JPH0827263B2 - Corrosion degradation determination method for three-layer metal wire - Google Patents

Corrosion degradation determination method for three-layer metal wire

Info

Publication number
JPH0827263B2
JPH0827263B2 JP3196601A JP19660191A JPH0827263B2 JP H0827263 B2 JPH0827263 B2 JP H0827263B2 JP 3196601 A JP3196601 A JP 3196601A JP 19660191 A JP19660191 A JP 19660191A JP H0827263 B2 JPH0827263 B2 JP H0827263B2
Authority
JP
Japan
Prior art keywords
phase
metal
output
detection
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3196601A
Other languages
Japanese (ja)
Other versions
JPH05126799A (en
Inventor
健夫三 島田
正 小比田
五郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP3196601A priority Critical patent/JPH0827263B2/en
Publication of JPH05126799A publication Critical patent/JPH05126799A/en
Publication of JPH0827263B2 publication Critical patent/JPH0827263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼心アルミより線(以
下ACSRと呼称する)のように心線の周囲を異種金属
で覆った三層金属線材の腐食劣化判定法に関し、特に心
線と被覆層の腐食後の残存量を、三種の金属について個
別に検出できるものを提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining corrosion deterioration of a three-layer metal wire rod such as a steel-core aluminum stranded wire (hereinafter referred to as ACSR) in which the circumference of the core wire is covered with a dissimilar metal. It is an object of the present invention to provide a method capable of individually detecting the residual amount of the coating layer and the coating layer after corrosion for the three types of metals.

【0002】[0002]

【従来の技術】ACSR(Aluminium Cable Steel Rein
forced)は、亜鉛メッキした鋼線の周囲にアルミ線をよ
り線状態で巻付け1本の電線としたもので、アルミ線を
主導体とし、亜鉛メッキで耐腐食性を持たせた鋼線で引
っ張り強度を与えている。このACSRは電気鉄道を含
む送配電設備に幅広く利用され、特に電車線路のトンネ
ル内において、電力供給用のき電線、き電吊架線及びこ
れらの電線が地絡事故等を起した場合に早期検出するた
めのAT保護線、地絡導線等に用いられる。このACS
Rは外気に晒されているので、腐食による断線事故防止
のため、定期的にまたは必要に応じて腐食の程度を検査
し、取替え時期を判断する必要がある。
2. Description of the Related Art ACSR (Aluminium Cable Steel Rein)
forced) is an aluminum wire wound in a stranded state around a galvanized steel wire to form a single electric wire. The aluminum wire is the main conductor and the galvanized steel wire is corrosion resistant. Gives tensile strength. This ACSR is widely used for power transmission and distribution facilities including electric railways, and especially in tunnels of train lines, early detection of power supply feeders, feeder suspension wires, and ground faults of these feeders. It is used for AT protection line, ground fault line and so on. This ACS
Since R is exposed to the outside air, it is necessary to periodically or as needed inspect the degree of corrosion to determine the replacement time in order to prevent a wire disconnection accident due to corrosion.

【0003】金属線材の腐食劣化検査法として、渦流探
傷試験法(特開平2−54166等)が知られている。
しかし、従来の検査対象は、線材がアルミのみ、或いは
銅のみといった単一の素材からできているものに限ら
れ、ACSRのように、異種金属を積層したものには使
用できなかった。
An eddy current flaw detection test method (Japanese Patent Laid-Open No. 2-54166, etc.) is known as a method for inspecting corrosion deterioration of metal wires.
However, conventional inspection targets are limited to those made of a single material such as aluminum or copper, and cannot be used for a product in which dissimilar metals are laminated like ACSR.

【0004】このため、本出願人は、この渦流探傷試験
法の原理を応用・発展させて、二層金属線材の腐食劣化
を判定する方法を発明し、先に出願している(特開平3
−72506号)。
Therefore, the applicant of the present invention has applied and developed the principle of this eddy current flaw detection test method to invent a method for judging the corrosion deterioration of a double-layer metal wire, and filed a prior application (Japanese Patent Application Laid-Open No. Hei 3).
-72506).

【0005】この二層金属線材の腐食劣化判定法につい
て簡単に説明する。過流探傷試験法は、一般に、試験体
に交流磁界を作用させて渦流を発生させ、この渦流の大
きさによって試験体のインピーダンスを知り、これから
傷の大きさ等を判断する。具体的には渦流によって検出
コイルに生じる誘導電圧を、所定の位相で位相検波して
検知出力とする。この検波回路は、例えば作用磁界の周
波数と同一の周波数で信号成分が最大値になる所定の位
相で、半周期(180°)ずつ正負のFET(電界効果
トランジスタ)を交互に導通させ、これを通過する電圧
の平均値を算出する。なお、この位相は試験体の素材
(例えば亜鉛、鋼)に固有の値を持つ。
A method for determining the corrosion deterioration of the two-layer metal wire will be briefly described. In the eddy current flaw detection test method, generally, an alternating magnetic field is applied to a test object to generate a vortex, and the impedance of the test object is known from the size of the vortex, and the size of the scratch or the like is determined from this. Specifically, the induced voltage generated in the detection coil by the eddy current is phase-detected at a predetermined phase and used as a detection output. In this detection circuit, for example, positive and negative FETs (field effect transistors) are alternately turned on every half cycle (180 °) at a predetermined phase where the signal component has a maximum value at the same frequency as the frequency of the acting magnetic field. Calculate the average value of the passing voltage. It should be noted that this phase has a value unique to the material of the test piece (eg zinc, steel).

【0006】このような探傷試験法によって、二層金属
線材を測定して得られる出力を、図10に示すように、
位相と振幅で表される2次元平面上のベクトルLで表す
と、このベクトルLは、この積層金属線材の異なる金属
部分を単独で取り出し、夫々を個別に検出したときのベ
クトルM,Nの合成となっている。
As shown in FIG. 10, the output obtained by measuring the double-layer metal wire by the flaw detection test method is shown in FIG.
Expressed as a vector L on a two-dimensional plane represented by a phase and an amplitude, this vector L is a composite of the vectors M and N when different metal parts of this laminated metal wire rod are individually taken out and individually detected. Has become.

【0007】したがって、一方の金属の検出成分がゼロ
となる位相m′またはn′(その成分の出力が最大とな
る位相と90°の位相差を持つ位相)で位相検波すれ
ば、積層状態であっても他方の金属の成分のみが取り出
せ、このような位相検波を、2種の金属毎に行なうこと
により積層状態のまま2種の金属を個別に測定して、夫
々の腐食劣化判定が行なえる。これが、本出願人が先に
提案した方法である。
Therefore, if the phase detection is performed at the phase m'or n '(the phase having the phase difference of 90 ° with the maximum output of the component) where the detected component of one metal becomes zero, the laminated state is obtained. Even if there is, only the component of the other metal can be taken out, and by performing such phase detection for each of the two types of metals, the two types of metals can be individually measured in the laminated state, and the corrosion deterioration of each can be determined. It This is the method previously proposed by the applicant.

【0008】[0008]

【発明が解決しようとする課題】しかし、この方法は、
二層金属線材の腐食劣化判定方法であり、上述したAC
SRのような三層金属線材の腐食劣化判定には使用でき
ない。このため、亜鉛めっき鋼線等の二層金属線材につ
いては、目視検査に変えて精度の高い実測検査が行なえ
るようになったが、ACSRについては相変わらず、人
がはしご、タワー、保守用車等に乗り、活線状態あるい
は停電状態の線に接近し目視して腐食劣化判定をするし
かなかった。
However, this method is
This is a method for determining the corrosion deterioration of a double-layer metal wire,
It cannot be used to determine the corrosion deterioration of a three-layer metal wire such as SR. For this reason, double-layer metal wire rods such as galvanized steel wires have become able to be subjected to highly accurate actual inspections instead of visual inspections. However, as for ACSR, human ladders, towers, maintenance vehicles, etc. There was no choice but to get on the line and approach the line in a live or blackout state to visually check for corrosion deterioration.

【0009】この目視検査において、ACSRの取替え
時期の推定は、電流を流すアルミより線部分の腐食量
と、鋼線の表面に施された亜鉛めっき層の腐食量と、強
度を保つ鋼線部分の腐食量から総合的に判断する必要が
ある。ところが目視による検査方法は外観で判断するた
め、内部への腐食の進行程度が把握し難く、取替時期の
推定を誤り易い。例えば、表面のアルミより線部分に損
傷が発見されなくても、内部において腐食防止の亜鉛メ
ッキ層を破って強度保持用の鋼線部分が大きく腐食され
て、ACSRの引っ張り強度が大きく低下している場合
がある。この誤認の結果として、断線事故が発生した
り、まだ十分使用可能な線の取替を実施してしまう等の
問題があった。したがって、電気鉄道では4日に1回程
度の巡視および2年に1回の検査を行なっているが、適
切な管理は困難であった。
In this visual inspection, the time to replace the ACSR is estimated by estimating the corrosion amount of the aluminum stranded wire portion through which the current flows, the corrosion amount of the galvanized layer applied to the surface of the steel wire, and the steel wire portion maintaining strength. It is necessary to make a comprehensive judgment based on the amount of corrosion. However, since the visual inspection method is judged by the external appearance, it is difficult to grasp the progress of corrosion to the inside, and it is easy to make an error in estimating the replacement time. For example, even if no damage is found in the aluminum stranded wire on the surface, the corrosion-preventing galvanized layer is broken inside, and the steel wire for strength retention is greatly corroded, resulting in a large decrease in the tensile strength of ACSR. There is a case. As a result of this erroneous recognition, there were problems such as a wire breakage accident and replacement of a wire that was still sufficiently usable. Therefore, the electric railway performs inspections about once every four days and inspections every two years, but proper management was difficult.

【0010】一方、この目視による検査作業は、高い位
置にあるACSRに人が接近する必要のため保守用車等
に乗る高所作業であり、全面を検査するには反対側から
も見る必要があり手間がかかる。さらに、保守用車の操
作要員等も必要であり、このACSRはかなりの距離に
敷設されていることから、多数の人手を要し、作業コス
トは非常に高いものとなっていた。
On the other hand, this visual inspection work is an aerial work for riding on a maintenance vehicle or the like because a person needs to approach the ACSR at a high position, and it is necessary to look from the opposite side to inspect the entire surface. Yes, it takes time. Furthermore, maintenance personnel and the like of the maintenance vehicle are also required, and since this ACSR is laid over a considerable distance, a lot of manpower is required and the work cost is very high.

【0011】そこで、本発明は、ACSRのような3種
の金属の積層線材の腐食劣化を、各金属部分ごとに個別
に、容易かつ確実に判定できる方法を提供することを目
的とする。
Therefore, an object of the present invention is to provide a method for easily and reliably determining corrosion deterioration of a laminated wire made of three kinds of metal such as ACSR for each metal portion.

【0012】[0012]

【課題を解決するための手段】本発明が提供する三層金
属線材の腐食劣化判定法は、強磁性体金属と2種の非磁
性体金属を積層した3層金属線材の外周に沿って、低周
波磁界を作用させる低周波励磁コイル及び、この励磁に
より発生する誘導電流による磁界変化の検出コイルを持
つ低周波検出回路と、高周波磁界を作用させる高周波励
磁コイル及び、この励磁により発生する過流による磁界
変化の検出コイルを持つ高周波検出回路を有する検出器
を移動させ、低周波検出回路の検出コイルに発生する誘
導電圧を所定の位相で検波し、その出力から強磁性体金
属の残存量を知り、一方(他方)の非磁性体金属の単体
を位相検波したとき最大出力が得られる位相と90°異
なる位相で、高周波検出回路の検出コイルの出力を位相
検波したときの出力から他方(一方)の非磁性体金属に
対応する出力と強磁性体金属に対応する出力のベクトル
合成値を知り、この合成値から前記強磁性体金属の残存
量をベクトル的に減算して他方(一方)の非磁性体金属
の残存量を知ることにより、3種の金属の残存量を個別
に算出することを特徴とする。
According to the present invention, there is provided a method for judging corrosion deterioration of a three-layer metal wire rod, which comprises a three-layer metal wire rod in which a ferromagnetic metal and two kinds of non-magnetic metal are laminated, A low-frequency excitation coil that applies a low-frequency magnetic field, and a low-frequency detection circuit that has a detection coil for detecting a change in magnetic field due to an induced current generated by this excitation, a high-frequency excitation coil that applies a high-frequency magnetic field, and an overcurrent generated by this excitation. The detector that has a high-frequency detection circuit that has a detection coil for the magnetic field change due to is moved, and the induced voltage generated in the detection coil of the low-frequency detection circuit is detected at a predetermined phase, and the residual amount of ferromagnetic metal is detected from the output. Knowing that the output of the detection coil of the high-frequency detection circuit is phase-detected at a phase that is 90 ° different from the phase at which the maximum output is obtained when phase detection is performed on one (other) non-magnetic metal element From the vector composite value of the output corresponding to the other (one) non-magnetic metal and the output corresponding to the ferromagnetic metal, the remaining amount of the ferromagnetic metal is vectorically subtracted from this composite value, and the other It is characterized in that the remaining amounts of the three kinds of metals are individually calculated by knowing the remaining amount of the (one) non-magnetic metal.

【0013】[0013]

【作用】上記方法において、低周波検出回路で位相検波
すると、強磁性体金属部分の電磁誘導による2次出力
が、過流による出力成分に比べて極めて大きくなり、非
磁性体金属の存在量にかかわりなく、強磁性体金属の残
存量を検出できる。
In the above method, when the phase detection is performed by the low frequency detection circuit, the secondary output due to the electromagnetic induction of the ferromagnetic metal portion becomes extremely larger than the output component due to the overcurrent, and the amount of non-magnetic metal present is increased. The remaining amount of the ferromagnetic metal can be detected regardless of the above.

【0014】また高周波検出回路で、位相検波すると
き、その位相を適当な角度に設定すると、一方(他方)
の非磁性体金属による出力成分をカットして、他方(一
方)の非磁性体金属と強磁性体金属の各々の残存量に応
じた2次合成ベクトル出力を得ることができる。そこ
で、強磁性体金属の出力成分を含む各非磁性体金属の検
出値から、先に検出した強磁性体金属の残存量を減算す
ることにより、3種金属の残存量を個別に算出すること
ができる。
When phase detection is performed in the high frequency detection circuit, if the phase is set to an appropriate angle, one (other)
The output component due to the non-magnetic metal of is cut, and the secondary composite vector output according to the remaining amount of the other (one) non-magnetic metal and ferromagnetic metal can be obtained. Therefore, the remaining amount of the three kinds of metals is calculated individually by subtracting the remaining amount of the ferromagnetic metal detected earlier from the detected value of each non-magnetic metal including the output component of the ferromagnetic metal. You can

【0015】なお、検出器の出力と各金属の残存量との
対応関係は、予め実測しておくものとし、上記減算は、
各金属の基準ベクトル(最大出力が得られる位相角を持
つ長さ1のベクトル)と位相検波を行なった位相成分と
の内積を利用した換算値にて行う。
Incidentally, the correspondence between the output of the detector and the remaining amount of each metal shall be measured in advance, and the above subtraction is
The conversion is performed by using the inner product of the reference vector of each metal (a vector of length 1 having a phase angle at which the maximum output is obtained) and the phase component subjected to the phase detection.

【0016】[0016]

【実施例】次に、具体的な測定装置および測定方法につ
いて説明する。測定に用いる検出器1の回路構成を図1
に示す。この構成は、主として過電流を用いて測定する
高周波検出回路2と、過電流による出力成分を極力小さ
くして測定する低周波回路3を併せ持つ。各検出回路
2、3は、精度向上のために、一般的な過流探傷試験法
で採用されている自己誘導型コイルに換え相互誘導型コ
イルを使用している。
EXAMPLES Next, specific measuring devices and measuring methods will be described. The circuit configuration of the detector 1 used for measurement is shown in FIG.
Shown in This configuration has both a high frequency detection circuit 2 which mainly measures using an overcurrent and a low frequency circuit 3 which measures an output component due to an overcurrent as small as possible. In order to improve accuracy, each of the detection circuits 2 and 3 uses a mutual induction type coil instead of the self induction type coil used in a general eddy current flaw detection test method.

【0017】はじめに高周波検出回路2を説明する。こ
の回路において、L1,L2は直列接続された一次コイル
で、検査対象の三層金属線材に応じて選択される所定周
波数の励磁用交流電源eが接続されている。L3,L4
直列接続された2次側検出コイルで、2個の抵抗R1
2およびバランス用の可変抵抗R3とブリッジ接続され
ている。L1とL3は図2、図3に示す検出用の鞍型ボビ
ン4の内側に重なって巻かれ、検出対象の三層金属線材
であるACSR5を磁気回路として相互に磁気結合され
る。コイルL2とL4は、0点調整のため常に空心状態と
される鞍型ボビン6の内側に重なって巻かれ、空心状態
で相互に磁気結合される。このブリッジ回路7の出力
は、2次側検出コイルL3,L4の中点とバランス用の抵
抗R3の可動接点から取り出され、処理回路8に出力さ
れる。処理回路8は励磁用交流電源eから、図示しない
移相回路によって交流電源eと所定の位相差を持つ位相
信号を生成して位相検波を行なう。この検波出力は、各
金属の残存量を算出する低周波検出回路3と共通の演算
回路9に出力される。演算結果は表示器10で表示され
る。この高周波検出回路2は、非磁性体金属の残存量を
検出することを主目的としているので、非磁性体金属に
過流が十分に流れるように励磁用交流電源eの周波数
を、例えば1kHz〜250kHzと高く選び、各コイル
1,L2,L3,L4の共振周波数を、この周波数に一致
させてある。また各非磁性体金属について行なわれる位
相検波の位相は、他方(一方)の非磁性体金属の出力成
分がゼロになるようにするため、他方(一方)の非磁性
体金属の単体を検出したときに位相検波出力が最大にな
る位相と90°の差を持つ位相に選定される。
First, the high frequency detection circuit 2 will be described. In this circuit, L 1 and L 2 are primary coils connected in series, and connected to an exciting AC power supply e having a predetermined frequency selected according to the three-layer metal wire to be inspected. L 3 and L 4 are secondary detection coils connected in series, and are two resistors R 1 and R 1 .
It is bridge-connected to R 2 and a variable resistor R 3 for balancing. L 1 and L 3 are overlapped and wound inside the saddle type bobbin 4 for detection shown in FIGS. 2 and 3, and are magnetically coupled to each other by using the ACSR 5 which is a three-layer metal wire to be detected as a magnetic circuit. The coils L 2 and L 4 are wound and overlapped on the inside of the saddle type bobbin 6 which is always in the air core state for zero point adjustment, and are magnetically coupled to each other in the air core state. The output of the bridge circuit 7 is taken out from the middle point of the secondary side detection coils L 3 , L 4 and the movable contact of the balancing resistor R 3 and output to the processing circuit 8. The processing circuit 8 generates a phase signal having a predetermined phase difference from the AC power supply e from the exciting AC power supply e by a phase shift circuit (not shown) and performs phase detection. This detection output is output to the arithmetic circuit 9 common to the low frequency detection circuit 3 for calculating the remaining amount of each metal. The calculation result is displayed on the display 10. Since this high-frequency detection circuit 2 is mainly intended to detect the remaining amount of the non-magnetic metal, the frequency of the exciting AC power supply e is set to, for example, 1 kHz to ensure that the eddy current sufficiently flows through the non-magnetic metal. It is selected as high as 250 kHz, and the resonance frequency of each coil L 1 , L 2 , L 3 , L 4 is made to coincide with this frequency. In addition, the phase of the phase detection performed for each non-magnetic metal was detected for the other (one) non-magnetic metal so that the output component of the other (one) non-magnetic metal would be zero. Sometimes the phase detection output is selected as a phase having a difference of 90 ° from the maximum phase.

【0018】次に低周波検出回路3について説明する。
低周波検出回路3も高周波検出回路2と同様の回路構成
を持つので、対応関係を持つ構成要素にダッシュ(′)
を付けて示す。各コイルL1′,L2′,L3′,L4′は
検出用の鞍型ボビン4と0点調整用の鞍型ボビン6に、
高周波検出回路2のコイルL1,L2,L3 ,L4の外側
位置で高周波用のコイルと同様に重なって巻かれてい
る。この低周波検出回路3は、強磁性体金属の残存量の
みを検出することを目的としているので、一次コイルL
1′,L2′に接続される励磁用交流電源e′の周波数
は、強磁性体金属における誘導電流による2次出力に対
して、非磁性体金属の過流による2次出力が無視できる
程度に小さくなるような低周波(例えば1Hz〜100
Hz)に選定され、処理回路8′で使用する検波位相
は、強磁性体金属の検出感度が最大となる位相としてい
る。
Next, the low frequency detection circuit 3 will be described.
Since the low frequency detection circuit 3 also has the same circuit configuration as the high frequency detection circuit 2, a dash (') is added to the corresponding components.
Is attached. The coils L 1 ′, L 2 ′, L 3 ′ and L 4 ′ are provided on the saddle type bobbin 4 for detection and the saddle type bobbin 6 for zero point adjustment,
Like the high frequency coil, it is wound on the outside of the coils L 1 , L 2 , L 3 , and L 4 of the high frequency detection circuit 2 in the same manner. Since this low frequency detection circuit 3 is intended to detect only the remaining amount of the ferromagnetic metal, the primary coil L
Degree 1 ', L 2' frequency of excitation AC power supply e to be connected to 'is the relative secondary output by the induction current in the ferromagnetic metal, the secondary output due to the turbulence of the non-magnetic metal is negligible Low frequency (eg 1Hz-100)
The detection phase selected for Hz) and used in the processing circuit 8'is the phase that maximizes the detection sensitivity of the ferromagnetic metal.

【0019】図4〜図6に、上記回路が組み込まれる検
出器1の機械的構成例を示す。図4及び図5に示す11
は、検出器1のセンサ部で、ボックス型のケース12内
に、低周波用と高周波用のコイルL1〜L4,L1′〜
4′を巻いた上記鞍型ボビン4,6を内装している。
また、このケース12には、ACSR5の上を走行させ
るための、2個のガイドローラ13、14が設けられ、
長い絶縁棒15で検査員がACSR5上を牽引・移動さ
せるのを可能にする。さらにACSR5をガイドローラ
13、14に押さえ付けるピンチローラ17、18が設
けられ、コイルL1,L3,L1′,L3′を巻いた鞍型ボ
ビン4がACSR5と常に一定の間隔を保つことを保障
し、この間隔の変化による検出誤差を防止する。
FIGS. 4 to 6 show examples of the mechanical construction of the detector 1 incorporating the above circuit. 11 shown in FIG. 4 and FIG.
Is a sensor part of the detector 1, and is a low frequency coil and a high frequency coil L 1 to L 4 and L 1 ′ to a box type case 12.
The saddle type bobbins 4 and 6 having L 4 ′ wound therein are housed.
Further, the case 12 is provided with two guide rollers 13 and 14 for traveling on the ACSR 5.
A long insulating rod 15 allows the inspector to tow and move on the ACSR 5. Further, pinch rollers 17 and 18 for pressing the ACSR 5 against the guide rollers 13 and 14 are provided, and the saddle type bobbin 4 around which the coils L 1 , L 3 , L 1 ′ and L 3 ′ are wound keeps a constant distance from the ACSR 5. This ensures that detection errors due to changes in this interval are prevented.

【0020】図6に示す19は、検査員が肩に掛けて持
ち運ぶことができる検出器本体で、励磁用交流電源e,
e′、移送回路、位相検波回路等からなる前記処理部
8,8′、3種の金属別の表示器10等を持ち、伸縮自
在なスパイラル線20によりセンサ部11と接続されて
いる。このような構成によって作業性が極めて向上す
る。また場所によっては、はしご、タワー、保守用車等
を用いず、検査員が架線の下を歩くだけで腐食劣化検査
を行うことも可能である。
Reference numeral 19 shown in FIG. 6 is a detector main body which an inspector can hang on his shoulder and carry.
e ', a transfer circuit, a phase detection circuit, and the like, the processing units 8 and 8', a display 10 for each of the three metals, and the like, and are connected to the sensor unit 11 by a stretchable spiral wire 20. With such a configuration, workability is significantly improved. Depending on the location, it is also possible for the inspector to carry out the corrosion deterioration inspection simply by walking under the overhead line without using a ladder, a tower, a maintenance car, or the like.

【0021】次に具体的な使用方法を説明する。検査に
先立ち、鞍型ボビン4、6の内部及び、その周囲に金属
がない状態で、高周波検出回路2と低周波検出回路3の
各ブリッジ回路7、7′の出力が0になるように可変抵
抗R3、R3′を動かしてゼロ点調整する。この後、セン
サ部11を、上方から降ろしてACSR5に吊り下げ
る。この時ピンチローラ17、18は、図示しない回転
式の支持機構によりACSR5に下から自動的に押し当
てられる。この状態で、コイルL2,L4およびL2′,
4′の磁気回路部分は常に空心状態であり、他方のコ
イルL1,L3およびL1,3′は近接したACSR5
を磁気回路としている。
Next, a specific method of use will be described. Prior to the inspection, the outputs of the bridge circuits 7 and 7 ′ of the high frequency detection circuit 2 and the low frequency detection circuit 3 can be changed to 0 with no metal inside and around the saddle type bobbins 4 and 6. Move resistors R 3 and R 3 ′ to adjust the zero point. After that, the sensor unit 11 is lowered from above and suspended on the ACSR 5. At this time, the pinch rollers 17 and 18 are automatically pressed against the ACSR 5 from below by a rotary support mechanism (not shown). In this state, the coils L 2 , L 4 and L 2 ′,
The magnetic circuit portion of L 4 ′ is always in an air-core state, and the other coils L 1 , L 3 and L 1, L 3 ′ are in close proximity to the ACSR 5
Is a magnetic circuit.

【0022】そして、絶縁棒15で牽引し、ACSR5
の上にセンサ部11を低速で移動させながら、高周波検
出回路2による検出と低周波検出回路3による検出を同
時に行なう。同時に行なっても、各回路2、3の周波数
は、例えば1000倍程度と大きく異なっており、相互
干渉を起こさない。
Then, pulling with the insulating rod 15, the ACSR5
While the sensor unit 11 is moving at a low speed, the detection by the high frequency detection circuit 2 and the detection by the low frequency detection circuit 3 are performed at the same time. Even if they are performed at the same time, the frequencies of the circuits 2 and 3 are significantly different, for example, about 1000 times, and mutual interference does not occur.

【0023】低周波による位相検波は、上述したように
単体の鋼線を検出したとき最大の出力が得られる位相で
行なう。この出力は、図7に示すように、検査対象のA
CSRの鋼線部分のみを単独で取り出して検査したとき
と同等になる。すなわち、位相検波の出力ベクトルF
は、鋼線が腐食によって減少するにつれて、同一位相で
振幅が減少し、鋼線がなくなると、振幅はゼロになる。
このとき、非磁性体金属の亜鉛及びアルミによる出力
は、低周波で励磁しているため無視できる程度に小さ
い。したがって、鋼線の残存量と出力ベクトルFの大き
さfとの対応関係表を作成しておき、記憶装置に記憶さ
せておけば、位相検波の出力値から演算して、直ちにA
CSR5中の鋼線の残存量を表示器10に表示させるこ
とができる。
The phase detection by the low frequency is performed at the phase where the maximum output is obtained when the single steel wire is detected as described above. This output, as shown in FIG.
This is the same as when the steel wire portion of the CSR alone is taken out and inspected. That is, the output vector F of the phase detection
The amplitude decreases in-phase as the steel wire decreases due to corrosion, and goes to zero when the steel wire disappears.
At this time, the output of non-magnetic metal zinc and aluminum is negligibly small because it is excited at a low frequency. Therefore, if a correspondence table between the remaining amount of the steel wire and the magnitude f of the output vector F is created and stored in a storage device, the output value of the phase detection is calculated and A
The remaining amount of the steel wire in the CSR 5 can be displayed on the display 10.

【0024】高周波による位相検波は、図8に示すよう
にACSRの一方の非磁性体金属(亜鉛)を単独で取り
出し位相検波したとき最大出力が得られる位相(亜鉛軸
イ)に対して90°の位相差を持つ位相ロ(亜鉛による
出力をカットする位相)と、図9に示すようにACSR
5の他方の非磁性体金属(アルミ)を単独で取り出し位
相検波したとき最大出力が得られる位相(アルミ軸ハ)
に対して90°の位相差を持つ位相ニ(アルミによる出
力をカットする位相)で、それぞれ位相検波される。各
検波出力は、別個に取り出され処理回路8で演算・処理
される。
The phase detection by high frequency is 90 ° with respect to the phase (zinc axis a) at which the maximum output is obtained when one non-magnetic metal (zinc) of ACSR is taken out and phase detected as shown in FIG. Phase b with a phase difference of (phase that cuts output by zinc) and ACSR as shown in FIG.
The phase where the maximum output is obtained when the other non-magnetic metal (aluminum) of 5 is independently extracted and subjected to phase detection (aluminum shaft c)
Phase detection with a phase difference of 90 ° with respect to (a phase that cuts the output of aluminum). The respective detection outputs are separately taken out and processed / processed by the processing circuit 8.

【0025】このような高周波検出回路2による位相
ロ,ニによる位相検波は、強磁性体金属(鋼線)と2種
の非磁性体金属(亜鉛、アルミ)の3種金属の内で、非
磁性体金属の一方(亜鉛またはアルミ)の出力成分が表
れないように位相検波しようとするものである。
The phase detection by the phase shifter 2 and the phase shifter 2 by the high-frequency detection circuit 2 as described above is non-existent among the three kinds of metals of ferromagnetic metal (steel wire) and two kinds of non-magnetic metal (zinc, aluminum). It is intended to perform phase detection so that the output component of one of the magnetic metals (zinc or aluminum) does not appear.

【0026】アルミの残存量を算出する原理と手順を、
次に説明する。新品のACSRについて、その鋼線部分
のみ、アルミ部分のみ、および亜鉛部分のみを夫々取り
出して位相検波したときの出力を、図8に示す2次元平
面上に位相と振幅で表わすと、ベクトルA、ベクトル
B、ベクトルCのようになる。これらのベクトルA,
B,Cの大きさは、各々の量が減少するに従い同一位相
でゼロに近づく。また新品のACSRを位相検波する
と、その出力の位相と振幅は、これらのベクトルA,
B,Cの合成ベクトルDとなり、鋼線、アルミ、亜鉛の
各部分が減少していくと夫々のベクトル成分が減少し、
合成ベクトルDもこれにしたがって変化する。
The principle and procedure for calculating the remaining amount of aluminum are
Next, a description will be given. Regarding the new ACSR, the output when the steel wire portion only, the aluminum portion only, and the zinc portion only are respectively extracted and phase-detected is represented by the phase and amplitude on the two-dimensional plane shown in FIG. It becomes like vector B and vector C. These vectors A,
The magnitudes of B and C approach zero with the same phase as the respective quantities decrease. When phase detection is performed on a new ACSR, the phase and amplitude of its output are
It becomes a composite vector D of B and C, and as each part of steel wire, aluminum, and zinc decreases, the respective vector components decrease,
The composite vector D also changes accordingly.

【0027】亜鉛による出力成分をカットするため、上
記亜鉛のベクトルAと直交する方向に大きさ1の位相検
波用の基準ベクトルαを考え、その位相でACSRを位
相検波すると、その時の出力の大きさgは上記合成ベク
トルDと基準ベクトルαとの内積となり、これはベクト
ルBと基準ベクトルαの内積(B・cosθ=i)と、
ベクトルCと基準ベクトルαの内積(C・cosφ=
h)の和となる。そこで、先に低周波で検出されている
強磁性体金属(鋼線)の出力電圧値fを高周波検出回路
2で検出した場合の出力電圧値cに換算するため、予め
同一の鋼線について低周波検出回路3と高周波検出回路
2で同一位相にて位相検波して得た出力電圧の比p=
c′/f′を掛け、さらにcosφを掛けて基準ベクト
ルα方向の大きさに換算して、検出方向の成分の大きさ
h=f・p・cosφを得て、上記位相検波出力gから
減算すればアルミの出力成分iが算出できる。さらに、
これをcosθで割ればアルミ軸ハ上の大きさが得られ
る。そして、先に鋼線の残存量測定で説明したのと同様
に、アルミの残存量と出力ベクトルBの大きさとの対応
関係表を作成しておき、記憶装置に記憶させておけば、
演算回路9で演算して、直ちにアルミの残存量を表示器
10に表示させることができる。
In order to cut the output component due to zinc, consider a reference vector α for phase detection of size 1 in the direction orthogonal to the vector A of zinc, and phase-detect the ACSR at that phase. The size g is the inner product of the composite vector D and the reference vector α, which is the inner product of the vector B and the reference vector α (B · cos θ = i),
Inner product of vector C and reference vector α (C · cos φ =
It is the sum of h). Therefore, in order to convert the output voltage value f of the ferromagnetic metal (steel wire) previously detected at a low frequency into the output voltage value c when detected by the high frequency detection circuit 2, the same steel wire has a low voltage value in advance. Ratio p of output voltage obtained by phase detection at the same phase by the frequency detection circuit 3 and the high frequency detection circuit 2
c ′ / f ′ is multiplied and cosφ is further multiplied to convert into the magnitude in the reference vector α direction to obtain the magnitude of the component in the detection direction h = f · p · cosφ, which is subtracted from the phase detection output g. Then, the output component i of aluminum can be calculated. further,
By dividing this by cos θ, the size on the aluminum shaft C can be obtained. Then, in the same manner as described above for measuring the remaining amount of steel wire, if a correspondence table between the remaining amount of aluminum and the size of the output vector B is created and stored in the storage device,
The remaining amount of aluminum can be immediately displayed on the display 10 after the calculation is performed by the calculation circuit 9.

【0028】また、亜鉛についても図9に示すようにア
ルミ軸ハと直交する位相ニで、位相検波し、前記同様に
換算値にて鋼線の成分を減算する等の演算を行なうこと
により、亜鉛のベクトルA上の成分が求められ、亜鉛の
残存量を算出表示させることができる。
As for zinc, as shown in FIG. 9, phase detection is performed at a phase D orthogonal to the aluminum axis C, and a calculation is performed in the same manner as described above to subtract the steel wire component. The component of zinc on the vector A is obtained, and the remaining amount of zinc can be calculated and displayed.

【0029】以上の測定及び演算によって得たデータ
は、その場で表示器10に表示させる他、記録計に記録
させることもでき、このデータによるACSRの交換時
期の予測は、試験されたACSRの周囲環境等の架線状
況を勘案しながら、過去のデータと照して行なう。
The data obtained by the above-mentioned measurement and calculation can be displayed on the spot on the display 10 or can be recorded on a recorder. The prediction of the replacement time of the ACSR based on this data can This will be done in light of past data, taking into account the circumstances of overhead lines such as the surrounding environment.

【0030】本発明法は、上述した原理に基づいて測定
を行うものであって、測定時に誘導電流および渦電流を
生じさせるため交流磁界を加える手段、および検出コイ
ルの構造、2次出力の処理方法は、検出対象の三層金属
線材(ACSRに限られない)に応じ、上記方法を実施
できる範囲で適宜に選べる。
The method of the present invention is to measure based on the above-mentioned principle. Means for applying an AC magnetic field to generate an induced current and an eddy current at the time of measurement, the structure of the detection coil and the processing of the secondary output. The method can be appropriately selected within a range in which the above method can be performed, depending on the three-layer metal wire rod (not limited to ACSR) to be detected.

【0031】[0031]

【発明の効果】本発明によれば、ACSR等の三層金属
線材の腐食状態の把握を、簡便な操作で、正確に行える
ようになる。したがって、ACSRの保全方法を、従来
採用されていた目視検査による不正確な時間基準保全か
ら、設備診断機器を使用する正確な状態保全基準に移行
できる。そのため、検査周期が延伸でき、毎年のACS
Rの検査要員を減少できるとともに、使用可能なACS
Rの取替を行うこともなくなり、ACSRの保守経費を
減らすことができる。
According to the present invention, the corrosion state of a three-layer metal wire rod such as ACSR can be accurately grasped by a simple operation. Therefore, the maintenance method of ACSR can be shifted from the inaccurate time-based maintenance by the visual inspection, which is conventionally adopted, to the accurate state-based maintenance standard using the equipment diagnostic equipment. Therefore, the inspection cycle can be extended and the ACS
ACS that can be used while reducing the number of R inspection personnel
The replacement cost of R is eliminated and the maintenance cost of ACSR can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の検出器の電気回路の構成例を示す図FIG. 1 is a diagram showing a configuration example of an electric circuit of a detector of the present invention.

【図2】励磁コイルおよび検出コイルのボビンへの配置
例を示す図
FIG. 2 is a diagram showing an arrangement example of an exciting coil and a detecting coil on a bobbin.

【図3】センサ部がACSRにガイドされる状態を示す
FIG. 3 is a diagram showing a state in which a sensor unit is guided by an ACSR.

【図4】センサ部の外観構成図FIG. 4 is an external configuration diagram of a sensor unit.

【図5】絶縁棒によってセンサ部をACSR上を移動さ
せる状態を示す図
FIG. 5 is a diagram showing a state in which the sensor unit is moved on the ACSR by an insulating rod.

【図6】検出器全体の外観構成例を示す図FIG. 6 is a diagram showing an external configuration example of the entire detector.

【図7】本発明の低周波検出回路の出力例を示す図FIG. 7 is a diagram showing an output example of a low frequency detection circuit of the present invention.

【図8】本発明法の高周波検出回路でアルミを検出した
場合の出力例を示す図
FIG. 8 is a diagram showing an output example when aluminum is detected by a high frequency detection circuit according to the method of the present invention.

【図9】本発明法の高周波検出回路で亜鉛を検出した場
合の出力例を示す図
FIG. 9 is a diagram showing an output example when zinc is detected by the high frequency detection circuit of the method of the present invention.

【図10】本発明の前提となったニ層金属線材の腐蝕劣
化判定法を説明する図
FIG. 10 is a diagram illustrating a method for determining corrosion deterioration of a two-layer metal wire rod, which is a premise of the present invention.

【符号の説明】[Explanation of symbols]

1 検出器 2 高周波検出回路 3 低周波検出回路 4、6 鞍型ボビン 5 三層金属線材(ACSR) 7、7′ ブリッジ回路 8、8′ 処理回路 9 演算回路 10 表示器 11 センサ部 L1〜L4 高周波用コイル L1′〜L4′低周波用コイル1 detector 2 high frequency detection circuit 3 low frequency detection circuit 4, 6 saddle type bobbin 5 three-layer metal wire (ACSR) 7, 7'bridge circuit 8, 8 'processing circuit 9 arithmetic circuit 10 indicator 11 sensor section L 1 ~ L 4 high-frequency coil L 1 '~L 4' low-frequency coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横田 五郎 京都府京都市右京区山ノ内御堂殿町13番地 の1 株式会社 エレクトロニクス キョ ート内 (56)参考文献 特開 昭63−212804(JP,A) 特公 昭63−41502(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Goro Yokota, 1-13 13 Midodencho, Yamanouchi, Ukyo-ku, Kyoto Prefecture, Kyoto Electronics Co., Ltd. (56) Reference JP-A-63-212804 (JP, A) Japanese Patent Sho 63-41502 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体金属の上に2種の非磁性体金属
を積層した3層金属線材の外周に沿って、 低周波磁界を作用させて、内部の強磁性体金属にまで渦
流を流す低周波励磁コイル及び、この励磁により発生す
る誘導電流による磁界変化の検出コイルを持つ低周波検
出回路と、上層の非磁性体金属に渦流が集中して流れる
ように高周波磁界を作用させる高周波励磁コイル及び、
この励磁により発生する過流による磁界変化の検出コイ
ルを持つ高周波検出回路を有する検出器を移動させ、 低周波検出回路の検出コイルに発生する誘導電圧を所定
の位相で検波し、その出力から強磁性体金属の残存量を
知り、 一方(他方)の非磁性体金属の単体を位相検波したとき
最大出力が得られる位相と90°異なる位相で、高周波
検出回路の検出コイルの出力を位相検波して、一方(他
方)の非磁性体金属の残存量に対応する出力を排除する
ことにより、他方(一方)の非磁性体金属に対応する出
力と強磁性体金属に対応する出力のベクトル合成値を知
り、この合成値から前記強磁性体金属の残存量をベクト
ル的に減算して他方(一方)の非磁性体金属の残存量を
知ることにより、3種の金属の残存量を個別に算出する
ことを特徴とする三層金属線材の腐食劣化判定法。
1. A low-frequency magnetic field is applied along the outer circumference of a three-layer metal wire rod in which two kinds of non-magnetic metal are laminated on a ferromagnetic metal, and vortexes to the ferromagnetic metal inside.
A low-frequency excitation coil that flows a current, and a low-frequency detection circuit that has a detection coil for detecting the change in magnetic field due to the induced current generated by this excitation, and the eddy current concentrates in the upper non-magnetic metal.
RF excitation coil and the action of high-frequency magnetic field so,
By moving a detector that has a high-frequency detection circuit that has a detection coil for the magnetic field change due to the overcurrent generated by this excitation, the induced voltage generated in the detection coil of the low-frequency detection circuit is detected at a specified phase, and the Knowing the remaining amount of magnetic metal, phase-detect the output of the detection coil of the high-frequency detection circuit at a phase that is 90 ° different from the phase at which the maximum output is obtained when phase detection is performed on one (other) non-magnetic metal unit. One hand (other
The output corresponding to the remaining amount of non-magnetic metal of
By knowing the vector composite value of the output corresponding to the other (one) non-magnetic metal and the output corresponding to the ferromagnetic metal, the residual amount of the ferromagnetic metal is vectorically subtracted from this composite value. Then, the remaining amount of the other (one) non-magnetic metal is known, and the remaining amount of the three kinds of metals is calculated individually.
JP3196601A 1991-08-06 1991-08-06 Corrosion degradation determination method for three-layer metal wire Expired - Fee Related JPH0827263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3196601A JPH0827263B2 (en) 1991-08-06 1991-08-06 Corrosion degradation determination method for three-layer metal wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196601A JPH0827263B2 (en) 1991-08-06 1991-08-06 Corrosion degradation determination method for three-layer metal wire

Publications (2)

Publication Number Publication Date
JPH05126799A JPH05126799A (en) 1993-05-21
JPH0827263B2 true JPH0827263B2 (en) 1996-03-21

Family

ID=16360463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196601A Expired - Fee Related JPH0827263B2 (en) 1991-08-06 1991-08-06 Corrosion degradation determination method for three-layer metal wire

Country Status (1)

Country Link
JP (1) JPH0827263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071603A (en) * 2004-09-06 2006-03-16 Toshiba Elevator Co Ltd Rope gash detection system
EP3974388A1 (en) 2018-07-25 2022-03-30 JX Nippon Mining & Metals Corporation Method for producing high-bulk-density molybdenum oxychloride

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032465B1 (en) * 2009-10-30 2011-05-03 한국전력공사 Power transmission line corrosion detector and corrosion detecting method thereof
JP2012208020A (en) * 2011-03-30 2012-10-25 Yazaki Corp Steel material selection sensor
JP2014052319A (en) * 2012-09-07 2014-03-20 Tanaka Kikinzoku Kogyo Kk Defect detection system and defect detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717684B2 (en) * 1986-08-08 1995-03-01 理化学研究所 Complex polysaccharide and method for producing the same
JPS63212804A (en) * 1987-02-28 1988-09-05 Sumitomo Metal Ind Ltd Measuring method of film thickness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071603A (en) * 2004-09-06 2006-03-16 Toshiba Elevator Co Ltd Rope gash detection system
EP3974388A1 (en) 2018-07-25 2022-03-30 JX Nippon Mining & Metals Corporation Method for producing high-bulk-density molybdenum oxychloride

Also Published As

Publication number Publication date
JPH05126799A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
US6400146B1 (en) Sensor head for ACFM based crack detection
CN102200528B (en) On-line detection device for broken wires of wire ropes
JP2007127600A (en) Electromagnetic induction type inspection device and method therefor
WO2017082730A1 (en) Detecting stray currents in electric railway systems
US9696280B2 (en) Device and method for inspecting aluminum cables with a steel core (aluminum conductor steel reinforced—ASCR) installed in energized electrical energy lines
JPH0827263B2 (en) Corrosion degradation determination method for three-layer metal wire
JPH06294776A (en) Detecting device for break of strand of stranded wire
JPH0827262B2 (en) Corrosion degradation determination method for double-layer metal wire
RU127703U1 (en) MAGNETIC DEFECTOSCOPE - SPEED METER
CN113970709A (en) Method and system for positioning local insulation damage point of subway steel rail to ground
GB2601058A (en) A method and system for assessing the integrity of overhead power line conductors
JP3056136B2 (en) Apparatus and method for measuring corrosion of linear body
JP4367601B2 (en) Current measuring system, measuring apparatus and measuring method
JP2021162360A (en) Method and device for inspection
JPS6014162A (en) Measuring device for measuring defect on surface and under surface of metallic body at temperature higher than curie temperature
JPS62261078A (en) Detection of fault point for cable
JP2004184158A (en) Method and apparatus for judging quality of connection part of steel core aluminum twist wire
CN113916975B (en) Pipeline anti-corrosion layer adhesion detection method
RU2804788C1 (en) Method for monitoring stress-strain state of pipelines
JP3833078B2 (en) Method and apparatus for measuring wear on Alsas train lines
JP4054888B2 (en) Method and apparatus for judging quality of connecting portion of steel core aluminum strand
JP3078989B2 (en) Stress sensor
JP3589975B2 (en) Method and apparatus for measuring wear of Alsas train lines
KR200339286Y1 (en) A Method and Sensor Equipment for Detection of Flame-Deterioration Degree of ACSR Power Line Conductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees