の大き
さLC(002)を測定した。
Crystal lattice constant C (002) , crystallite size L
C (002) : Toshiba X-ray diffractometer XC-4OH, Cu
The −Kα line was monochromated with Ni, and the crystal lattice constant C (002) and the crystallite size L C (002) were measured by the Gakshin method using high-purity silicon as a standard substance.

【0036】厚み:日本電子製JSMー5300走査式
電子顕微鏡で試料を観察し、試料の厚みと最大粒子長を
測定した。
Thickness: The sample was observed with a JSM-5300 scanning electron microscope manufactured by JEOL Ltd., and the thickness and maximum particle length of the sample were measured.

【0037】平均粒子長及び最大粒子長: 日本電子製
JSM−5300走査式電子顕微鏡で観察した画像をニ
レコ社製画像解析装置ルーゼクッスIII Uで解析して求
めた。
Average particle length and maximum particle length: An image observed by a JSM-5300 scanning electron microscope manufactured by JEOL Ltd. was analyzed and determined by an image analyzer Luzekus III U manufactured by Nireco.

【0038】[0038]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 (実施例1)中国産鱗片状天然黒鉛を硫酸9重量部と硝
酸1重量部の混酸で2時間処理して黒鉛−硫酸層間化合
物を得、これを水洗、乾燥後、800℃の電気炉に投入
し加熱膨張処理を行い、嵩密度0.004g/cm3
粒子長1〜15mmの膨張黒鉛を得た。この膨張黒鉛3
重量部に対して水を97重量部添加して膨張黒鉛を水に
浸漬した後、愛工舎製作所製25S型カッターミキサー
で1分間膨張黒鉛の粗粉砕を行い、膨張黒鉛−水スラリ
ーを得た。続いて増幸産業製MKZA−10−15型マ
イクログラインダーを用い、以下の条件で膨張黒鉛−水
スラリーを磨砕した。グラインダー:MKGS80、グ
ラインダー間クリアランス:60μm,グラインダー回
転数:1200rpm、膨張黒鉛−水スラリーのグライ
ンダー内滞留時間:20秒。
The present invention will be described in more detail with reference to the following examples. Example 1 Chinese flaky natural graphite was treated with a mixed acid of 9 parts by weight of sulfuric acid and 1 part by weight of nitric acid for 2 hours to obtain a graphite-sulfuric acid intercalation compound, which was washed with water, dried, and then placed in an electric furnace at 800 ° C. It is charged and subjected to heat expansion treatment to obtain a bulk density of 0.004 g / cm 3 ,
Expanded graphite having a particle length of 1 to 15 mm was obtained. This expanded graphite 3
After adding 97 parts by weight of water to the parts by weight and immersing the expanded graphite in the water, the expanded graphite was roughly pulverized for 1 minute with a 25S type cutter mixer manufactured by Aikosha Seisakusho Co., Ltd. to obtain an expanded graphite-water slurry. Subsequently, the expanded graphite-water slurry was ground under the following conditions using a MKZA-10-15 type micro grinder manufactured by Masuyuki Sangyo. Grinder: MKGS80, clearance between grinders: 60 μm, grinder rotation speed: 1200 rpm, residence time of expanded graphite-water slurry in the grinder: 20 seconds.

【0039】磨砕された膨張黒鉛を110℃で1時間乾
燥して薄片状黒鉛微粒子を得た。
The crushed expanded graphite was dried at 110 ° C. for 1 hour to obtain flaky graphite fine particles.

【0040】得られた薄片状黒鉛微粉末の性状は、嵩密
度: 0.25g/cm3 、真比重は2.20、結晶格
子定数C0(002):0.672nm、結晶子の大きさL
C(002):61nm、厚み平均:0.15μm、平均粒子
長:22μm、最大粒子長:80μm、500kg/c
2 で加圧成型した試料の加圧方向と垂直方向の体積抵
抗:5.74×10-4Ω・cm、平行方向の体積抵抗:
1.60×10Ω・cmであり成型圧垂直方向と成型圧
平行方向の体積抵抗の比の値が3.59×10-5であっ
た。
The properties of the obtained flake graphite fine powder are as follows: bulk density: 0.25 g / cm 3 , true specific gravity: 2.20, crystal lattice constant C 0 (002) : 0.672 nm, crystallite size. L
C (002) : 61 nm, thickness average: 0.15 μm, average particle length: 22 μm, maximum particle length: 80 μm, 500 kg / c
Volume resistance of the sample pressure-molded at m 2 in the direction perpendicular to the pressing direction: 5.74 × 10 −4 Ω · cm, volume resistance in the parallel direction:
The value was 1.60 × 10 Ω · cm, and the ratio of the volume resistance in the molding pressure vertical direction to the molding pressure parallel direction was 3.59 × 10 −5 .

【0041】この薄片状黒鉛微粒子のリチウムイオン二
次電池負極材料としての性能を検討するために、薄片状
黒鉛を正極、金属リチウムを負極として非水溶媒電池を
作製して充放電試験を行い、黒鉛極へのリチウムイオン
のドーピング(インターカレイション)と脱ドーピング
(ディスインターカレイション)容量を測定した。
In order to study the performance of the flaky graphite fine particles as a negative electrode material for a lithium ion secondary battery, a non-aqueous solvent battery was prepared using flaky graphite as a positive electrode and metallic lithium as a negative electrode, and a charge / discharge test was conducted. The lithium ion doping (intercalation) and dedoping (disintercalation) capacities of the graphite electrode were measured.

【0042】薄片状黒鉛を用いた正極は以下の方法で調
製した。薄片状黒鉛微粒子40重量部にバインダーとし
てエチレンプロピレンジモノマ1重量部と少量のジメチ
ルホルムアミドを加えよく混合してペースト状にし、円
形のステンレスメッシュ(2.5cm2 )に1tonf
/cm2 で加圧成型した後、200℃で2時間真空乾燥
して正極とした。
A positive electrode using flaky graphite was prepared by the following method. To 40 parts by weight of flake graphite fine particles, 1 part by weight of ethylene propylene dimonomer as a binder and a small amount of dimethylformamide were added and mixed well to form a paste, and 1 tonf was placed on a circular stainless mesh (2.5 cm 2 ).
After pressure molding at / cm 2 , it was vacuum dried at 200 ° C for 2 hours to obtain a positive electrode.

【0043】負極には金属リチウムを用いた。電解溶媒
にはエチレンカーボネイトとジメチルカーボネイトの体
積比1:2の混合溶媒を用い、電解質にはLi PF6
を用い、濃度は10mol/1とした。またセパレータ
ーには多孔質ポリプロピレン不織布を用い、グラスファ
イバー濾紙に電解液を含浸させ、アルゴン雰囲気下にて
コイン型セルを作製し、充電、放電時の電流密度を0.
4mA/cm2 とし、充放電試験を行った。
Metallic lithium was used for the negative electrode. A mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 was used as an electrolytic solvent, and Li PF 6 was used as an electrolyte.
Was used and the concentration was set to 10 mol / 1. A porous polypropylene non-woven fabric is used as a separator, a glass fiber filter paper is impregnated with an electrolytic solution, and a coin-type cell is manufactured under an argon atmosphere.
A charging / discharging test was performed at 4 mA / cm 2 .

【0044】初期充電量は471mA・h/gであっ
た。放電は1.5Vでカットしてサイクル試験を行った
が、放電量は1サイクル目は363mA・h/gであ
り、3サイクル目から346mA・h/gで安定し、効
率(放電量/充電量×100%)は98.9%であっ
た。60サイクルの試験を行ったが、60サイクル目ま
での放電量の低下は認められなかった。3サイクル目の
充放電曲線を図1に示す。 (実施例2)実施例1で調製した膨張黒鉛3重量部に対
し水を97重量部添加して膨張黒鉛を水に浸漬した後、
周波数28〜40KHz(出力500W)の超音波を2
時間作用させ、更に湿式で振動式ボールミルで1時間処
理し圧密化を行った後、110℃で1時間乾燥させ、薄
片状黒鉛微粒子を得た。
The initial charge amount was 471 mA · h / g. The discharge was cut at 1.5 V and a cycle test was performed. The discharge amount was 363 mA · h / g in the first cycle, stable at 346 mA · h / g from the third cycle, and the efficiency (discharge amount / charge (Amount x 100%) was 98.9%. A 60-cycle test was conducted, but no decrease in the discharge amount was observed up to the 60th cycle. The charge / discharge curve at the third cycle is shown in FIG. (Example 2) 97 parts by weight of water was added to 3 parts by weight of the expanded graphite prepared in Example 1 and the expanded graphite was immersed in water.
2 ultrasonic waves with a frequency of 28-40 KHz (output 500 W)
After being left to act for a time, it was further treated by a wet vibration type ball mill for 1 hour for consolidation, and then dried at 110 ° C. for 1 hour to obtain flaky graphite fine particles.

【0045】得られた薄片状黒鉛微粒子の性状は、嵩比
重:0.23、真比重は2.25、結晶格子定数C
0(002)0.670nm、結晶子の大きさLC(002):69
nm、厚み平均:0.07μm、平均粒子長:18μ
m,最大粒子長:56μm,500kg/cm2 で加圧
成型した試料の加圧方向と垂直方向の体積抵抗:5.2
0×10-4Ω・cm、平行方向の体積抵抗:1.14×
10Ω・cmであり成型圧垂直方向と成型圧平行方向の
体積抵抗の比の値は4.56×10-5であった。
The properties of the obtained flake graphite fine particles are as follows: bulk specific gravity: 0.23, true specific gravity: 2.25, crystal lattice constant C
0 (002) 0.670 nm, crystallite size L C (002) : 69
nm, average thickness: 0.07 μm, average particle length: 18 μ
m, maximum particle length: 56 μm, volume resistance in the direction perpendicular to the pressing direction of the sample pressure-molded at 500 kg / cm 2 : 5.2
0 × 10 −4 Ω · cm, volume resistance in parallel direction: 1.14 ×
The value of the volume resistance in the direction perpendicular to the molding pressure and the direction parallel to the molding pressure was 4.5 Ω × 10 −5 .

【0046】この薄片状黒鉛微粒子を用いて、実施例1
と同様の方法で正極を調製した。更に、実施例1と同様
の方法でコイン型セルを作製し、実施例1と同様の方法
で充放電試験を行った。
Using the flaky graphite fine particles, Example 1
A positive electrode was prepared in the same manner as in. Furthermore, a coin-type cell was produced by the same method as in Example 1, and a charge / discharge test was conducted by the same method as in Example 1.

【0047】初期充電量は405mA・h/gであっ
た。放電は1.5Vでカットしてサイクル試験を行った
が、放電量は1サイクル目は346mA・h/gであ
り、3サイクル目から354mA・h/gで安定し、効
率(放電量/充電量×100%)は98.9%であっ
た。60サイクルの試験を行ったが、60サイクル目ま
で放電量の低下は認められなかった。 (実施例3)実施例1で調製した薄片状黒鉛微粒子をア
ルゴン気流中2400℃で120分間熱処理してアニー
リングを行った。アニーリングによって得られた薄片状
黒鉛微粒子の性状は、嵩比重:0.25、真比重:2.
25、結晶格子定数C0(002):0.670nm、結晶格
子の大きさLC(002):90nm、厚み平均:0.15μ
m、平均粒子長22μm、最大粒子長80μm、500
kg/cm2 で加圧成型した試料の加圧方向と垂直方向
の体積抵抗:3.83×10-4Ω・cm、平行方向の体
積抵抗:1.77×10Ω・cmであり成型圧垂直方向
と成型圧平行方向の体積抵抗の比の値は2.16×10
-4であった。
The initial charge amount was 405 mA · h / g. The discharge was cut at 1.5 V and a cycle test was performed. The discharge amount was 346 mA · h / g in the first cycle, stable at 354 mA · h / g from the third cycle, and the efficiency (discharge amount / charge (Amount x 100%) was 98.9%. The test was conducted for 60 cycles, but no decrease in the discharge amount was observed until the 60th cycle. (Example 3) The flaky graphite fine particles prepared in Example 1 were annealed by heat treatment at 2400 ° C for 120 minutes in an argon stream. The properties of the flaky graphite fine particles obtained by annealing are as follows: bulk specific gravity: 0.25, true specific gravity: 2.
25, crystal lattice constant C 0 (002) : 0.670 nm, crystal lattice size L C (002) : 90 nm, average thickness: 0.15 μ
m, average particle length 22 μm, maximum particle length 80 μm, 500
The volume resistance in the direction perpendicular to the pressure direction of the sample pressure-molded at kg / cm 2 is 3.83 × 10 −4 Ω · cm, the volume resistance in the parallel direction is 1.77 × 10 Ω · cm, and the molding pressure is perpendicular. Value of the volume resistance in the direction parallel to the molding pressure is 2.16 × 10
It was -4 .

【0048】この薄片状黒鉛微粒子を用いて、実施例1
と同様の方法で正極を調製し、また実施例1と同様の方
法でコイン型セルを作製し、実施例1と同様の方法で充
放電試験を行った。
Using the flaky graphite fine particles, Example 1
A positive electrode was prepared in the same manner as in Example 1, a coin-type cell was prepared in the same manner as in Example 1, and a charge / discharge test was performed in the same manner as in Example 1.

【0049】初期充電量は382mA・h/gであっ
た。放電は1.5Vでカットしてサイクル試験を行っ
た。放電量は1サイクル目は368mA・h/gであ
り、3サイクル目から370mA・h/gで安定し、効
率(放電量/充電量×100%)は98.9%であっ
た。60サイクルの試験を行ったが、60サイクル目ま
で放電量の低下は認められなかった。 (比較例1)実施例1で用いた中国産天然黒鉛を中央化
工社製振動式ボールミルを用い、乾式で2時間粉砕し
た。得られた黒鉛微粉末の物性は以下の通りであった。
嵩密度:0.250g/cm3 、真比重:2.20、厚
み:2.50μm、平均粒子長:25μm、最大粒子
長:150μm、結晶格子定数C0(002):0.672n
m、結晶子の大きさLC(002):91nm、500kg/
cm2 で加圧成型した試料の加圧方向と平行方向の体積
抵抗:9.6×10-3Ω・cm、垂直方向の体積抵抗:
7.1×10-1Ω・cm、成型圧垂直方向と成型圧平行
方向との体積抵抗の比の値は1.35×10-2だった。
The initial charge amount was 382 mA · h / g. The discharge was cut at 1.5 V and a cycle test was conducted. The discharge amount was 368 mA · h / g in the first cycle, was stable at 370 mA · h / g from the third cycle, and the efficiency (discharge amount / charge amount × 100%) was 98.9%. The test was conducted for 60 cycles, but no decrease in the discharge amount was observed until the 60th cycle. (Comparative Example 1) The natural graphite produced in China used in Example 1 was pulverized for 2 hours by a dry method using a vibration type ball mill manufactured by Chuo Kako. The physical properties of the obtained graphite fine powder were as follows.
Bulk density: 0.250 g / cm 3 , true specific gravity: 2.20, thickness: 2.50 μm, average particle length: 25 μm, maximum particle length: 150 μm, crystal lattice constant C 0 (002) : 0.672n
m, crystallite size L C (002) : 91 nm, 500 kg /
cm 2 in pressure molding the pressure direction and the parallel direction of the volume resistivity of the sample: 9.6 × 10 -3 Ω · cm , the vertical volume resistivity:
The value of the volume resistance was 7.1 × 10 −1 Ω · cm and the direction parallel to the molding pressure was 1.35 × 10 −2 .

【0050】この黒鉛微粉末を用いて、実施例1と同様
の方法で負極を調製し、また実施例1と同様の方法でコ
イン型セルを作製し、実施例1と同様の方法で充放電試
験を行った。
Using this graphite fine powder, a negative electrode was prepared in the same manner as in Example 1, coin cells were prepared in the same manner as in Example 1, and charging / discharging was performed in the same manner as in Example 1. The test was conducted.

【0051】初期充電量は290mA・h/gであっ
た。放電は1.5Vでカットしてサイクル試験を行った
が、放電量は1サイクル目は115mA・h/gであ
り、3サイクル目から最大の164mA・h/gとなっ
たが、以後徐々に低下し、60サイクル目には122m
A・h/gまで低下した。
The initial charge amount was 290 mA · h / g. The discharge was cut at 1.5 V and a cycle test was conducted. The discharge amount was 115 mA · h / g in the first cycle and reached 164 mA · h / g, which was the maximum from the third cycle. Decreased, 122m at 60th cycle
It decreased to A · h / g.

【0052】比較例1より、黒鉛微粉末が高い結晶性を
有していても、粉末の厚み、最大粒子長、成形圧垂直方
向と成形圧平行方向の体積抵抗比の値が大きな場合、充
放電容量が低いことが分かる。
From Comparative Example 1, even if the fine graphite powder has high crystallinity, if the powder thickness, maximum particle length, and volume resistance ratio in the direction parallel to the molding pressure and in the direction parallel to the molding pressure are large, the chargeability is high. It can be seen that the discharge capacity is low.

【0053】[0053]

【発明の効果】本発明の負極材料は上記のように構成し
たので、黒鉛の持つ本来の低い電位でリチウムイオンの
ドーピング、脱ドーピングを行なうことができ、従って
より大きなエネルギー密度を有し、且ほぼ理論値通りの
電気容量を有し、更にサイクル寿命の長いリチウムイオ
ン二次電池を製造できる
Since the negative electrode material of the present invention is constructed as described above, it is possible to dope and dedope lithium ions at the original low potential of graphite, and thus has a higher energy density, and It is possible to manufacture a lithium-ion secondary battery that has an electric capacity that is almost the theoretical value and that has a long cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の負極材料を正極に、リチウムを負極に
用いた負極材料評価用ハーフセルの充放電試験における
3サイクル目の充放電曲線を示すグラフである。
FIG. 1 is a graph showing a charge / discharge curve at a third cycle in a charge / discharge test of a half cell for evaluating a negative electrode material using the negative electrode material of the present invention as a positive electrode and lithium as a negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 康二 東京都中央区日本橋室町2丁目1番1号 三井鉱山株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Sakata 2-1-1 Nihombashi Muromachi, Chuo-ku, Tokyo Mitsui Mining Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛微粒子を成形してなるリチウムイオ
ン二次電池用負極材料において、前記黒鉛微粒子の黒鉛
結晶002面の結晶格子定数C0(002)が0.670〜
0.673nmで、黒鉛微粒子の厚みが1μm以下で、
最大粒子長が100μm以下で、かつ該黒鉛微粒子を5
00kg/cm2 で成型したときの成型圧垂直方向と成
型圧平行方向との体積抵抗の比の値が1×10-6〜1×
10-4である薄片状黒鉛微粒子であることを特徴とする
リチウムイオン二次電池用負極材料。
1. A negative electrode material for a lithium-ion secondary battery formed by molding graphite fine particles, wherein the graphite fine particles have a crystal lattice constant C 0 (002) of 002 plane of 0.670 to.
0.673 nm, the thickness of the graphite fine particles is 1 μm or less,
The maximum particle length is 100 μm or less, and the graphite fine particles are 5
The value of the ratio of the volume resistance between the molding pressure vertical direction and the molding pressure parallel direction when molded at 00 kg / cm 2 is 1 × 10 −6 to 1 ×.
A negative electrode material for a lithium-ion secondary battery, which is flake graphite fine particles having a size of 10 −4 .
【請求項2】 薄片状黒鉛微粒子が膨張黒鉛を分散溶媒
中で超音波で粉砕して得られるものである請求項1に記
載の負極材料。
2. The negative electrode material according to claim 1, wherein the flaky graphite fine particles are obtained by pulverizing expanded graphite by ultrasonic waves in a dispersion solvent.
【請求項3】 薄片状黒鉛微粒子が膨張黒鉛をメディア
を用いて湿式で磨砕して得られるものである請求項1に
記載の負極材料。
3. The negative electrode material according to claim 1, wherein the flaky graphite fine particles are obtained by wet-grinding expanded graphite using a medium.
【請求項4】 薄片状黒鉛微粒子が膨張黒鉛を用いて湿
式で一対の円盤状回転砥石で磨砕して得られるものであ
る請求項1に記載の負極材料。
4. The negative electrode material according to claim 1, wherein the flaky graphite fine particles are obtained by wet-grinding expanded graphite with a pair of disk-shaped rotary grindstones.
【請求項5】 薄片状黒鉛微粒子が膨張黒鉛を分散溶媒
中で超音波で粉砕して得られる薄片状黒鉛微粒子、膨張
黒鉛をメディアを用いて湿式で磨砕して得られる薄片状
黒鉛微粒子又は膨張黒鉛を湿式で一対の回転式円盤状砥
石で磨砕して得られる薄片状黒鉛微粒子をさらに200
0〜2800℃でアニーリングして得られるものである
請求項1に記載の負極材料。
5. Flake graphite fine particles obtained by crushing expanded graphite with ultrasonic waves in a dispersion solvent by ultrasonic waves, flaky graphite fine particles obtained by wet-grinding expanded graphite with a medium, or Further 200 pieces of flaky graphite fine particles obtained by grinding expansive graphite with a pair of rotary disc-shaped grindstones
The negative electrode material according to claim 1, which is obtained by annealing at 0 to 2800 ° C.
【請求項6】 請求項1乃至5のいずれかに記載の負極
材料を組み込んでなるリチウムイオン二次電池。
6. A lithium ion secondary battery incorporating the negative electrode material according to any one of claims 1 to 5.
JP7069616A 1995-03-28 1995-03-28 Lithium ion secondary battery and negative electrode material for the secondary battery Expired - Fee Related JP2849561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069616A JP2849561B2 (en) 1995-03-28 1995-03-28 Lithium ion secondary battery and negative electrode material for the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7069616A JP2849561B2 (en) 1995-03-28 1995-03-28 Lithium ion secondary battery and negative electrode material for the secondary battery

Publications (2)

Publication Number Publication Date
JPH08273666A true JPH08273666A (en) 1996-10-18
JP2849561B2 JP2849561B2 (en) 1999-01-20

Family

ID=13407985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069616A Expired - Fee Related JP2849561B2 (en) 1995-03-28 1995-03-28 Lithium ion secondary battery and negative electrode material for the secondary battery

Country Status (1)

Country Link
JP (1) JP2849561B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059040A1 (en) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP2004149796A (en) * 2002-10-28 2004-05-27 Sgl Carbon Ag Mixture for heat accumulating material
JP2005317509A (en) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006269152A (en) * 2005-03-23 2006-10-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010525549A (en) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド Method of depositing silicon on carbon material to form anode for lithium ion battery
JP2011165659A (en) * 2010-02-09 2011-08-25 Samsung Sdi Co Ltd Secondary particle and lithium battery comprising the same
JP2018083721A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059040A1 (en) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
CN1315722C (en) * 2001-01-25 2007-05-16 日立化成工业株式会社 A rtificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
US8211571B2 (en) 2001-01-25 2012-07-03 Hitachi Chemical Company, Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell
US7829222B2 (en) 2001-01-25 2010-11-09 Hitachi Chemical Company, Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell, negative electrode and method for manufacturing same, and lithium secondary cell
JP2004149796A (en) * 2002-10-28 2004-05-27 Sgl Carbon Ag Mixture for heat accumulating material
JP4667071B2 (en) * 2004-03-30 2011-04-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2005317509A (en) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006269152A (en) * 2005-03-23 2006-10-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4707426B2 (en) * 2005-03-23 2011-06-22 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2010525549A (en) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド Method of depositing silicon on carbon material to form anode for lithium ion battery
JP2011165659A (en) * 2010-02-09 2011-08-25 Samsung Sdi Co Ltd Secondary particle and lithium battery comprising the same
US9219272B2 (en) 2010-02-09 2015-12-22 Samsung Sdi Co., Ltd. Secondary particle and lithium battery including secondary particle
JP2018083721A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon

Also Published As

Publication number Publication date
JP2849561B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
EP1487038B1 (en) Positive electrode material, its manufacturing method and lithium batteries
KR101211072B1 (en) Powdered graphite and nonaqueous electrolyte secondary battery
EP1361194A1 (en) Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP2002075364A (en) Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
WO1999004442A1 (en) Non-aqueous electrolyte secondary cell
GB2503138A (en) Spinel-type lithium manganese-based composite oxide
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JPH1012241A (en) Negative electrode material for lithium ion secondary battery
JPH10255800A (en) Negative electrode material for lithium secondary battery
JP4769319B2 (en) Negative electrode material for silicon oxide and lithium ion secondary battery
JP3396076B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
US10115963B2 (en) Negative electrode material for secondary battery and secondary battery using the same
JP2849561B2 (en) Lithium ion secondary battery and negative electrode material for the secondary battery
JP2015219989A (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2002117843A (en) Nonaqueous electrolyte secondary battery
JP4635413B2 (en) Method for producing graphite particles for non-aqueous electrolyte secondary battery negative electrode
JP3528671B2 (en) Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP5053541B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2007191369A (en) Method for producing fine graphite particle
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
JPH10312806A (en) Negative electrode material for lithium ton secondary battery and manufacture therefor
JPH07326356A (en) Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery
JPH10149832A (en) Nonaqueous electrolyte secondary battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees