JP3833078B2 - Method and apparatus for measuring wear on Alsas train lines - Google Patents

Method and apparatus for measuring wear on Alsas train lines Download PDF

Info

Publication number
JP3833078B2
JP3833078B2 JP2001151100A JP2001151100A JP3833078B2 JP 3833078 B2 JP3833078 B2 JP 3833078B2 JP 2001151100 A JP2001151100 A JP 2001151100A JP 2001151100 A JP2001151100 A JP 2001151100A JP 3833078 B2 JP3833078 B2 JP 3833078B2
Authority
JP
Japan
Prior art keywords
detection
phase
output
detection coil
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151100A
Other languages
Japanese (ja)
Other versions
JP2002340508A (en
Inventor
健夫三 島田
勇輔 佐藤
五郎 横田
清作 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2001151100A priority Critical patent/JP3833078B2/en
Publication of JP2002340508A publication Critical patent/JP2002340508A/en
Application granted granted Critical
Publication of JP3833078B2 publication Critical patent/JP3833078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/30Power rails
    • B60M1/302Power rails composite

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、モノレールや新交通システムにおいて、集電器が接触して変電所からの電気を受け取るために設置されている剛体電車線に使用されているアルサス電車線の摩耗を測定する方法及び装置に関する。
【0002】
【従来の技術】
新交通システムでは、起動路面の側壁のプラットホームより低い位置に、3線又は2線の剛体電車線が設置されている。モノレールは、懸垂式も跨座式も正極と負極の剛体電車線が両側に敷設されている。これら剛体電車線の電圧はAC600V、DC750V等である。
【0003】
これらの剛体電車線に使用されるアルサス電車線は、図5に示すように集電器と接触するしゅう動部1を耐摩耗性を考慮してステンレス鋼を使用し、しゅう動部を支持する導電部2に良導体であるアルミニウム合金を使用したもので、この材質の組合わせからアル(アルミニウム)サス(ステンレス)電車線と呼ばれている。
【0004】
このアルサス電車線3は、車両に付けた集電器が接触して走行するため、しゅう動部の頂上部1aから摩耗して行く。そのため、この摩耗がアルミニウム合金の導電部2に達する前に交換する必要がある。従来は、この保守のため夜間に停電状態で電車線の残存高さをノギスや超音波厚さ計により直接測定し、その値を記録することにより摩耗量を把握していた。
【0005】
【発明が解決しようとする課題】
上記ノギスによる摩耗量測定は、局所的な摩耗も検出する必要があるため測定箇所が非常に多くなる。したがって多大な人工を必要とし、作業コストは非常に大きなものになっていた。
【0006】
超音波厚さ計を利用する方法は、しゅう動部と導電部の境界面からの反射を捉えることによりしゅう動部の厚さを測定するものであるが、専用のセンサが必要となり、センサと被測定物の間に空気が入らないように油等を入れる必要がある。この測定もノギスによる測定と同様に定点測定であるので、局所的な摩耗も発見するためには測定点を多くする必要があり、作業コストは非常に大きくなる。
【0007】
連続的にしゅう動部の厚さを測定する方法として、渦流を用いる方法が考えられる。これは、しゅう動部と導電部の材質の違いに着目し、所定の検波位相でしゅう動部のステンレス鋼の厚さを測定するものである。
【0008】
しかし、しゅう動部のステンレス鋼は、大電流が流れて発熱するため、使用時間の経過に伴い磁性変化等の電気的特性の変化が生じる。このような使用時間による測定値変化があると、実用的精度を持つ測定はできない。
【0009】
また、アルサス電車線の接続と固定にステンレスボルトが使用されているので、この位置で測定値が変動する問題も生じる。
【0010】
そこで、本発明はステンレスの存在に影響されないで、実用的精度を確保しながらしゅう動部の厚さを渦流を用いて、連続測定する方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の請求項1にかかるアルサス電車線の摩耗測定方法は、アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿い、一定間隔を保って渦流の検出コイルを移動させ、検出コイルの出力を、使用する励磁周波数においてステンレス鋼に対して最大出力が得られる検波位相と90°の位相差を持つ位相でであって且つアルミニウム合金に発生する渦流を検出対象とすべくアルミニウム合金に対して最大出力が得られる検波位相との位相差が小さい位相で検波し、アルサス電車線に対して予め測定された検出コイルから導電部までの距離と検波出力との関係に基づき、検波によって得た出力の大きさから、検出コイルから導電部までの距離、すなわちしゅう動部の残存厚さを求めることを特徴とする。
【0012】
本発明の請求項2にかかるアルサス電車線の摩耗測定方法は、渦流の検出コイルと、アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿い一定間隔を保って、前記検出コイルを移動させる移動手段と、検出コイルの出力を使用する励磁周波数においてステンレス鋼に対して最大の検波出力が得られる位相と90°の位相差を持つ位相であって且つアルミニウム合金に発生する渦流を検出対象とすべくアルミニウム合金に対して最大出力が得られる検波位相との位相差が小さい位相で位相検波を行う位相検波回路と、アルサス電車線に対して予め測定された検出コイルから導電部までの距離と検波出力の関係に基づき、位相検波回路の出力より検出コイルから導電部までの距離、すなわちしゅう動部の残存厚さを求める演算回路とを具備したことを特徴とする。
【0013】
【実施形態】
本発明を実施するためのアルサス電車線の摩耗測定装置は、例えば図1に示すように構成される。図1において、3はステンレス鋼のしゅう動部1をアルミニウム合金の導電部2で支持したアルサス電車線、4は相互誘導型コイルを用いた検出コイル、5はアルサス電車線のしゅう動部の頂上部1aに沿って、前記検出コイル4を移動させる移動手段、6は位相検波回路、7は検波出力から残存厚さを求める演算回路、8は判定回路、9は記録手段である。
【0014】
検出コイル4は、図2に示すように、測定対象に対向する励磁コイルL1及び誘導コイルL2と、空心状態で用いる励磁コイルL3及び誘導コイルL4を組み合わせたものである。誘導コイルL2,L4に可変抵抗器R1,R2をブリッジ接続して、誘導出力の差分が取り出されるようにし、測定対象であるアルサス電車線3に、励磁コイルL1及び誘導コイルL2が対向していないとき、ブリッジの出力が0となるように可変抵抗器R1,R2で零点調整しておく。直列接続された励磁コイルL1,L3に、所定周波数の励磁電流を通電すると、測定対象であるしゅう動部1に流れる渦流に対応する誘導出力が取り出される。この励磁電流の周波数は400Hz〜20kHzの範囲から選ばれる。
【0015】
移動手段5は、検出コイル4のL1とL2を、アルサス電車線3の頂上部1aに沿わせ一定間隔を保って移動させる。これは、例えば電気車のパンタグラフに検出コイル4を取付けた構造とし、検出コイル4のL1とL2を、例えば頂上部1aに接触する樹脂製のコイルカバーを介して、アルサス電車線3と対向させる構造とする。
【0016】
位相検波回路6は、移相回路6aと検波回路6bから構成され、交流発振器10の出力を移相回路6aに通して得た所定位相の交流信号で、誘導コイルL2,L4に発生する誘導出力の差分を検波する。この検波位相は、使用する励磁周波数においてしゅう動部1のステンレス鋼に対して最大の検波出力が得られる位相と90°の位相差を持つ位相である。演算回路7は、アルサス電車線に対して予め測定された、検出コイル4から導電部2までの距離と検波出力との関係に基づき、位相検波回路6の出力より検出コイル4から導電部2までの距離、すなわちしゅう動部1の残存厚さを求める。
【0017】
判定回路8は、測定された残存厚さに対して、摩耗限に達したこと、及び摩耗限に近づいていることを判定し、その結果を出力する。この判定結果は位置を特定するデータと共に、記録手段9に記録される。測定中の残存厚さ及び判定結果は図示しないモニターで見ることができる。
【0018】
アルサス電車線3は、ステンレス鋼のしゅう動部1とアルミニウム合金の導電部2で構成されている。所謂、渦流によるアルサス電車線の摩耗測定とはステンレスとアルミ合金の渦流の合成を測定することである。本発明の目的は、ステンレス鋼のしゅう動部1の残存厚さを測定することであり、通常の考え方では、ステンレス鋼に生じる渦流を検出対象とするのであるが、次の理由で、これは不適切である。
【0019】
1つは、電車線の接続と固定に使用されているステンレスのボルトや接続金具に流れる渦流が、ステンレス製のしゅう動部1に流れる渦流に加わった形で検出されることである。
【0020】
他の1つは、アルサス電車線3の使用経歴によりステンレス製のしゅう動部1の磁気的性質が変化することである。これは、新品のアルサス電車線について測定したしゅう動部1の残存厚さと検波出力の関係を、熱及び大電流の作用を受けた既設のアルサス電車線に、そのまま対応させることができないという問題である。
【0021】
そこで、本発明では、測定時にステンレスボルトなどの余分な物の影響を排除するためにステンレスの存在に影響されにくい成分、つまり図3に示すように、ステンレスに対して最大出力が得られる検波位相Aと90°の位相差を持つ位相Bで検波することにした。この位相はアルミニウム合金に対して最大出力が得られる検波位相Cとの位相差が小さいので、導電部2のアルミニウム合金に発生する渦流を測定することになる。すなわち、この測定値のベクトルCへの射影がアルミニウム合金の測定値となる。導電部2のアルミニウム合金の量は変化しないので、この検波出力は検出コイル4から導電部2まで距離、すなわち、しゅう動部1の残存厚さを表わすことになる。
【0022】
すなわち、図3の位相Bで検波すれば、アルサス電車線3の使用経歴やステンレスボルトの影響を受けないで実用精度を確保した測定が出来ることになる。
【0023】
図1の測定装置を用いた本発明の測定結果を、図4に示す。これは、ある励磁周波数における測定結果を、アルミニウム合金(導電部2)までの距離が0のとき出力を1とした出力比で示したものである。
【0024】
アルミニウム合金(導電部2)までの距離が長い場合は、距離に対する出力特性がカーブを描き直線性が損なわれる。したがって、予め測定した距離(残存厚さ)と検波出力の関係に基づいて、測定対象物から得られた検波出力を距離(残存厚さ)に線形変換する必要がある。この線形変換は、例えば、コンピュータ処理によって行う。
【0025】
【発明の効果】
本発明の請求項1にかかる発明によれば、アルサス電車線のしゅう動部(ステンレス鋼)の残存厚さを、電車線を固定するステンレスボルトなどの存在や、使用経歴による電気的特性の変化に影響されないで、実用精度を保って測定できるようになる。したがって、測定時間と測定人工を減らせるようになり、しゅう動部の残存厚さによる取り替え基準と比較して簡単に取り替え時期を判断することが可能になり、アルサス電車線の保守を容易に行うことができる。
【0026】
本発明の請求項2にかかる発明は、請求項1の方法を装置として具体化したもので、この構成によって、実際にアルサス電車線の連続測定が可能になり、アルサス電車線の摩耗測定を低コストで短時間に行えるようになる。
【図面の簡単な説明】
【図1】 本発明のアルサス電車線の摩耗測定装置の構成を示す図。
【図2】 図1の検出コイルの一例を示す回路図。
【図3】 本発明の検出原理を示す図。
【図4】 ある励磁周波数で行った本発明の測定値を基準化して表した図。
【図5】 アルサス電車線の断面図。
【符号の説明】
1 しゅう動部(ステンレス鋼)
2 導電部(アルミニウム合金)
3 アルサス電車線
4 検出コイル
5 移動手段
6 位相検波回路
7 演算回路
[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for measuring the wear of an Alsus train line used for a rigid train line installed to contact a current collector and receive electricity from a substation in a monorail or a new transportation system. .
[0002]
[Prior art]
In the new transportation system, three or two rigid train lines are installed at a position lower than the platform on the side wall of the starting road surface. The monorail has both positive and negative rigid rail lines laid on both sides, both suspended and straddled. The voltage of these rigid train lines is 600 V AC, 750 V DC, etc.
[0003]
As shown in FIG. 5, the Alsus train line used for these rigid train lines uses stainless steel for the sliding portion 1 in contact with the current collector in consideration of wear resistance, and supports the sliding portion. The part 2 is made of an aluminum alloy which is a good conductor, and this combination of materials is called an al (aluminum) suspension (stainless steel) train line.
[0004]
The Alsas train line 3 wears from the top 1a of the sliding portion because the current collector attached to the vehicle is in contact with the vehicle. Therefore, it is necessary to replace this wear before reaching the conductive part 2 of the aluminum alloy. Conventionally, for this maintenance, the remaining height of the train line is directly measured with a caliper or an ultrasonic thickness meter in the power failure state at night, and the wear amount is grasped by recording the value.
[0005]
[Problems to be solved by the invention]
In the measurement of the amount of wear with the caliper, it is necessary to detect local wear, so that the number of measurement points increases. Therefore, a lot of man-hours are required, and the work cost is very high.
[0006]
The method using an ultrasonic thickness meter is to measure the thickness of the sliding part by capturing the reflection from the boundary surface between the sliding part and the conductive part. It is necessary to put oil or the like so that air does not enter between the measured objects. Since this measurement is also a fixed point measurement like the caliper measurement, it is necessary to increase the number of measurement points in order to find local wear, and the operation cost becomes very high.
[0007]
As a method for continuously measuring the thickness of the sliding portion, a method using a vortex can be considered. This pays attention to the difference in material between the sliding portion and the conductive portion, and measures the thickness of the stainless steel of the sliding portion at a predetermined detection phase.
[0008]
However, since the stainless steel of the sliding portion generates heat due to a large current flowing, changes in electrical characteristics such as magnetic changes occur with the passage of time of use. If there is a change in the measured value due to such usage time, measurement with practical accuracy cannot be performed.
[0009]
In addition, since stainless bolts are used for connecting and fixing the Alsas train line, there is a problem that the measured value fluctuates at this position.
[0010]
Accordingly, an object of the present invention is to provide a method for continuously measuring the thickness of a sliding portion using a vortex while ensuring practical accuracy without being affected by the presence of stainless steel.
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a method for measuring the wear of an Alsas train line, along the top of the sliding part of the Alsas train line in which a sliding part of stainless steel is fixed on the conductive part of an aluminum alloy. kept moving the detection coil of an eddy stream, the output of the detection coil, and aluminum comprising the phase having a phase difference of the detection phase and 90 ° for maximum output is obtained for stainless steel at the excitation frequency to be used To detect eddy currents generated in the alloy as a detection target, detection is performed with a phase that has a small phase difference from the detection phase that can obtain the maximum output for the aluminum alloy, and from the detection coil to the conductive part measured in advance with respect to the Alsus train line The distance from the detection coil to the conductive part, that is, the remaining thickness of the sliding part can be obtained from the magnitude of the output obtained from the detection based on the relationship between the distance between the detection coil and the detection output. The features.
[0012]
According to a second aspect of the present invention, there is provided a method for measuring the wear of an Alsas train line, including a vortex detection coil and the top of the sliding part of an Alsus train line in which a stainless steel sliding part is fixed on an aluminum alloy conductive part. A moving means for moving the detection coil at a constant interval along the phase, and a phase having a phase difference of 90 ° with respect to the phase at which the maximum detection output is obtained for stainless steel at the excitation frequency using the output of the detection coil And a phase detection circuit that performs phase detection with a small phase difference from the detection phase that provides the maximum output for the aluminum alloy so as to detect eddy currents generated in the aluminum alloy, and for the Arsus line The distance from the detection coil to the conductive portion from the output of the phase detection circuit based on the relationship between the detection coil and the conductive portion measured in advance and the detection output. Characterized by comprising an arithmetic circuit for obtaining a residual thickness of Shu KazuSatoshi parts.
[0013]
Embodiment
An apparatus for measuring wear on an Alsus train line for carrying out the present invention is configured as shown in FIG. 1, for example. In FIG. 1, 3 is an Arsus train line in which a stainless steel sliding portion 1 is supported by an aluminum alloy conductive portion 2, 4 is a detection coil using a mutual induction coil, and 5 is the top of the sliding portion of the Alsus train line. Moving means for moving the detection coil 4 along the section 1a, 6 is a phase detection circuit, 7 is an arithmetic circuit for obtaining the remaining thickness from the detection output, 8 is a determination circuit, and 9 is a recording means.
[0014]
As shown in FIG. 2, the detection coil 4 is a combination of an excitation coil L 1 and an induction coil L 2 facing a measurement object, and an excitation coil L 3 and an induction coil L 4 used in an air-core state. The variable resistors R 1 and R 2 are bridge-connected to the induction coils L 2 and L 4 so that the difference between the induction outputs is taken out. The excitation coil L 1 and the induction coil L are connected to the Arsus train line 3 to be measured. When the two are not facing each other, zero adjustment is performed with the variable resistors R 1 and R 2 so that the output of the bridge becomes zero. When an exciting current having a predetermined frequency is applied to the exciting coils L 1 and L 3 connected in series, an induction output corresponding to the eddy current flowing through the sliding portion 1 as a measurement target is taken out. The frequency of this exciting current is selected from the range of 400 Hz to 20 kHz.
[0015]
The moving means 5 moves L 1 and L 2 of the detection coil 4 along the top 1 a of the Alsas train line 3 at a constant interval. This is, for example, a structure in which the detection coil 4 is attached to a pantograph of an electric vehicle, and the L 1 and L 2 of the detection coil 4 are connected to the Arsus line 3 via a resin coil cover that is in contact with the top 1a, for example. The structure is to be opposed.
[0016]
The phase detection circuit 6 includes a phase shift circuit 6a and a detection circuit 6b, and is generated in the induction coils L 2 and L 4 with an AC signal having a predetermined phase obtained by passing the output of the AC oscillator 10 through the phase shift circuit 6a. Detects the difference in induction output. This detection phase is a phase having a phase difference of 90 ° from the phase at which the maximum detection output is obtained for the stainless steel of the sliding portion 1 at the excitation frequency to be used. The arithmetic circuit 7 is based on the relationship between the distance from the detection coil 4 to the conductive portion 2 and the detection output measured in advance with respect to the Alsus train line, and from the output of the phase detection circuit 6 to the detection portion 4 to the conductive portion 2. , That is, the remaining thickness of the sliding portion 1 is obtained.
[0017]
The determination circuit 8 determines that the wear limit has been reached and is approaching the wear limit with respect to the measured remaining thickness, and outputs the result. This determination result is recorded in the recording means 9 together with the data for specifying the position. The remaining thickness during measurement and the determination result can be viewed on a monitor (not shown).
[0018]
The Alsus line 3 is composed of a stainless steel sliding portion 1 and an aluminum alloy conductive portion 2. The so-called eddy current wear measurement of the Alsus train line is to measure the synthesis of vortex flow of stainless steel and aluminum alloy. The purpose of the present invention is to measure the remaining thickness of the sliding portion 1 of stainless steel, and in a normal way of thinking, eddy currents generated in stainless steel are to be detected, but for the following reason, It is inappropriate.
[0019]
One is that eddy currents flowing through stainless steel bolts and connection fittings used for connecting and fixing train lines are detected in such a way that they are added to the eddy currents flowing through the sliding portion 1 made of stainless steel.
[0020]
The other is that the magnetic properties of the stainless-steel sliding part 1 change depending on the usage history of the Alsus train line 3. This is a problem that the relationship between the remaining thickness of the sliding portion 1 and the detection output measured for a new Alsas train line cannot be directly applied to the existing Alsas train line subjected to the effects of heat and large current. is there.
[0021]
Therefore, in the present invention, a component that is not easily affected by the presence of stainless steel in order to eliminate the influence of extraneous items such as stainless steel bolts at the time of measurement, that is, as shown in FIG. It was decided to detect at phase B having a phase difference of 90 ° from A. Since this phase has a small phase difference from the detection phase C at which the maximum output is obtained with respect to the aluminum alloy, the eddy current generated in the aluminum alloy of the conductive portion 2 is measured. That is, the projection of the measured value onto the vector C becomes the measured value of the aluminum alloy. Since the amount of the aluminum alloy in the conductive portion 2 does not change, this detection output represents the distance from the detection coil 4 to the conductive portion 2, that is, the remaining thickness of the sliding portion 1.
[0022]
That is, if detection is performed at phase B in FIG. 3, measurement with practical accuracy can be performed without being affected by the history of use of the Alsas train line 3 and stainless steel bolts.
[0023]
FIG. 4 shows the measurement results of the present invention using the measurement apparatus of FIG. This shows the measurement result at a certain excitation frequency as an output ratio where the output is 1 when the distance to the aluminum alloy (conductive portion 2) is 0.
[0024]
When the distance to the aluminum alloy (conductive portion 2) is long, the output characteristics with respect to the distance draw a curve and the linearity is impaired. Therefore, it is necessary to linearly convert the detection output obtained from the measurement object into the distance (residual thickness) based on the relationship between the distance (remaining thickness) measured in advance and the detection output. This linear transformation is performed by computer processing, for example.
[0025]
【The invention's effect】
According to the invention of claim 1 of the present invention, the remaining thickness of the sliding portion (stainless steel) of the Alsas train line is determined by the presence of a stainless steel bolt or the like that fixes the train line, and the change in electrical characteristics depending on the usage history. Measurements can be made with practical accuracy without being affected by. Therefore, the measurement time and measurement man-hours can be reduced, and it becomes possible to easily determine the replacement time compared to the replacement standard based on the remaining thickness of the sliding portion, so that the maintenance of the Alsus line is easily performed. be able to.
[0026]
The invention according to claim 2 of the present invention embodies the method of claim 1 as an apparatus, and this configuration actually enables continuous measurement of the Alsus train line and reduces wear measurement of the Alsus train line. Can be done in a short time at cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an Alsus train line wear measuring apparatus according to the present invention.
FIG. 2 is a circuit diagram showing an example of the detection coil of FIG.
FIG. 3 is a diagram showing a detection principle of the present invention.
FIG. 4 is a diagram showing a standardized measurement value of the present invention performed at a certain excitation frequency.
FIG. 5 is a cross-sectional view of an Arsas train line.
[Explanation of symbols]
1 Sliding part (stainless steel)
2 Conductive part (aluminum alloy)
3 Arsus Line 4 Detection Coil 5 Moving Means 6 Phase Detection Circuit 7 Arithmetic Circuit

Claims (2)

アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿い、一定間隔を保って渦流の検出コイルを移動させ、検出コイルの出力を、使用する励磁周波数においてステンレス鋼に対して最大出力が得られる検波位相と90°の位相差を持つ位相でであって且つアルミニウム合金に発生する渦流を検出対象とすべくアルミニウム合金に対して最大出力が得られる検波位相との位相差が小さい位相で検波し、アルサス電車線に対して予め測定された検出コイルから導電部までの距離と検波出力との関係に基づき、検波によって得た出力の大きさから、検出コイルから導電部までの距離、すなわちしゅう動部の残存厚さを求めることを特徴とするアルサス電車線の摩耗測定方法。Use the output of the detection coil by moving the detection coil of the eddy current at regular intervals along the top of the sliding part of the Alsas train line with the stainless steel sliding part fixed on the conductive part of the aluminum alloy. maximum the aluminum alloy in order to the detected eddy flow generated in the a and and aluminum alloy phase having a phase difference of the detection phase and 90 ° for maximum output is obtained for stainless steel at the excitation frequency Detection is performed with a phase that has a small phase difference from the detection phase from which the output is obtained, and the output obtained by detection is based on the relationship between the detection coil-to-conducted distance from the detection coil measured in advance with respect to the Arsus train line and the detection output. A method for measuring the wear of an Alsus train line, wherein the distance from the detection coil to the conductive portion, that is, the remaining thickness of the sliding portion is obtained from the size. 渦流の検出コイルと、アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿い一定間隔を保って、前記検出コイルを移動させる移動手段と、検出コイルの出力を使用する励磁周波数においてステンレス鋼に対して最大の検波出力が得られる位相と90°の位相差を持つ位相であって且つアルミニウム合金に発生する渦流を検出対象とすべくアルミニウム合金に対して最大出力が得られる検波位相との位相差が小さい位相で位相検波を行う位相検波回路と、アルサス電車線に対して予め測定された検出コイルから導電部までの距離と検波出力の関係に基づき、位相検波回路の出力より検出コイルから導電部までの距離、すなわちしゅう動部の残存厚さを求める演算回路とを具備したことを特徴とするアルサス電車線の摩耗測定装置。A eddy current detection coil, and a moving means for moving the detection coil at a constant interval along the top of the sliding portion of the Alsas train line in which a stainless steel sliding portion is fixed on the conductive portion of the aluminum alloy. In order to detect the vortex generated in the aluminum alloy that has a phase difference of 90 ° and a phase that provides the maximum detection output for stainless steel at the excitation frequency that uses the output of the detection coil. Phase detection circuit that performs phase detection with a phase that has a small phase difference from the detection phase at which the maximum output can be obtained for the alloy, and the distance from the detection coil to the conductive portion and the detection output that are measured in advance for the Arsus line And an arithmetic circuit for determining the distance from the detection coil to the conductive portion, that is, the remaining thickness of the sliding portion, from the output of the phase detection circuit based on the relationship. Wear measurement device Arthus contact line, characterized in.
JP2001151100A 2001-05-21 2001-05-21 Method and apparatus for measuring wear on Alsas train lines Expired - Fee Related JP3833078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151100A JP3833078B2 (en) 2001-05-21 2001-05-21 Method and apparatus for measuring wear on Alsas train lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151100A JP3833078B2 (en) 2001-05-21 2001-05-21 Method and apparatus for measuring wear on Alsas train lines

Publications (2)

Publication Number Publication Date
JP2002340508A JP2002340508A (en) 2002-11-27
JP3833078B2 true JP3833078B2 (en) 2006-10-11

Family

ID=18996009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151100A Expired - Fee Related JP3833078B2 (en) 2001-05-21 2001-05-21 Method and apparatus for measuring wear on Alsas train lines

Country Status (1)

Country Link
JP (1) JP3833078B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802081B2 (en) * 2006-10-31 2011-10-26 公益財団法人鉄道総合技術研究所 Thickness measuring device and thickness measuring program

Also Published As

Publication number Publication date
JP2002340508A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
CN102812369B (en) Insulation deterioration diagnosis device
JP2571330B2 (en) Method and apparatus for measuring dielectric at metal strip position
US20230084963A1 (en) Device, system and method for detecting leakage current for traction power system
JP5979413B2 (en) Power measuring device
JP5449222B2 (en) DC leakage detection device
Mirzaei et al. A linear eddy current speed sensor with a perpendicular coils configuration
JP3833078B2 (en) Method and apparatus for measuring wear on Alsas train lines
CN209656621U (en) A kind of F rail stress detection device based on magnetoelasticity
JP3589975B2 (en) Method and apparatus for measuring wear of Alsas train lines
WO2018054697A1 (en) Inductive sensor device
JP2001041703A (en) Range finder and thickness meter
JP6719111B2 (en) Rail wear measuring method using eddy current sensor and its measuring device
JPH08146024A (en) Speedometer apparatus for railroad
JP6896250B2 (en) Open coil eddy current type sensor and rail displacement measurement method using this
KR101192456B1 (en) lateral rail displacement measuring system using electromagnetic induction ,the method and the sensor thereof
JPH0124266B2 (en)
KR20100041372A (en) Apparatus for detecting position of linear synchronous motor
JP4367601B2 (en) Current measuring system, measuring apparatus and measuring method
JP2911383B2 (en) Trolley wire wear limit detector
JP4456682B2 (en) Non-contact flow velocity detection method and apparatus
JPH0827262B2 (en) Corrosion degradation determination method for double-layer metal wire
KR101013125B1 (en) current measurement sensor using temperature and oscillation and method thereof
JP2001108659A (en) Eddy current prove for detecting metal surface flaw
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JPH0145575B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees