JPH0827267B2 - 濃度検出装置 - Google Patents

濃度検出装置

Info

Publication number
JPH0827267B2
JPH0827267B2 JP62317106A JP31710687A JPH0827267B2 JP H0827267 B2 JPH0827267 B2 JP H0827267B2 JP 62317106 A JP62317106 A JP 62317106A JP 31710687 A JP31710687 A JP 31710687A JP H0827267 B2 JPH0827267 B2 JP H0827267B2
Authority
JP
Japan
Prior art keywords
concentration
sludge
mud
pipe
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62317106A
Other languages
English (en)
Other versions
JPH01156660A (ja
Inventor
正太郎 漆原
章 熊田
誠一 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP62317106A priority Critical patent/JPH0827267B2/ja
Publication of JPH01156660A publication Critical patent/JPH01156660A/ja
Publication of JPH0827267B2 publication Critical patent/JPH0827267B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は濃度検出装置に関するものである。
B.発明の概要 第1の発明は、送水管路内の混合水濃度を検出する濃
度検出器において、送水管路の接合部に回動可能にした
可動パイプを設け、この可動パイプに濃度検出器を取り
付けて、更に可動パイプを回動させる回転駆動装置を設
けて可動パイプを回動させて送水管路内の濃度を正確に
検出できるようにした濃度検出装置に関する。
また第2の発明は送水管路内の混合水濃度を検出する
濃度検出装置において、送水管路内に出没自在な濃度検
出器を設け、更にこの濃度検出器を出没移動させる駆動
装置を設けて送水管路内の上中下の濃度を検出できるよ
うにして送水管路内の濃度の状態を正確に検出できるよ
うにした濃度検出装置に関する。
C.従来の技術 下水処理場、特に活性汚泥法による下水処理を行って
いる処理場では、汚泥の管理が重要である。下水の有機
物はエアレーションタンク内で活性汚泥中の微生物と反
応するが、その有機物の一部は微生物にとり込まれるの
で汚泥の増加が生ずる。汚泥と上澄水は次段の最終沈殿
池で分離されるが、沈殿した汚泥が増加しているために
その汚泥の全部を前記エアレーションタンクに戻す訳に
はいかなくなる。それ故に、余った汚泥は余剰汚泥とし
て引き抜き、濃縮、消化、脱水、焼却等によって処理さ
れている。この余剰汚泥と対応するのがエアレーション
タンクに返送される返送汚泥で、返送汚泥は余剰汚泥の
引き抜き量の増大に伴って低下する。従って、かかる下
水の処理、汚泥の処理過程においては、余剰汚泥及び返
送汚泥の量を制御するためにその流量と濃度を測定する
必要がある。また、汚泥処理の方法としては、各下水処
理場で行う方式と、複数の下水処理場で発生する汚泥を
集中して処理する方式の2種類があるが、近年では用
地、環境及び効率等の問題から集中処理方式が多く用い
られている。
第6図は集中処理方式を用いた従来の流速制御装置の
一例を示す構成図である。この図において、符号Tは汚
泥を送る送泥側を示し、Rは汚泥を受けて汚泥処理をす
る受泥側である。送泥側Tには汚泥を貯留する汚泥槽10
0、ポンプの作動で汚泥槽100の汚泥を送泥管路102に送
る送泥ポンプ101、処理水を貯留する処理水槽110、ポン
プの作動で処理水槽110内の処理水を送泥管路102に送る
送水ポンプ111が設けられている。送泥管路102は送泥側
Tと受泥側Rを連接し、汚泥を受泥側Rに送る管であ
る。103は送泥管路102に取り付けられ、汚泥の濃度を測
定するための濃度計である。また、受泥側Rはバルブの
作動で汚泥を着泥層107に供給する汚泥バルブ104、バル
ブの作動で処理水を処理水槽に供給する処理水バルブ10
5、水処理設備に用いる処理水を一時貯留する処理水槽1
06及び汚泥処理設備に用いる着泥を一時貯留する着泥槽
107から成る。濃度計103は弁の切換え操作を行うため活
性濃度変化に対して出力応答時間が短く、かつ低濃度か
ら高濃度(処理水濃度から濃縮活性濃度)までの広い検
出感度領域を有するようになっている。この送泥管路10
2における汚泥濃度の測定方法としては、一般に超音波
方式と光散乱方式があり、第7図が超音波の汚泥による
減衰を利用した濃度測定方法の一例を示すブロック図
で、第8図は光散乱を利用した濃度測定方法の一例を示
すブロック図である。第7図において符号120は超音波
を発生させる超音波発振器で、この発振器120は送泥管
路102に取り付けた発信子121に接続され、超音波信号を
発信子121を経て送泥管路102内の汚泥にあてる。122は
受信子で送泥管路102に取り付けられており、この受信
子122は増幅回路123と出力回路124を経て濃度計103に接
続され、汚泥濃度が濃度計103で測定される。また、第
8図において符号130は発光回路で、この発光回路130と
発光ダイオード131を接続し発光回路130から送出される
信号によって発光ダイオード131を発光させ、そのとき
の光信号を汚泥管の一部を切欠いて設けたガラス132を
経て汚泥管路102内の汚泥にあて光散乱させる。
133,134は光トランジスタ等の受光素子で、この受光
素子133,134には前段増幅器135,136が接続され、受光素
子133,134から送出される電気信号が増幅される。符号1
37は演算回路で、演算回路137の入力側が前段増幅器13
5,136に接続され、出力側が出力回路138を経て濃度計10
3に接続され、前段増幅器135,136の両増幅出力に基づい
て濃度計103で濃度が測定される。尚、この光散乱方式
では、ガラス132面近くの汚泥を測定するため、全体的
に気泡が混入していても、比較的その影響が少なくな
る。それ故、光散乱方式では連続測定が可能であり、処
理場内の返送汚泥、余剰汚泥のインライン監視、汚泥集
中処理システムにおけるバルブ制御のための測定用とし
て多用されている。
第9図は本発明と同一出願人によって先に出願された
濃度検出装置を示す回路図である。この図において、符
号100は汚泥槽で、この汚泥槽100には汚泥が貯留されて
いる。101はポンプ(送泥用のポンプ)で、ポンプ101を
後述するポンプ駆動装置149により駆動させて、汚泥槽1
00内の汚泥を送泥管路102に送る。この送泥管路102は第
6図に示すようにバルブを介して着泥槽と処理水槽に配
管され、この送泥管路102の途中には流量計140、濃度検
出器141,142が設けられている。流量計140はポンプ101
が駆動中の送泥管路102を通過する汚泥の流量を管断面
積Sと平均流速Vから測定し、流量信号S4を得る。濃度
検出器141は送泥管路102の上面に取り付けられた検出器
で、濃度検出器142は送泥管路102の下面に取り付けられ
た検出器で、これらの検出器141,142は例えば光散乱方
式によって汚泥濃度を検出するものである。符号143は
流量変換器で、この変換器143では流量計140で測定した
汚泥の流量信号S4を流量に比例した電気信号に変換し、
流量信号Qを出力する。145,146は濃度変換器で、この
変換器145,146では濃度検出器141,142で検出された検出
信号を濃度検出信号S8,S9に変換する。147は演算器で、
この演算器147では濃度検出信号S8,S9に応じた演算出力
信号αを得る。148は制御回路で、この回路148では演算
出力信号αと流量信号Qに基づいてポンプ駆動制御信号
γを得る。ポンプ制御装置149はポンプ101の出力制御を
する。
D.発明が解決しようとする問題点 かかる従来の濃度検出装置では、第6図に示すように
送泥管路102内における汚泥の腐敗を防ぐために常時は
送泥管102に処理水(下水を処理した比較的きれいな
水)が満たされている。そして、汚泥槽100に汚泥が蓄
積され、送泥の時間となったとき、送泥ポンプ101が始
動して汚泥槽100内の汚泥を送泥管路102に圧送される
が、このとき送泥管路102内の処理水を押しながら移動
する。この時、汚泥バルブ104は閉じ、処理水バルブ105
が開になり、送泥管路102中にあった処理水が受泥側R
の処理水槽106に貯留される。送泥側Tでが汚泥槽100の
汚泥がなくなると、送泥ポンプ101が停止し、送水ポン
プ111が始動し、処理水槽111の処理水が送り出されるよ
うになる。また、受泥側Rでは送泥管路102に設けられ
た濃度計103により、汚泥の到達が検出されると、汚泥
バルブ104が開で、処理水バルブ105が閉となり、汚泥が
着泥槽107に送られる。その後、濃度計103で汚泥の通過
が終了したことを汚泥濃度から測定する。このようにし
て再び送泥管路102内が処理水のみとなると、送水ポン
プ111が停止して汚泥バルブ104を閉じる。
しかし、汚泥槽100に貯留あるいは送泥されている汚
泥中には気泡が混入、又は内部で発生することがある。
第7図の超音波測定方式による濃度計では、その気泡に
よって反射、減衰されるために濃度測定の妨害になる。
それ故に、かかる濃度計では気泡の影響を除くために気
泡の混入した検水を加圧して気泡を液体中に溶け込ませ
た後、超音波の汚泥による減衰量を測定している。とこ
ろが、かかる濃度計では装置が大がかりなものになると
共に、加圧のための時間が必要であるために連続測定が
できないという不都合がある。一方、第8図の光散乱測
定方式による濃度計では、ガラス132面近くの汚泥のみ
測定するので気泡の問題が少なく、上記超音波を用いた
濃度計のような問題も生じないので連続測定をすること
ができる。しかし、かかる光散乱を用いた濃度計ではガ
ラス132面近くの汚泥のみしか測定することができな
い。また、上記濃度検出装置では、汚泥等の混合液を長
距離の送泥管路102を通過する場合にその流体の流速を
最適に選んでシステム全体の効率を向上させる必要があ
る。しかし、例えば流速が大き過ぎる場合には、汚泥管
路102内の摩擦抵抗による損失が大きくなるためにポン
プの負荷が過大になり、電気代が嵩んでしまい、また汚
泥管路102内面あるいはバルブ等の消耗を早めてしまう
という不都合がある。そのためにかかる検出装置では送
泥側Tの圧力上昇を伴うので、それに耐えうる設備にし
なければならない。また、流速が小さ過ぎる場合には、
送泥に時間がかかり、かつ沈殿し易い物質が含まれてい
るときは送泥中に沈殿が生じてしまうという不都合があ
る。そこで、第9図の濃度検出装置が提案された。この
濃度検出装置では、信号S8と信号S9に差が現れる時に
は、汚泥内の懸濁物の沈殿により送泥管路102を通る汚
泥の上側より下側の流速が遅くなる。この場合には、ポ
ンプ駆動装置149を駆動させて送泥管路102内の汚泥流速
をはやめる制御が行われ、この制御は制御回路148のポ
ンプ駆動制御信号γによって行われる。
今、ポンプが駆動していて、ある流量Q(管断面積S,
平均流速V)で汚泥が流れているとする。このとき濃度
検出信号S8,S9は演算器147よりα=f(S8,S9)なる演
算が行われる。制御回路148は濃度制御信号αと流量計1
40の出力信号Qが入力され、この入力に従った出力:γ
が出されポンプ駆動装置149に送られる。
S8およびS9に差の現れる場合は、流速が遅すぎるため
流体内の懸濁物が沈澱していることを示す。従って、こ
れを防ぐための制御の1例を次に示す。
(ポンプ駆動装置は、入力信号γに対しポンプ出力流
の特性をもっていると仮定する。) α=f(S8,S9)=K1(S8−S9) もしもα>α0ならばγ=K2(Q+β) α≦α0ならばγ=K2(Q−β) 但し、K2Qmin≦γ≦K2Qmax K1,K2,α,β,γ,α0は正数 Qminは送泥に許される最長の時間、あるいはポンプ特
性、により、 Qmaxは、各機器の保護、あるいはポンプ特性から、決
められる定数である。
従って管路内の沈澱状況を把握し、管内の平均流速V
(=Q/S)を制御することができる。
しかし、かかる装置には検出部に2個の濃度検出器が
必要なこと、2個の検出部をそれぞれ校正して特性を同
一にしなければならない(このような制御の場合必ずし
も濃度指示値自体は絶対値で正しい必要はないが、上部
下部の検出器の特性をそろえる必要がある。)こと、検
出部の位置(上部,下部)の濃度は測定できるが、その
他の濃度は不明であること等の不都合がある。これらの
不都合があるためかかる装置では連続的な濃度分布を測
定する場合に、例えば制御だけでなく管内の流れの状態
を詳しく監視したい場合、沈澱の状態を詳しく監視した
い場合、沈澱の状態を少しでも検出したい場合等におい
て、上記2点(上部,下部)だけの検出ではその状態把
握が困難である。また、上記濃度検出器を複数個設ける
濃度検出装置もあるが、かかる装置では各検出器の特性
を同じようにするための校正等が必要になり、その校正
が面倒になる。
そこで、本発明は混合水移送時の混合水濃度を1個の
濃度検出器等を用いて180°回動することにより、その
混合水濃度に基づいて混合水流速を制御し、また1個の
濃度検出器を送水管路内で直線的に動かすことにより、
送水管路内のすべての高さ方向(垂直方向)の濃度を測
定して濃度分布を得ることができる濃度検出装置を提供
することを目的としている。
E.問題点を解決するための手段 上記問題点を解決するための手段として本発明は送水
管路を切断してその送水管路の接合部又は2本の送水管
路の接合部には可動パイプをOリングを介して水密で且
つ回動可能に取り付け、この可動パイプに該可動パイプ
の内周側に検出面を向けた濃度検出器を設けると共に、
前記可動パイプに該可動パイプを回動させる回転駆動装
置を設ける。
また、送水管路に、該送水管路内を水密で且つ中心方
向に可動する濃度検出器を設け、該濃度検出器の内端部
に濃度検出面を設けると共に送水管路の外部突出側にこ
の濃度検出器を可動させる駆動装置を設ける。
F.作用 濃度検出をする場合は、回転駆動部あるいは駆動部の
モータを起動して濃度検出器を回動又は中心方向に移動
させて送水管路内の濃度を検出する。
G.実施例 次に、本発明の実施例を第1図及び第2図に基づいて
説明する。第1図は本発明の第1の発明の実施例を示す
全体構成図、第2図はその要部を切欠いて示す拡大断面
図である。これらの図において符号1は可動パイプで、
この可動パイプ1は送泥管路2の送泥管を切断した接合
部又は2本の管の接合部に成形パッキンであるOリング
3を介在させて水密に取り付けられ、可動パイプ1の可
動時にも送泥管路2内の汚泥が可動パイプ1と送泥管路
2との間から漏れ出ないようになっている。符号4は濃
度検出器で、この濃度検出器4を収納するのが収納部5
で、この収納部5は可動パイプの送水管路外側方向に突
出し、濃度検出器4が180°回動可能になるよう形成さ
れている。6は可動体で、この可動体6は可動パイプ1
の外側面に略半円周状に取り付けられている。また可動
体6の外側面にはギヤ7が設けられていて、このギヤ7
はモータ8の軸に取り付けたギヤ9と噛合するようにな
っている。これらギヤ7,9およびモータ8とで可動パイ
プ1を回動させる回転駆動装置を形成する。符号10はモ
ータ制御部で、この制御部10からの制御信号によってモ
ータを駆動させる。11は濃度変換器で、この変換器11で
は汚泥の濃度に比例した電気信号に変換し濃度信号151
を得る。12は記録計で、この記録計12は前記可動パイプ
1が可動した角度をモータ制御部10からの角度信号150
と濃度変換器11からの濃度信号151により送泥管路2内
の汚泥濃度を記録する。
次に本実施例の動作について説明する。
本装置で濃度検出をしようとする場合には、先ず第1
図に示すモータ制御部10からの制御信号がモータ8に供
給されないとき濃度検出部の位置A(θ=0のとき)の
汚泥の濃度を検出する。次に、モータ制御部10から制御
信号をモータ8に送り、モータ軸のギヤ9を時計方向
に、また可動体6のギヤ7を反時計方向に回動角θが0
から180°になるまで自動的に回動させて、各濃度を連
続的に測定する。第3図はかかる装置によって濃度測定
を行った場合の濃度計出力と検出部位置θとの関係を示
す濃度分布曲線の一例を示す図である。尚、第3図にお
いてSaは回動角θが0のとき(第1図のA点における)
濃度計出力を示し、Sbは回動角θが180°のとき(同図
のB点における)の濃度計出力を示す。
上記のように本実施例によれば、濃度検出部は第1図
のθが0から180°まで回動し、送泥管路2内に濃度変
化があれば、第3図のような濃度分布曲線を得ることが
できる。
次に、第2の発明の実施例について第4図に基づいて
説明する。第4図は第2の発明の実施例の構成図を示す
ものである。第4図において符号20は送泥管路で、この
送泥管路20の後述する濃度検出器21を挿入する部分の肉
厚は、その他の部分の肉厚より厚く形成されている。こ
の濃度検出器21は棒状に形成され、その先端部に濃度検
出面21aを有し前記送泥管路20と濃度検出器21との気密
性を高めるためその濃度検出器21にはOリング22が嵌め
られていて、モータ作動時に濃度検出器21を上下動させ
た場合でも送泥管路20内の汚泥が送泥管路20の外に漏れ
出ないようになっている。符号23はラックギヤで、この
ギヤ23は濃度検出器21の濃度検出面21aと反対の側の面2
1bに取り付けられている。24はピニオンギヤで、このギ
ヤ24はモータ25の軸に取り付けられていて、このピニオ
ンギヤ24が前記ラックギヤ23に噛合するようになってい
る。こられラックギヤ23、ピニオンギヤ24及びモータ25
で濃度検出器21を第4図の上下動させる駆動装置を形成
する。26はモータ制御部で、この制御部26によりモータ
25を駆動する。27は濃度変換器で、この変換器27は図示
省略の制御回路に変換された電気信号を送出する。
次に、本実施例の動作について第4図及び第5図を参
照して説明する。第5図は上記装置によって濃度測定を
行った場合の濃度計出力と検出部位置yとの関係を示す
濃度分布曲線の一例を示す図である。本装置では送泥管
路20内の汚泥濃度を検出しようとする場合には、先ず、
モータ25を作動する。そして、モータ軸のピニオンギヤ
24を反時計方向に回動させる。ピニオンギヤ24が反時計
方向に回転し始めると、ラックギヤ23が下降して、濃度
検出器21の濃度検出面21aの位置が次第に下がる。そし
て、この濃度検出器21の濃度検出面21aは送泥管路20内
をyの距離上下動してこの範囲の濃度を検出する。第5
図はかかる装置によって濃度測定を行った場合の濃度計
の出力と検出部位置yとの関係を示したもので、Saはモ
ータ25が始動する前(y=0)の濃度計出力を示し、ま
たSbはモータ25が駆動して濃度検出器21が送泥管路20内
で最大のymだけ下降した場合の濃度計出力を示す。
上記のように本実施例によれば、濃度検出器21を送泥
管路20内で直線的に位置y動かして、第5図に示すよう
な濃度分布曲線を得ることができる。
尚、上記実施例においては下水汚泥を送泥する場合に
ついて述べたが、これのみに限定されるものではなく、
この他に上水汚泥、化学薬品及び食品材料等の沈澱物を
含む混合水の流速制御にも同様に適用される。この場
合、汚泥に相当するものが混合水であり、また送泥管路
は混合水を送る送水管路となる。
H.発明の効果 上記のように本発明によれば、汚泥移送時の汚泥濃度
を一つの濃度検出器を用いて自動的に検出し、その汚泥
濃度に基づいて汚泥流速を制御することができるので、
校正やメンテナンスのための回路をなくすることができ
る。また、濃度検出器を送泥管路内で直線的に動かすこ
とにより、送泥管路内のすべての高さ方向における濃度
を連続的に測定することができるので濃度分布を得て、
送泥管路内の汚泥の状況を適確に把握でき濃度に応じた
適正な流量制御を行うこともできる。
【図面の簡単な説明】
第1図は本発明の一実施例を示す構成図、第2図は本発
明の一実施例の要部を示す拡大図、第3図は本発明の一
実施例を示す特性図、第4図は本発明の一実施例を示す
構成図、第5図は本発明の一実施例を示す特性図、第6
図は従来の濃度検出装置の概要を示す図、第7図乃至第
9図は従来の濃度検出器の一例を示す図である。 1……可動パイプ、2,20……送泥管路、3……Oリン
グ、4……濃度検出器、7,8……ギヤ、8……モータ、1
0……モータ制御部、21……濃度検出器、21a……濃度検
出面、23……ラックギヤ、24……ピニオンギヤ、25……
モータ、26……モータ制御部。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】汚泥などの混合液を送泥管路内を圧送し、
    該送泥管路内の混合汚泥濃度を検出する濃度検出装置に
    おいて、前記送泥管路を切断してその送泥管路の接合部
    に、可動パイプをOリングを介して水密で且つ回動自在
    に取り付け、この可動パイプに該可動パイプの内周側に
    検出面を向けた濃度検出器を設けると共に、前記可動パ
    イプに該可動パイプを回動させる回転駆動装置を設け、
    この可動パイプを回動させることで濃度検出器を回動さ
    せて送泥管路内の濃度分布を連続的に測定可能としたこ
    とを特徴とした濃度検出装置。
  2. 【請求項2】汚泥などの混合液を送泥管路内を圧送し、
    該送泥管路内の混合汚泥濃度を検出する濃度検出装置に
    おいて、前記送泥管路に、該送泥管路内を水密で且つ中
    心方向に可動する濃度検出器を設け、該濃度検出器の内
    端部に濃度検出面を設けると共に送泥管路の外部突出側
    にこの濃度検出器を可動させる駆動装置を設け、この濃
    度検出器を送泥管路内の中心方向に可動して送泥管路内
    の濃度分布を連続的に測定可能としたことを特徴とした
    濃度検出装置。
JP62317106A 1987-12-15 1987-12-15 濃度検出装置 Expired - Lifetime JPH0827267B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317106A JPH0827267B2 (ja) 1987-12-15 1987-12-15 濃度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317106A JPH0827267B2 (ja) 1987-12-15 1987-12-15 濃度検出装置

Publications (2)

Publication Number Publication Date
JPH01156660A JPH01156660A (ja) 1989-06-20
JPH0827267B2 true JPH0827267B2 (ja) 1996-03-21

Family

ID=18084507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317106A Expired - Lifetime JPH0827267B2 (ja) 1987-12-15 1987-12-15 濃度検出装置

Country Status (1)

Country Link
JP (1) JPH0827267B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958446A (en) * 1975-08-20 1976-05-25 International Telephone And Telegraph Corporation Discontinuity suppression apparatus for vibration densitometers
JPS61197539U (ja) * 1985-05-30 1986-12-10

Also Published As

Publication number Publication date
JPH01156660A (ja) 1989-06-20

Similar Documents

Publication Publication Date Title
US6110382A (en) Automated effluence conditioning and treatment
CN105043815B (zh) 地下水连续收集与计量系统
JP2003305454A (ja) 取水水質管理装置
CN108332804A (zh) 一种走航式海洋表层多参数连续观测系统
WO1994017394A1 (en) Control of dewatering processes
JPH0827267B2 (ja) 濃度検出装置
CN110954594A (zh) 一种用于检测污泥板结的水下机器人及检测方法
Ackers et al. EFFECTS OF USE ON THE HYDRAULIC RESISTANCE OF DRAINAGE CONDUITS.
JPH084797B2 (ja) 流速制御装置
CN206288976U (zh) 处理污水的加药装置
CN114323120B (zh) 排泥量测量方法、控制方法、处理系统、设备及介质
US3590836A (en) Sewerage transmission system
CN211946404U (zh) 一种污水自动加药装置
CN104375521A (zh) 一种压力感应液面控高装置
CN109000992B (zh) 一种水质自动采样仪
BE1003143A6 (fr) Appareil pour mesurer le lait de maniere discontinue.
JP3676397B2 (ja) 埋立て地等における余水処理装置
JPS58221148A (ja) 汚泥濃度計
JPS612007A (ja) 土運船内土砂の体積計測方法
CN214374105U (zh) 回水清洗式污泥沉降比在线自动检测装置
JPH0735589A (ja) 流量濃度測定装置
CN214471140U (zh) 一种测坑地下水位自动跟随大田地下水位变化的装置
TWI788958B (zh) 液體之濁度的測量方法
JPH0224342B2 (ja)
CN206664885U (zh) 人工智能水上漏油监测收集船