JP4367601B2 - Current measuring system, measuring apparatus and measuring method - Google Patents

Current measuring system, measuring apparatus and measuring method Download PDF

Info

Publication number
JP4367601B2
JP4367601B2 JP2001069158A JP2001069158A JP4367601B2 JP 4367601 B2 JP4367601 B2 JP 4367601B2 JP 2001069158 A JP2001069158 A JP 2001069158A JP 2001069158 A JP2001069158 A JP 2001069158A JP 4367601 B2 JP4367601 B2 JP 4367601B2
Authority
JP
Japan
Prior art keywords
current
magnetic field
magnetometer
conductor
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001069158A
Other languages
Japanese (ja)
Other versions
JP2002267693A (en
Inventor
川瀬隆治
市川哲也
矢沢清
伊藤篤志
伊東博之
衛藤敏幸
廣木雅司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP2001069158A priority Critical patent/JP4367601B2/en
Publication of JP2002267693A publication Critical patent/JP2002267693A/en
Application granted granted Critical
Publication of JP4367601B2 publication Critical patent/JP4367601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道のレールなど場所によらない断面形状を有する導電体に流れる電流の計測に関するものである。
【0002】
【従来の技術】
従来、導電体に流れる電流を非接触式で計測する電流計としてクランプ型電流計がある。クランプ型電流計は、導電体の周囲をリングで包囲するものである。しかし、導電体の周囲を包囲できないもの、例えば、鉄道のレールのように車輪がレール上を走るものは、このクランプ型電流計を使用することができない。
【0003】
近年、電車線路から発生する磁場を調べることが求められている。電車線路から発生する磁場の大きさは、線路の電線やレールを流れる電流の大きさによって変化する。線路の電線には、き電線、吊架線やトロリ線がある。そのため、線路の上方に張られた、例えば図4のように、き電線にクランプ型電流計を設置して電流値を計測する方法がある。しかし、き電線に高圧の電圧がかけられているため地絡事故の発生、き電線に計測機材を設置するため高所作業による墜落事故の発生、また、終電後の深夜作業などの問題点がある。
【0004】
線路の電線やレールに流れる電流は、直流電車の場合を例に取ると、直流変電所からき電線、吊架線やトロリ線、車輌を介してレールに流れ、直流変電所に戻る経路を通る。そのため、き電線の電流値を計測する代わりに、レールの電流値を計測しても良い。そこで、電車線路から発生する磁場を調べるために、レールに流れる電流を計る方法がある。その方法として、例えば図4のように、インピーダンスボンドにクランプ型電流計を取り付けることができる。インピーダンスボンドでは、レールに引き出しケーブルを接続し、レールに流れる全電流が流れるようにしてある。しかし、インピーダンスボンドの設置場所は限られており、レールを流れる電流値が計る場所によって異なるにも係わらず、電車線路の任意の場所に流れる電流値を計測することができないといった問題点がある。
【0005】
また、通常のレールボンドにクランプ型電流計を取り付ける方法がある。通常のレールボンドは、数10cm程度の長さの導線でレールに接続してある。しかし、通常のレールボンドには、レールに流れる全ての電流が流れるわけではないため、正確なレール電流を計測することができない。レールボンドに流れる電流は、レールの湿潤状態や、温度、接続方法などによって大きく変わるため、この電流値を計測しても、レールに流れる全電流を推定することは困難である。
【0006】
上記クランプ型電流計は、「周回する磁力線に沿って積分した磁場は、磁力線の輪の中にある電流に比例する」という電流と磁界の関係を示すアンペールの周回積分の法則を利用したものである。この法則は、電流を測定する導線の周囲を囲えれば、導線がどの位置にあっても測定でき、汎用性が高い。しかし、レールのように周囲を囲えない導線の電流計測には応用ができない。それに対して、電流と磁場の関係を示す他の法則として、「ある線分電流が、任意の位置に発生させる磁界の大きさを定める」というビオ・サバールの法則があるが、電流線と磁力計との位置関係が固定されている場合でないと適用できず、汎用性が低いために、電車線路には応用されていなかった。
【0007】
【発明が解決しようとする課題】
<イ>本発明は、導電体に流れる電流を非接触式で容易に計測できるようにすることにある。
<ロ>また、本発明は、鉄道のレールなどの断面形状が一定の導電体に流れる電流を容易に計測できるようにすることにある。
【0008】
【課題を解決するための手段】
本願発明は、 レールである導電体に流れる電流を計測する電流計測システムにおいて、導電体の周囲を包囲することなく導電体の近傍に配置される磁力計と、導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出する処理装置と、前記の磁力計と処理装置をレールに固定する非磁性、非導電性の固定治具とを備えていることを特徴とする電流計測システム、または、レールである導電体に流れる電流を計測する電流計測装置において、導電体の周囲を包囲することなく導電体の近傍に配置される磁力計と、導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出する処理装置と、 前記の磁力計と処理装置をレールに固定する非磁性、非導電性の固定治具とを備えていることを特徴とする電流計測装置、または、レールである導電体に流れる電流を計測する電流計測方法において、導電体の周囲を包囲することなく導電体の近傍に磁力計と処理装置をレールに非磁性、非導電性の固定治具で固定し、導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて、前記の処理装置で電流を算出することを特徴とする電流計測方法である。
【0009】
本発明にかかる電流計測システムは、
導電体の周囲を包囲することなく導電体の近傍に配置される磁力計と、
導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、
電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、
磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出する処理装置と
を備えているものである。
また、本発明にかかる他の電流計測システムは、
導電体が、断面形状がほぼ一定の導電体であるものである。
更に、本発明にかかる他の電流計測システムは、
導電体が、レールである。
更に、本発明にかかる他の電流計測システムは、
導電体近傍の2点で同時に磁場を測定し、その2点で同じとなった磁場の大きさを、前記定常的な磁場の強さとするものである。
本発明にかかる電流計測装置は、
導電体の周囲を包囲することなく導電体の近傍に配置される磁力計と、
導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、
電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、
磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出する処理装置と
を備えている。
また、本発明にかかる他の電流計測装置は、
導電体近傍の2点で同時に磁場を測定し、その2点で同じとなった磁場の大きさを、前記定常的な磁場の強さとするものである。
本発明にかかる電流計測方法は、
導電体の周囲を包囲することなく導電体の近傍に磁力計を配置し、
導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、
電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、
磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出するものである。
また、本発明にかかる他の電流計測方法は、
導電体が、レールである。
更に、本発明にかかる他の電流計測方法は、
導電体近傍の2点で同時に磁場を測定し、その2点で同じとなった磁場の大きさを、前記定常的な磁場の強さとするものである。
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0010】
<イ>電流計測システム
電流計測システムは、導電体に流れる電流を非接触で計測できるものであり、例えば図1のように、鉄道のレールなどの導電体の近傍に磁力計を配置し、磁力計と磁力計で計測した計測値を処理装置で演算処理して導電体に流れる電流を算出するものである。磁力計は、測定精度を高めるために磁界方向とほぼ平行に配置すると良い。磁力計は、種類によって測定値が飽和するフルスケールレンジが異なるため、測定される磁界の大きさがフルスケールレンジを越えないように使用する。磁力計は、磁場の強さを計測できるものであればよく、例えば、磁力計MM123(株式会社MTI製)を使用できる。
【0011】
鉄道には、直流と交流の方式があり、レールに流れる電流は、どちらでも測定できるが、本実施例では、一例としてレールに流れる直流電流の測定について記載する。本発明は、直流電流の測定に限定するものではない。
【0012】
<ロ>磁力計のある場所に発生する磁場の強さ
電流と磁場の強さの関係式は、ビオ・サバールの法則(式1を参照)に従って求めることができる。導電体の断面を多数に区画し、各区画に微小電流iが流れた場合、磁力計のある場所に発生する磁場の強さdHをビオ・サバールの法則に従って求める。即ち、断面全体に流れる電流は、各区画に流れる電流iの総和Iとなり、磁力計のある場所rに発生する磁場の強さは、各区画によって生じる磁場の強さdHの総和Hとなる。
【0013】
【式1】

Figure 0004367601
【0014】
<ハ>磁気の計測値から電流を求める
磁力計によって測定した磁場の強さから、電流を求める。
電流を求める式は、電流I=kHとなり、ここで係数kは、断面積や磁力計のある場所rに依存する定数である。このHは、電流Iによって発生する磁場であり、実際計測された磁場の強さHmは、導電体に流れる電流以外で発生する磁場が含まれている。導電体に流れる電流以外で発生する磁場としては、地磁気などの定常的な磁界や付近の導電体に流れる電流による変動磁界がある。ただし、鉄道のレールに流れる電流を測定する例の場合には、付近の導電体である隣接のレール、き電線、吊架線、トロリ線などによって発生する変動磁界は、測定するレールの電流によって発生する磁界に比例しており、これに比べると、通常は弱く殆ど無視することができる。そこで、こうした場合には、地磁気などの定常的な磁場の強さH0を求めて、計測した磁場の強さHmから引いておく必要がある。その結果、電流と磁場の強さの関係式は、電流I=k(Hm−H0)となる。ここで、磁場の強さH0の計測方法は、導電体に電流を流さない状態のときの磁力計の計測値を利用する方法や、後説する2点で同時測定する方法などがある。
【0015】
<ハ>磁界の強さH0の測定で2点で同時測定する方法
磁場の強さH0は、レールに電流が流れていない時に求める方法の他に、磁力計を測定点AとBの2箇所に設置して求めることができる。測定点AとBの2箇所の測定磁場HmA、HmBと電流値Iの関係は、以下の式となる。
【0016】
【式2】
Figure 0004367601
【0017】
【式3】
Figure 0004367601
【0018】
2箇所で同時に測定し、H0A=H0Bとなる個所がある場合、この式と上記式2と式3からH0=H0A=H0Bを求めることができる。即ち、H0A=H0Bとなる2点に磁力計を設置して測定すれば、H0を求めることができる。
【0019】
<ニ>処理装置
処理装置は、磁力計で計測した計測値を電流と磁場の強さの関係式に入れて、導電体に流れる電流値を算出するものであり、専用の演算処理装置やパソコンなどでの処理装置を使用することができる。処理装置は、磁力計と電気的に接続して測定値を入力してもよく、又は、処理装置と磁力計を分離しておき、磁力計の計測値をデータロガー(図示していない)で記憶し、後で、その計測データを処理装置で処理してもよい。処理装置には、測定値の表示部や、アナログ電圧出力端子など、測定値の記録に必要な機器を取り付けることができる。また、パソコンとの接続に必要なケーブル端子や通信機器との接続端子、データ記録装置やデータ通信装置などを取り付けることもできる。
【0020】
<ホ>計測対象導電体
計測対象の導電体は、電気が流れるものならよく、鉄道やモノレールのレールの他にも、アース用金属配管、金属ワイヤ、鉄骨部材、高圧送電線、柱や梁などの筒状構造部材などがある。レールなどの長手方向の導電体において、長手方向に電流が流れ、長手方向に直交する断面形状が一定なものは、長手方向の任意の位置で同一の電流と磁場の強さの関係式で電流を求めることができる。レールのように断面形状が同一で何処でも電流密度が一定となる場合、ビオ・サバールの法則を利用することにより、計測を容易に行うことができる。
【0021】
<ヘ>固定治具
固定治具3は、磁力計11をレール21の所定位置に位置合わせできるものであり、また、磁力計11を必要に応じて適切な位置に固定できる。固定治具3の材質は、測定値に影響を与えないように、非磁性、非導電性のものが好ましい。固定治具3は、例えば図2に示すように、磁力計11をレール21に位置合わせできるので、磁力計11がレール21の決まった位置に設置され、線路の何処でも容易に電流を計測することができる。固定具の形状は、種々あり、一例を図2(A)〜(C)に示す。固定治具3には、磁力計11の他に、処理装置12や留め具14を備えている。処理装置には、表示部13があり、測定値を即座に知ることができる。
【0022】
以下に、レールに流れる電流値の計測方法を説明する。
【0023】
<イ>磁力計の配置
磁力計の配置場所は、レールの近傍、即ちレールに流れた電流で作られる磁場が計測できる強さであり、測定対象のレール以外から発生する変動磁場の影響を受けないところならよい。経験的にレールの場合は、70cm以上離れた位置では測定が困難であることが知られた。電流と磁場の強さの関係式の係数kは、磁力計の配置位置(レールの断面を含む平面上の位置)の変化で変わるので、予め決めた位置に配置するとよい。例えば、レールの面対称の位置で、底面の中央から下、数cm、例えば1cm〜5cm程度の個所では、磁場の強さが適当な大きさであり、磁場の方向がレールの底面に平行で、正しい測定値が得られ易い。
【0024】
<ロ>レールに流れる電流の算出
磁力計11で測定した磁場の強さを処理装置12に入力し、電流と磁場の強さの関係式の磁場の強さHmに代入してレール21に流れる電流値Iを算出し、表示装置に表示する。
【0025】
<ハ>実際の測定値の比較
実際の電車線路において、時刻15時20分から15時30分の10分間に電車が通過した際に測定した。ここでは、インピーダンスボンド付近のレール底面下3cmに磁力計を配置し、データロガーで計測値を記録した。同時に従来のインピーダンスボンドの個所でクランプ型電流計を配置し電流値を計測し、データロガーで記録した。それらの電流値を比較したグラフを図3に示す。
【0026】
本発明で得られた電流値とインピーダンスボンドで測定した電流値は、正負300アンペアと大幅に変動しても、殆ど一致していた。両者の相関係数は、0.99であった。このように、非接触式で、レール周囲を覆うこと無く磁場の強さを測定しても、レールに流れる電流値を正確に測定することができた。
【0027】
【発明の効果】
本発明は、次のような効果を得ることができる。
<イ>本発明によって、導電体に流れる電流を非接触の方法で容易に計測することができる。
<ロ>また、本発明によって、クランプ型電流計が設置できない大きさや形状、その他の状況の導電体でも電流値を容易に計測することができる。
<ハ>また、本発明によって、電車の走行に支障なく、レールの直流電流値を容易に計測することができる。
<ニ>また、本発明によって、電車線路を流れる電流を任意の個所で任意の時刻に容易に計測できるので、電車線路から発生する磁場が調査すべき周辺に及ぼす影響を検討することができる。
<ホ>また、本発明によって、電車線路を流れる最大電流を任意の個所で容易に計測できるので、き電線、吊架線、トロリ線の材質、断面積、条数を決めることができ、それに基づいて、架線の保持材の強度や、電車線路を保持する橋脚などの強度を求めることができる。その結果、電車線路の設計時に、必要最小限の構造部材を検討できるようになり、不要コストの削減、環境対策に寄与することができる。
<ヘ>また、本発明によって、き電線、吊架線、トロリ線を流れる電流の総和は、同じ場所でのレール電流値とレールからの漏洩電流値の総和に等しいので、レールからの漏洩電流を計測することができる。
<ト>また、本発明によって、水道管、ガス管などの金属配管に流れる迷走電流を計測でき、電食の危険性を知ることができる。
【図面の簡単な説明】
【図1】導電体に流れる電流を計測する電流計測システムの説明図
【図2】レール電流計測システムの説明図
【図3】本発明で計測した電流値を示すグラフの図
【図4】従来の電車線路に流れる電流計測の説明図
【符号の説明】
1・・・電流計測システム
11・・磁力計
12・・処理装置
13・・表示部
2・・・導電体
21・・レール
3・・・固定治具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to measurement of current flowing in a conductor having a cross-sectional shape that does not depend on a location such as a railroad rail.
[0002]
[Prior art]
Conventionally, there is a clamp-type ammeter as an ammeter that measures a current flowing through a conductor in a non-contact manner. A clamp-type ammeter surrounds a conductor with a ring. However, the clamp-type ammeter cannot be used if the conductor cannot be surrounded, for example, a wheel running on the rail such as a railroad rail.
[0003]
In recent years, it has been required to examine the magnetic field generated from a train track. The magnitude of the magnetic field generated from the train line changes depending on the magnitude of the current flowing through the electric wire and rail of the line. There are feeders, suspension lines and trolley wires in the electric wires of the track. Therefore, there is a method of measuring a current value by installing a clamp-type ammeter on a feeder, for example, as shown in FIG. However, there are problems such as a ground fault due to the high voltage applied to the feeder, a crash due to work at a high place due to the installation of measuring equipment on the feeder, and midnight work after the last train. is there.
[0004]
For example, in the case of a DC train, the current flowing in the electric wires and rails of the track flows from the DC substation to the rail via the electric wires, suspension lines, trolley wires, and vehicles, and then returns to the DC substation. Therefore, instead of measuring the current value of the feeder, the current value of the rail may be measured. Therefore, in order to investigate the magnetic field generated from the train track, there is a method of measuring the current flowing through the rail. As the method, for example, as shown in FIG. 4, a clamp-type ammeter can be attached to the impedance bond. In the impedance bond, a lead-out cable is connected to the rail so that all current flowing through the rail flows. However, the location where the impedance bond is installed is limited, and there is a problem that it is impossible to measure the value of the current flowing through an arbitrary place on the train line, even though the value of the current flowing through the rail varies depending on the place where the current is measured.
[0005]
There is also a method of attaching a clamp type ammeter to a normal rail bond. A normal rail bond is connected to the rail with a conducting wire having a length of about several tens of centimeters. However, since not all current flowing through the rail flows through a normal rail bond, accurate rail current cannot be measured. Since the current flowing through the rail bond varies greatly depending on the rail wet state, temperature, connection method, and the like, it is difficult to estimate the total current flowing through the rail even if this current value is measured.
[0006]
The clamp-type ammeter uses Ampere's orbital integration law, which indicates the relationship between current and magnetic field, saying that the magnetic field integrated along the magnetic field lines is proportional to the current in the ring of magnetic field lines. is there. This law is highly versatile because it can be measured at any position as long as it surrounds the conductor for measuring current. However, it cannot be applied to the current measurement of conductors that cannot be surrounded by rails. On the other hand, as another law indicating the relationship between current and magnetic field, there is Bio-Savart's law that "a certain line segment current determines the magnitude of the magnetic field generated at an arbitrary position". It could not be applied unless the positional relationship with the meter is fixed, and because of its low versatility, it was not applied to train tracks.
[0007]
[Problems to be solved by the invention]
<A> An object of the present invention is to make it possible to easily measure a current flowing through a conductor in a non-contact manner.
<B> The present invention also makes it possible to easily measure a current flowing in a conductor having a constant cross-sectional shape such as a railroad rail.
[0008]
[Means for Solving the Problems]
The present invention is a current measurement system for measuring a current flowing through a conductor , which is a rail, and includes a magnetometer disposed in the vicinity of the conductor without surrounding the conductor, and a cross-sectional shape of the conductor. Calculate the sum of the magnetic field strength at the position of the magnetometer generated by the flowing current, obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position, and A processing device that calculates a current by applying a value obtained by subtracting the strength of a stationary magnetic field from the magnitude of the magnetic field measured at the meter position to the relational expression, and fixing the magnetometer and the processing device to the rail. Surrounding the periphery of a conductor in a current measurement system characterized by comprising a non-magnetic, non-conductive fixture or a current measurement device for measuring a current flowing through a conductor as a rail Placed close to the conductor The sum of the magnetic field strength at the position of the magnetometer generated by the magnetometer and the current flowing in each part of the cross-sectional shape of the conductor is calculated, the sum of the current and the strength of the magnetic field at the magnetometer position Is a processing device that calculates a current by obtaining a relational expression including a coefficient with the sum of the two and applying a value obtained by subtracting the stationary magnetic field strength from the magnitude of the magnetic field measured at the magnetometer position to the relational expression. And a current measuring device comprising a nonmagnetic and nonconductive fixing jig for fixing the magnetometer and the processing device to a rail, or a current flowing through a conductor as a rail. In the current measurement method, the magnetometer and the processing device are fixed to the rail with a nonmagnetic and nonconductive fixing jig in the vicinity of the conductor without surrounding the conductor, and each portion of the cross section of the conductor At a position where the magnetometer is generated by the current flowing through Calculate the sum of the magnetic field strength, obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position, and from the magnitude of the magnetic field measured at the magnetometer position, The current measurement method is characterized in that a value obtained by subtracting the strength of a simple magnetic field is applied to the relational expression, and the current is calculated by the processing apparatus .
[0009]
The current measurement system according to the present invention is:
A magnetometer disposed in the vicinity of the conductor without surrounding the conductor;
Calculate the sum of the magnetic field strength at the position of the magnetometer, generated by the current flowing in each part of the cross-sectional shape of the conductor,
Obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position,
And a processing device for calculating a current by applying a value obtained by subtracting the strength of a stationary magnetic field from the magnitude of the magnetic field measured at the magnetometer position to the relational expression.
In addition, another current measurement system according to the present invention is:
The conductor is a conductor having a substantially constant cross-sectional shape.
Furthermore, other current measurement systems according to the present invention include:
The conductor is a rail.
Furthermore, other current measurement systems according to the present invention include:
The magnetic field is measured simultaneously at two points in the vicinity of the conductor, and the magnitude of the magnetic field that is the same at the two points is the strength of the steady magnetic field.
The current measuring device according to the present invention is:
A magnetometer disposed in the vicinity of the conductor without surrounding the conductor;
Calculate the sum of the magnetic field strength at the position of the magnetometer, generated by the current flowing in each part of the cross-sectional shape of the conductor,
Obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position,
And a processing device that calculates a current by applying a value obtained by subtracting the strength of a stationary magnetic field from the magnitude of the magnetic field measured at the magnetometer position to the relational expression.
In addition, another current measuring device according to the present invention is
The magnetic field is measured simultaneously at two points in the vicinity of the conductor, and the magnitude of the magnetic field that is the same at the two points is the strength of the steady magnetic field.
The current measurement method according to the present invention includes:
A magnetometer is placed in the vicinity of the conductor without surrounding the conductor,
Calculate the sum of the magnetic field strength at the position of the magnetometer, generated by the current flowing in each part of the cross-sectional shape of the conductor,
Obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position,
The current is calculated by applying the value obtained by subtracting the strength of the stationary magnetic field from the magnitude of the magnetic field measured at the magnetometer position to the relational expression.
In addition, another current measurement method according to the present invention is:
The conductor is a rail.
Furthermore, other current measurement methods according to the present invention include:
The magnetic field is measured simultaneously at two points in the vicinity of the conductor, and the magnitude of the magnetic field that is the same at the two points is the strength of the steady magnetic field.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0010]
<A> Current measurement system The current measurement system can measure the current flowing through the conductor in a non-contact manner. For example, as shown in FIG. 1, a magnetometer is arranged in the vicinity of a conductor such as a rail of a railway. A measurement value measured by a meter and a magnetometer is processed by a processing device to calculate a current flowing through the conductor. The magnetometer is preferably arranged substantially parallel to the magnetic field direction in order to increase the measurement accuracy. The magnetometer is used so that the magnitude of the magnetic field to be measured does not exceed the full scale range because the full scale range in which the measured value is saturated differs depending on the type. Any magnetometer may be used as long as it can measure the strength of the magnetic field. For example, a magnetometer MM123 (manufactured by MTI Co., Ltd.) can be used.
[0011]
There are direct current and alternating current systems for railways, and the current flowing through the rail can be measured by either method. In this embodiment, the measurement of the direct current flowing through the rail is described as an example. The present invention is not limited to the measurement of direct current.
[0012]
<B> Strength of the magnetic field generated at a place where the magnetometer is located The relational expression between the current and the strength of the magnetic field can be obtained according to Bio-Savart's law (see Formula 1). When a cross section of the conductor is divided into many sections and a minute current i flows through each section, the strength dH of the magnetic field generated at a place where the magnetometer is located is obtained according to Bio-Savart's law. That is, the current flowing through the entire cross section is the sum I of the current i flowing through each section, and the strength of the magnetic field generated at the location r where the magnetometer is located is the sum H of the magnetic field strength dH generated by each section.
[0013]
[Formula 1]
Figure 0004367601
[0014]
<C> Obtaining the current from the measured value of magnetism The current is obtained from the strength of the magnetic field measured by the magnetometer.
The equation for obtaining the current is the current I = kH, where the coefficient k is a constant depending on the cross-sectional area and the location r where the magnetometer is located. This H is a magnetic field generated by the current I, and the actually measured magnetic field strength H m includes a magnetic field generated other than the current flowing through the conductor. The magnetic field generated other than the current flowing through the conductor includes a stationary magnetic field such as geomagnetism and a variable magnetic field due to the current flowing through a nearby conductor. However, in the example of measuring the current flowing in the rail of the railway, the magnetic field generated by the adjacent rail, feeder, suspension wire, trolley wire, etc., which are nearby conductors, is generated by the current of the rail being measured. In comparison with this, it is usually weak and almost negligible. Therefore, in such a case, it is necessary to obtain a steady magnetic field strength H 0 such as geomagnetism and subtract it from the measured magnetic field strength H m . As a result, the relational expression between the current and the strength of the magnetic field is a current I = k (H m −H 0 ). Here, there are a method of measuring the magnetic field strength H 0 , such as a method of using a measured value of a magnetometer when no current is passed through a conductor, or a method of simultaneously measuring two points described later.
[0015]
Strength H 0 of the method the magnetic field measured simultaneously at two points in the measurement of the strength H 0 of <c> magnetic field, in addition to the method of determining when no current is flowing in the rail, the measurement points A and B the magnetometer It can be obtained by installing in two places. The relationship between the measurement magnetic fields H mA and H mB at two measurement points A and B and the current value I is as follows.
[0016]
[Formula 2]
Figure 0004367601
[0017]
[Formula 3]
Figure 0004367601
[0018]
If there are locations where H 0A = H 0B is measured simultaneously at two locations, H 0 = H 0A = H 0B can be obtained from this equation and the above equations 2 and 3. That is, if a magnetometer is installed at two points where H 0A = H 0B and measured, H 0 can be obtained.
[0019]
<D> Processing device The processing device calculates the current value flowing through the conductor by putting the measured value measured by the magnetometer into the relational expression between the current and the magnetic field strength. And the like can be used. The processing device may be electrically connected to the magnetometer to input the measured value, or the processing device and the magnetometer may be separated and the measured value of the magnetometer may be input with a data logger (not shown). You may memorize | store and process the measurement data with a processing apparatus later. Equipment necessary for recording measurement values, such as a display unit for measurement values and an analog voltage output terminal, can be attached to the processing device. In addition, a cable terminal necessary for connection with a personal computer, a connection terminal with a communication device, a data recording device, a data communication device, and the like can be attached.
[0020]
<E> Conductor to be measured The conductor to be measured is not limited as long as electricity flows through it. In addition to railroad and monorail rails, metal pipes for earthing, metal wires, steel members, high-voltage power transmission lines, columns and beams, etc. There is a cylindrical structural member. In a conductor in the longitudinal direction such as a rail, a current flows in the longitudinal direction and the cross-sectional shape perpendicular to the longitudinal direction is constant, the current is expressed by the relational expression between the same current and the strength of the magnetic field at an arbitrary position in the longitudinal direction. Can be requested. When the cross-sectional shape is the same as in a rail and the current density is constant everywhere, measurement can be easily performed by using Bio-Savart's law.
[0021]
<F> Fixing jig The fixing jig 3 can position the magnetometer 11 at a predetermined position of the rail 21 and can fix the magnetometer 11 at an appropriate position as necessary. The material of the fixing jig 3 is preferably non-magnetic and non-conductive so as not to affect the measurement value. For example, as shown in FIG. 2, the fixing jig 3 can align the magnetometer 11 with the rail 21, so that the magnetometer 11 is installed at a fixed position of the rail 21 and easily measures current anywhere on the line. be able to. There are various shapes of the fixture, and an example is shown in FIGS. In addition to the magnetometer 11, the fixing jig 3 includes a processing device 12 and a fastener 14. The processing apparatus has a display unit 13 so that the measured value can be immediately known.
[0022]
Below, the measuring method of the electric current value which flows into a rail is demonstrated.
[0023]
<A> Magnetometer location The magnetometer location is the strength that allows measurement of the magnetic field created by the current that flows in the vicinity of the rail, that is, the rail, and is affected by the fluctuation magnetic field generated from other than the rail to be measured. If there is no place, it is good. Empirically, it has been known that measurement is difficult at a position of 70 cm or more in the case of a rail. The coefficient k in the relational expression between the current and the magnetic field strength changes depending on the change of the magnetometer placement position (position on the plane including the rail cross section), so it may be placed at a predetermined position. For example, at a position symmetrical to the surface of the rail and at a position several cm, for example, about 1 cm to 5 cm below the center of the bottom surface, the magnetic field strength is appropriate, and the direction of the magnetic field is parallel to the bottom surface of the rail. It is easy to obtain correct measurement values.
[0024]
<B> Calculation of the current flowing in the rail The magnetic field strength measured by the magnetometer 11 is input to the processing device 12 and substituted for the magnetic field strength H m in the relational expression between the current and the magnetic field strength. The flowing current value I is calculated and displayed on the display device.
[0025]
<C> Comparison of Actual Measurement Values Measurement was performed when the train passed from 15:20 to 10:30 on the actual train track. Here, a magnetometer was placed 3 cm below the rail bottom near the impedance bond, and the measured value was recorded with a data logger. At the same time, a clamp-type ammeter was placed at the location of the conventional impedance bond, and the current value was measured and recorded with a data logger. The graph which compared those electric current values is shown in FIG.
[0026]
The current value obtained by the present invention and the current value measured by the impedance bond almost coincided with each other even if it fluctuated significantly by 300 amperes. The correlation coefficient between them was 0.99. Thus, even if the magnetic field strength was measured without covering the periphery of the rail in a non-contact manner, the current value flowing through the rail could be accurately measured.
[0027]
【The invention's effect】
The present invention can obtain the following effects.
<A> According to the present invention, the current flowing through the conductor can be easily measured by a non-contact method.
<B> Further, according to the present invention, a current value can be easily measured even with a conductor in a size, shape, or other situation where a clamp-type ammeter cannot be installed.
<C> Further, according to the present invention, it is possible to easily measure the direct current value of the rail without any trouble in traveling the train.
<D> Further, according to the present invention, since the current flowing through the train track can be easily measured at any location and at any time, the influence of the magnetic field generated from the train track on the periphery to be investigated can be examined.
<E> Further, according to the present invention, the maximum current flowing through the train track can be easily measured at any location, so that the material, cross-sectional area, and number of strips of feeders, suspension wires, and trolley wires can be determined. Thus, the strength of the overhead wire holding material and the strength of the bridge pier holding the train track can be obtained. As a result, the minimum necessary structural members can be studied at the time of designing the train track, which can contribute to reduction of unnecessary costs and environmental measures.
<F> Further, according to the present invention, the sum of currents flowing through feeders, suspension wires, and trolley wires is equal to the sum of the rail current value at the same place and the leakage current value from the rail. It can be measured.
<G> Further, according to the present invention, stray currents flowing in metal pipes such as water pipes and gas pipes can be measured, and the risk of electrolytic corrosion can be known.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a current measuring system for measuring a current flowing through a conductor. FIG. 2 is an explanatory diagram of a rail current measuring system. FIG. 3 is a graph showing a current value measured by the present invention. Illustration of current flowing in the train line [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Current measurement system 11 ... Magnetometer 12 ... Processing device 13 ... Display unit 2 ... Conductor 21 ... Rail 3 ... Fixing jig

Claims (3)

レールである導電体に流れる電流を計測する電流計測システムにおいて、
導電体の周囲を包囲することなく導電体の近傍に配置される磁力計と、
導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、
電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、
磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出する処理装置と、
前記の磁力計と処理装置をレールに固定する非磁性、非導電性の固定治具とを備えていることを特徴とする、電流計測システム。
In the current measurement system that measures the current flowing through the conductor, which is a rail ,
A magnetometer disposed in the vicinity of the conductor without surrounding the conductor;
Calculate the sum of the magnetic field strength at the position of the magnetometer, generated by the current flowing in each part of the cross-sectional shape of the conductor,
Obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position,
A processing device that calculates a current by applying a value obtained by subtracting the strength of a stationary magnetic field from the magnitude of the magnetic field measured at the magnetometer position to the relational expression,
A current measurement system comprising: the magnetometer and a non-magnetic, non-conductive fixing jig for fixing the processing device to a rail .
レールである導電体に流れる電流を計測する電流計測装置において、
導電体の周囲を包囲することなく導電体の近傍に配置される磁力計と、
導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、
電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、
磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて電流を算出する処理装置と、
前記の磁力計と処理装置をレールに固定する非磁性、非導電性の固定治具とを備えていることを特徴とする、
電流計測装置。
In the current measurement device that measures the current flowing through the conductor, which is a rail ,
A magnetometer disposed in the vicinity of the conductor without surrounding the conductor;
Calculate the sum of the magnetic field strength at the position of the magnetometer, generated by the current flowing in each part of the cross-sectional shape of the conductor,
Obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position,
A processing device that calculates a current by applying a value obtained by subtracting the strength of a stationary magnetic field from the magnitude of the magnetic field measured at the magnetometer position to the relational expression,
A non-magnetic, non-conductive fixing jig for fixing the magnetometer and the processing device to a rail is provided.
Current measuring device.
レールである導電体に流れる電流を計測する電流計測方法において、
導電体の周囲を包囲することなく導電体の近傍に磁力計と処理装置をレールに非磁性、非導電性の固定治具で固定し、
導電体の断面形状の各部分に流れる電流によって発生する、磁力計のある位置での磁場の強さの総和を算出し、
電流の総和と、磁力計位置の磁場の強さの総和との、係数を含む関係式を得、
磁力計位置で計測した磁場の大きさから、定常的な磁場の強さを差し引いた値を、前記関係式に当てはめて、前記の処理装置で電流を算出することを特徴とする
電流計測方法。
In the current measurement method for measuring the current flowing through the conductor, which is a rail ,
Fix the magnetometer and processing device in the vicinity of the conductor without surrounding the conductor with a nonmagnetic, nonconductive fixing jig on the rail ,
Calculate the sum of the magnetic field strength at the position of the magnetometer, generated by the current flowing in each part of the cross-sectional shape of the conductor,
Obtain the relational expression including the coefficient of the sum of the current and the sum of the magnetic field strength at the magnetometer position,
A current measurement method, wherein a value obtained by subtracting a steady magnetic field strength from the magnitude of a magnetic field measured at a magnetometer position is applied to the relational expression, and the current is calculated by the processing device .
JP2001069158A 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method Expired - Lifetime JP4367601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069158A JP4367601B2 (en) 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069158A JP4367601B2 (en) 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2002267693A JP2002267693A (en) 2002-09-18
JP4367601B2 true JP4367601B2 (en) 2009-11-18

Family

ID=18927230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069158A Expired - Lifetime JP4367601B2 (en) 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP4367601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153255A (en) * 2005-12-08 2007-06-21 West Japan Railway Co Rail direct current detecting device
JP2007282337A (en) * 2006-04-04 2007-10-25 Eiraku Denki Kk Device for determining line wire grounded circuit in direct-current electric railroad
JP4718407B2 (en) * 2006-09-25 2011-07-06 公益財団法人鉄道総合技術研究所 Section section overhead wire cutting prevention device

Also Published As

Publication number Publication date
JP2002267693A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
NL2015770B1 (en) Monitoring of electric railway systems.
JP4343090B2 (en) Method and apparatus for measuring and evaluating stray current corrosion risk for buried metal body cathodic protected
EP2799850B1 (en) Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
US20230084963A1 (en) Device, system and method for detecting leakage current for traction power system
US5347212A (en) System and method of use for conducting a neutral corrosion survey
JP4367601B2 (en) Current measuring system, measuring apparatus and measuring method
WO1994006027A9 (en) System and method of use for conducting a neutral corrosion survey
EP0375375A1 (en) Loop impedance tester
JP4367710B2 (en) Rail corrosion detection system
RU152421U1 (en) DEVICE FOR MEASURING RESISTANCE OF EARTH GROUNDERS OF U-SHAPED SUPPORTS OF ELECTRIC TRANSMISSION AIR LINES WITHOUT DISCONNECTING THE GROUND PROTECTION ROPE
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
SE462998B (en) PROCEDURE AND DEVICE FOR DETERMINATION OF THE CONDITION OF THE INSULATION OF A PREPARATION MADE FROM ELECTRICALLY CONDUCTIVE MATERIAL, COVERED WITH AN ELECTRIC INSULATION AND PROVIDED IN AN ELECTRICALLY CONDUCTIVE MEDIUM
Mariscotti Methods and instruments for stray current verification in DC rapid transit and railway systems
Xu et al. On-line detection of railway power frequency current based on tunnel magnetoresistance
Li et al. Non-contact determination of the phase sequence and voltage level of overhead conductors in air insulated substations
JPH03197858A (en) Inspecting method for corrosion state of body buried underground
RU2299421C2 (en) Method of determining corrosion condition of metallic members of anchor unit
CN113866554B (en) Distributed fault positioning device and method for power transmission line based on non-contact detection
RU2591027C1 (en) Method of measuring and spatial distribution of local magnetic field caused by corrosion flow on metal surface in solution
JP2003048465A (en) Leakage current detecting device for railway feeder circuit
RU116243U1 (en) DEVICE FOR DETERMINING THE DISTANCE TO THE PLACE OF A SHORT CIRCUIT TO THE GROUND OF THE AIRLINE LINES WITH A VOLTAGE OVER 1000 V LOCATED ON THE SUPPORTS OF THE AC CONTACT NETWORK
JPH05126799A (en) Deciding method for corrosion deterioration of three-layer metal wire
JP3589975B2 (en) Method and apparatus for measuring wear of Alsas train lines
JPH0827262B2 (en) Corrosion degradation determination method for double-layer metal wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071220

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

R150 Certificate of patent or registration of utility model

Ref document number: 4367601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term