JPH03197858A - Inspecting method for corrosion state of body buried underground - Google Patents

Inspecting method for corrosion state of body buried underground

Info

Publication number
JPH03197858A
JPH03197858A JP33925789A JP33925789A JPH03197858A JP H03197858 A JPH03197858 A JP H03197858A JP 33925789 A JP33925789 A JP 33925789A JP 33925789 A JP33925789 A JP 33925789A JP H03197858 A JPH03197858 A JP H03197858A
Authority
JP
Japan
Prior art keywords
underground
potential
corrosion
current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33925789A
Other languages
Japanese (ja)
Inventor
Akira Kinoshita
明 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP33925789A priority Critical patent/JPH03197858A/en
Publication of JPH03197858A publication Critical patent/JPH03197858A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inspect the corrosion state of the body buried underground by measuring the difference between ground potentials when a corrosion current is supplied from an external power source to the body buried underground and cut off. CONSTITUTION:The negative electrode of the external DC power source 3 is connected to a steel pipe as the pipe 2 buried underground and the positive electrode is connected to an electrode for electric feeding which is buried in the ground through a timer switch 4. The switch 4 is turned on and off repeatedly by a control circuit 8. The ground potentials of the pipe 2 are measured by a potential measuring means 7 when the corrosion current is supplied with the switch 4 ON and cut off with the switch 4 OFF. Namely, the corrosion state is inspected according to the measurement result of the potential difference between the ground potentials when the corrosion current is supplied and ceased, so the inspection is performed automatically for a long period.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、地中に埋設された鋼管またはタンクなどのよ
うな導電性を有する地中埋設物の防食状況を検査するた
めの方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for inspecting the corrosion protection status of electrically conductive underground objects such as steel pipes or tanks buried underground.

従来の技術 地中埋設管は、電車レールからの漏れ電流である迷走電
流および各種のマクロセル要因による腐食から管体を守
るため、一般に電気絶縁性の塗覆装が施されている。こ
のような塗覆装は、掘削工事によって傷付けられたり、
経年とともに劣化したりする。そのためガスを輸送する
地中埋設管などでは、その鋼管に防食電流を流して、電
気防食法が行われている。
BACKGROUND OF THE INVENTION Underground pipes are generally coated with an electrically insulating coating to protect them from corrosion caused by stray currents leaking from train rails and various macrocell factors. Such coatings may be damaged by excavation work,
It deteriorates over time. For this reason, cathodic protection is applied to underground pipes that transport gas by passing an anticorrosion current through the steel pipes.

このような電気防食法において、電気防食を行っている
地中埋設物に防食電流が流れて防食が行われているかど
うかおよび電気防食を行っていない他の地中埋設管にお
いて、電気防食による影響がないかどうかを常時、24
時間にわたって測定する必要がある。
In this type of cathodic protection method, whether or not an anticorrosion current is flowing through underground pipes that are undergoing cathodic protection and corrosion protection is being achieved, and the effects of cathodic protection on other underground pipes that are not undergoing cathodic protection. Always check if there is 24
Must be measured over time.

従来では、このような継続的に地中埋設管の防食状況の
検査は実際上、行われていない。
Conventionally, such continuous inspection of the corrosion protection status of underground pipes has not actually been carried out.

発明が解決すべき課題 本発明の目的は、地中埋設物の防食状況を長期間にわた
り、継続して検査することができるようにした地中埋設
物の防食状況の検査方法を提供することである。
Problems to be Solved by the Invention An object of the present invention is to provide a method for inspecting the corrosion protection status of underground buried objects that enables continuous inspection of the corrosion protection status of underground objects over a long period of time. be.

課題を解決するための手段 本発明は、地中埋設物に外部電源によって防食電流を流
して防食を行う地中埋設物の防食状況の検査方法におい
て、 外部電源による地中埋設物への防食電流を供給/遮断し
、防食電流の供給時と遮断時とにおける地中埋設物の対
地電位の電位差を測定し、この測定結果に基づいて、地
中埋設物の防食状況の検査をすることを特徴とする地中
埋設物の防食状況の検査方法である。
Means for Solving the Problems The present invention provides a method for inspecting the corrosion protection status of underground objects, which performs corrosion protection by passing an anti-corrosion current through an underground object using an external power source. It is characterized by supplying/cutting off the corrosion protection current, measuring the difference in potential to the ground of the underground object when the anticorrosion current is supplied and cut off, and inspecting the corrosion protection status of the underground object based on the measurement results. This is a method for inspecting the corrosion protection status of underground objects.

また本発明は、防食電流の供給時と遮断時とにおける地
中埋設物の対地電位を、メモリにストアしておき、前記
メモリのストア内容を処理回路によって演算処理して前
記電位差を求めることを特徴とする。
The present invention also provides a method of storing the potential to the ground of underground objects in a memory when the anticorrosive current is supplied and when the anticorrosion current is cut off, and calculating the potential difference by processing the stored contents of the memory using a processing circuit. Features.

作  用 本発明に従えば、地中埋設物には外部電源によって防食
電流を流して防食を行っており、この防食電流を供給お
よび遮断し、供給時における地中埋設物の対地電位と、
遮断時における地中埋設物の対地電位との電位差を測定
し、この測定結果に基づいて地中埋設物の防食状況の検
査を行うことができる。
Function According to the present invention, corrosion protection is carried out by passing an anticorrosive current through an underground object by an external power source, and this anticorrosive current is supplied and cut off to adjust the ground potential of the underground object at the time of supply,
The potential difference with the ground potential of the underground object at the time of interruption is measured, and the corrosion protection status of the underground object can be inspected based on the measurement result.

本件発明者の実験によれば、地中埋設物がたとえば電気
絶縁性塗覆装を有する鋼管であって、その鋼管に防食電
流が流されて防食を行っているときの対地電位は、土壌
中を流れる防食電流によって発生する電圧降下分を含ん
で計測されるため、防食電流の供給時の方が、防食電流
の遮断時に比べて350mV以上さらに負である電位、
たとえば−1000mVなどであることが好ましい、ま
た防食電流が流されていない地中埋設物では、その防食
電流が流されていない地中埋設物の近傍における防食電
流が流されている他の地中埋設物への防食電流の供給時
と遮断時とにおいて、防食電流が流されていない地中埋
設物の前記電位差は、本件発明者の実験によれば、でき
るだけ小さい値であることが好ましい。このようにして
地中埋設物の防食状況を長期間にわたって自動的に検査
することが可能である。
According to experiments conducted by the inventor of the present invention, when the underground object is, for example, a steel pipe with an electrically insulating coating, and an anticorrosion current is applied to the steel pipe to prevent corrosion, the ground potential in the soil is Since the measurement includes the voltage drop caused by the anti-corrosion current flowing through, the potential when the anti-corrosion current is supplied is 350 mV or more more negative than when the anti-corrosion current is cut off.
For example, -1000 mV is preferable, and in the case of an underground object to which no anti-corrosion current is being applied, other underground objects near the underground object to which the anti-corrosion current is being applied are According to experiments conducted by the inventor of the present invention, it is preferable that the potential difference between when the anticorrosive current is supplied to the buried object and when it is cut off to the underground object to which the anticorrosive current is not applied is as small as possible. In this way, it is possible to automatically inspect the corrosion protection status of underground objects over a long period of time.

また本発明に従えば、防食電流の供給時と遮断時とにお
ける地中埋設物の対地電位を測定してメモリにストアし
ておき、このようなメモリにストアされている内容を、
たとえば操作者が自分の会社に持帰って、マイクロコン
ピュータなどによって実現される処理回路を用いて演算
処理し、前記電位差を求めることができる。この電位差
の時間経過に伴う変化を観察することによって、電車レ
ールなどからの迷走電流の悪影響がない深夜において、
防食状況を正確に判断することが可能である。
Further, according to the present invention, the ground potential of the underground object is measured when the anticorrosive current is supplied and when it is cut off and stored in a memory, and the contents stored in such memory are
For example, the operator can take it back to his or her office and perform arithmetic processing using a processing circuit realized by a microcomputer or the like to determine the potential difference. By observing changes in this potential difference over time, it is possible to detect late-night situations when there is no adverse effect from stray currents from train rails, etc.
It is possible to accurately judge the corrosion protection status.

実施例 第1(21は本発明の一実施例の断面図である。地面の
道路1には地中埋設管2が埋設されている。
Embodiment 1 (21 is a sectional view of an embodiment of the present invention. An underground pipe 2 is buried in a road 1 on the ground.

この地中埋設管2は鋼管の外周面に塗覆装が施されて構
成される。地中埋設管2の鋼管には、直流外部電源3の
負極が接続されている。この電源3の正極は、タイマス
イッチ4を介して、地中に埋設された通電用電極5に接
続される。この通電用電極5は、高硅素鋳鉄またはフェ
ライトなどの材料から成る。外部電源3は、たとえば6
0V、50Aである。このようにして外部電源3によっ
て地中埋設管2には防食電流が流されて、防食が行われ
る。
This underground pipe 2 is constructed by coating the outer peripheral surface of a steel pipe. A negative electrode of an external DC power supply 3 is connected to the steel pipe of the underground pipe 2 . The positive electrode of this power source 3 is connected via a timer switch 4 to a current-carrying electrode 5 buried underground. This current-carrying electrode 5 is made of a material such as high silicon cast iron or ferrite. The external power supply 3 is, for example, 6
It is 0V and 50A. In this way, an anticorrosion current is applied to the underground pipe 2 by the external power source 3, and corrosion protection is performed.

地中埋設管2の長手方向に沿って、人孔である縦孔6が
設けられる。この縦孔6はl 6 aによって塞いで交
通の障害になることを防いでおり、縦孔6内には、電位
測定手段7が設けられ、長期間、たとえば24時間にわ
たって、地中埋設管2の対地電位を継続してストアする
ことができる。
A vertical hole 6, which is a manhole, is provided along the longitudinal direction of the underground pipe 2. This vertical hole 6 is blocked by l 6 a to prevent it from becoming an obstacle to traffic, and a potential measuring means 7 is provided in the vertical hole 6 to measure the underground pipe 2 over a long period of time, for example, 24 hours. The ground potential of can be stored continuously.

タイマスイッチ4は、制御回路8によって導通および遮
断が繰返し行われる。このスイッチ4の導通によって防
食電流が供給されるときおよびスイッチ4が遮断されて
防食電流が遮断されるときとにおける地中埋設管2の対
地電位は、電位測定手段7において測定され、ストアさ
れる。
The timer switch 4 is repeatedly turned on and off by the control circuit 8 . The potential to the ground of the underground pipe 2 when the switch 4 is turned on to supply the anti-corrosion current and when the switch 4 is turned off and the anti-corrosion current is cut off is measured by the potential measuring means 7 and stored. .

第2図は電位測定手段7のブロック図である。FIG. 2 is a block diagram of the potential measuring means 7.

マイクロコンピュータなどによって実現される処理回路
9はライン10を介して地中埋設管2の鋼管に接続され
る。もう1つのライン11は縦孔6内に設けられた電極
13に接続される。電極13は、たとえば飽和硫酸銅電
極であってもよく、あるいはまたこの電極13として、
縦孔6の近傍で地中に設けられたマグネシウム電極など
であってもよい、処理回路9では、地中埋設管2の測定
された対地電位を測定してメモリ12にサンプリングし
てストアする。この電位測定手段7は、電池によって電
力付勢され、縦孔6内に設けられているので、長期間に
わたって継続して電位の測定が可能である。
A processing circuit 9 realized by a microcomputer or the like is connected to the steel pipe of the underground pipe 2 via a line 10. Another line 11 is connected to an electrode 13 provided in the vertical hole 6. The electrode 13 may be, for example, a saturated copper sulfate electrode, or alternatively as this electrode 13
The processing circuit 9, which may be a magnesium electrode installed underground near the vertical hole 6, measures the ground potential of the underground pipe 2, samples it, and stores it in the memory 12. Since this potential measuring means 7 is powered by a battery and is provided within the vertical hole 6, it is possible to continuously measure the potential over a long period of time.

第3図は、本発明の全体の構成を示すブロック図である
。電位測定手段7によって時間経過に伴う電位を測定し
た後には、操作者はその電位測定手段7を自分の会社な
どに持帰り、そのメモリ12にストアされている電位を
マイクロコンピュータなどによって実現される処理回路
13に転送し、そのデータファイルの作成を、作成回路
14において行う。この作成回路14は、地中埋設管2
に関する防食施設、路線名、測定などに関する情報が入
力手段15によって入力され、こうしてデータがストア
されてファイルされる。演算回路16では、作成回路1
4からのデータに基づき、その解析すべきデータファイ
ルの選定、すなわち処理する路線名および測定点の選定
を行い、解析図表の選定・作成回路17において、防食
電流の供給時と遮断時とにおける地中埋設管2の対地電
位の電位差を図表などにプリンタ18によって印字し、
また陰極線管などの目視表示手段19によって表示する
。さらにまたこのような測定された電位はフロッピィデ
ィスク20にストアして保存することができる。
FIG. 3 is a block diagram showing the overall configuration of the present invention. After measuring the electric potential over time using the electric potential measuring means 7, the operator takes the electric potential measuring means 7 back to his or her office and uses the electric potential stored in the memory 12 to be realized by a microcomputer or the like. The data is transferred to the processing circuit 13, and the creation circuit 14 creates the data file. This creation circuit 14 is based on the underground pipe 2
Information regarding corrosion protection facilities, route names, measurements, etc., is input by the input means 15, and the data is thus stored and filed. In the arithmetic circuit 16, the creation circuit 1
Based on the data from 4, the data file to be analyzed is selected, that is, the line name and measurement point to be processed are selected, and the analysis chart selection/creation circuit 17 calculates the The potential difference between the ground potentials of the underground pipe 2 is printed on a chart or the like by the printer 18,
Further, it is displayed by a visual display means 19 such as a cathode ray tube. Furthermore, such measured potentials can be stored and saved on floppy disk 20.

第4図は、電位測定手段7を用いて地中埋設管2の電位
を測定するときの状態を示すグラフである0期間W1で
はスイッチ4は制御回路8によって導通されており、こ
の期間W1はたとえば3分間である1次の期間W2では
、スイッチ4は遮断しており、この期間W2はたとえば
1分間である。
FIG. 4 is a graph showing the state when measuring the potential of the underground pipe 2 using the potential measuring means 7. During the zero period W1, the switch 4 is turned on by the control circuit 8; During the primary period W2, which is, for example, three minutes, the switch 4 is cut off, and this period W2 is, for example, one minute.

電位測定手段7の処理回路9は15分間にわたり、スイ
ッチ4が期間W1において導通され、期間W2において
遮断されるサイクルが繰返し行われるときにおける1秒
毎の電位測定値をメモリ12にストアする。したがって
15分間においては、メモリ2には合計900個の電位
測定値がストアされることになる。スイッチ4が導通さ
れて地中埋設管2に防食電流が流されることによって、
その地中埋設管2の対地電位は鉄の自然電位たとえば5
00〜−700mVよりもたとえば350mV以上負で
ある電位、たとえば−1000mV以上負であることが
、防食の観点から好ましい、スイッチ4が遮断されるこ
とによって地中埋設管2の電位は、土壌中を流れる防食
電流によって発生する電圧降下の影響のない対地電位を
示す、この電位差ΔEaは本件発明者の実験によれば前
述のように、350mV以上の絶対値であることが好ま
しい。
For 15 minutes, the processing circuit 9 of the potential measuring means 7 stores in the memory 12 potential measurements every second when the switch 4 is repeatedly turned on during the period W1 and cut off during the period W2. Therefore, in 15 minutes, a total of 900 potential measurement values are stored in the memory 2. When the switch 4 is turned on and the anti-corrosion current is passed through the underground pipe 2,
The ground potential of the underground pipe 2 is the natural potential of iron, for example 5
It is preferable from the viewpoint of corrosion prevention that the potential is, for example, 350 mV or more negative than 00 to -700 mV, for example, -1000 mV or more negative. When the switch 4 is shut off, the potential of the underground pipe 2 is lowered through the soil. This potential difference ΔEa, which indicates a potential to the ground that is not affected by the voltage drop caused by the flowing anticorrosion current, preferably has an absolute value of 350 mV or more, as described above, according to the experiments conducted by the inventor of the present invention.

第4図では、スイッチ4が遮断しているときにおける地
中埋設管2の対地、電位は■2で示されており、スイッ
チ4が導通しているときにおける地中埋設管2の対地電
位はVlで示されており、それらの電位差ΔEaは、 ΔEa=V1−V2       =(1)地中埋設管
2の途中にたとえば電気絶縁管継手21が設けられてい
るときには、ライン10に接続されている地中埋設管2
の部分には外部電源3から防食電流が流れることはない
。このときには、第5図で示されるようにスイッチ4が
導通される期間W1および遮断される期間W2における
非防食地中埋設管2の電位差ΔEbができるだけ小さい
こと、本件発明者の実験によればたとえば50mV未満
であることが好ましい。
In FIG. 4, the potential to the ground of the underground pipe 2 when the switch 4 is cut off is indicated by ■2, and the potential to the ground of the underground pipe 2 when the switch 4 is conductive is Vl, and their potential difference ΔEa is as follows: ΔEa = V1 - V2 = (1) For example, when an electrically insulating pipe joint 21 is provided in the middle of the underground pipe 2, it is connected to the line 10. Underground pipe 2
No anti-corrosion current flows from the external power supply 3 to the part. At this time, as shown in FIG. 5, the potential difference ΔEb of the non-corrosion-proof underground pipe 2 during the period W1 in which the switch 4 is turned on and the period W2 in which it is cut off is as small as possible.According to the experiments of the present inventor, for example, Preferably it is less than 50 mV.

スイッチ4が導通しているときにおける地中埋設管2の
対地電位はV3で示されており、スイッチ4が遮断して
いるときにおける地中埋設管2の対地電位は■4で示さ
れており、これらの電位差ΔEbは、 ΔEb=V3−V4           ・・・ (
2)このような非防食地中埋設管2に関してもまた上述
と同様にして、15分間にわたり合計900個の電位測
定値がメモリ12にストアされる。
The ground potential of the underground pipe 2 when the switch 4 is conducting is shown by V3, and the ground potential of the underground pipe 2 when the switch 4 is cut off is shown by ■4. , the potential difference ΔEb between them is ΔEb=V3-V4... (
2) For such a non-corrosion-protected underground pipe 2, a total of 900 potential measurements are stored in the memory 12 over a period of 15 minutes in the same manner as described above.

処理回路13では、メモリ14にストアされている電位
測定値に基づき、合計900個の電位測定値の平均値X
を求め、また電位の高い方から1ooiの電位測定値の
平均値x1を求め、また電位の低い方から100個の電
位測定値の平均値X2を作成回路14において演算し、
これによって第3式および第4式を求める。
In the processing circuit 13, based on the potential measurement values stored in the memory 14, the average value X of a total of 900 potential measurement values is calculated.
In addition, the average value x1 of 100 measured potential values from the higher potential is calculated, and the average value X2 of 100 potential measured values from the lower potential is calculated in the creation circuit 14.
Accordingly, the third equation and the fourth equation are obtained.

xi−x−ΔE1       ・・・(3)x2−x
−ΔE2        ・ (4)防食電流が流され
ている地中埋設管2であるときには、第6図のように、
データ数のグラフが得られ、また非防食地中埋設管2で
あるときには第7図で示されるデータ数のグラフが得ら
れる。すなわち、 ΔEll<lΔE21    ・・・(5)であるとき
には、地中埋設管2に防食電流が供給されている場合で
あり、 ΔEll>lΔE21     ・・・(6)であると
きには、地中埋設管2が非防食であるときの状況を表す
、このことから、地中埋設管2に防食電流が流されてい
るか、または非防食状況であるかを判断することができ
る。しかもその電位差ΔEa、ΔEbを観察することに
よって、適切な防食状況にあるかどうかを判断すること
ができる。
xi-x-ΔE1...(3)x2-x
-ΔE2 ・ (4) When it is an underground pipe 2 through which anti-corrosion current is flowing, as shown in Fig. 6,
A graph of the number of data is obtained, and when the pipe is a non-corrosion-proof underground pipe 2, a graph of the number of data shown in FIG. 7 is obtained. That is, when ΔEll<lΔE21 (5), the anticorrosive current is being supplied to the underground pipe 2, and when ΔEll>lΔE21 (6), the underground pipe 2 represents a situation when the underground pipe 2 is not protected from corrosion. From this, it can be determined whether a corrosion protection current is being applied to the underground pipe 2 or whether it is in a non-corrosion protection state. Moreover, by observing the potential differences ΔEa and ΔEb, it is possible to judge whether or not an appropriate corrosion protection situation exists.

第8図はプリンタ18によって記録紙上に印字された状
態を示しており、この記録結果は、地中埋設管2に防食
電流が流されているときにおける電位の時間経過をグラ
フで表している。スイッチ4を遮断しているときにおけ
る地中埋設管2の対地電位Vl(第4図参照)のうち最
も高い値(最貴値)はこの実験では一980mVであり
、スイッチ4が導通しているときにおける地中埋設管2
の対地電位■2の最も低い値(最卑値)は−1850m
Vであることなどが、−覧表によって明瞭に知ることが
できる。
FIG. 8 shows the state printed on the recording paper by the printer 18, and the recorded result is a graph representing the time course of the potential when the anticorrosive current is flowing through the underground pipe 2. The highest value (the noblest value) of the ground potential Vl (see Figure 4) of the underground pipe 2 when the switch 4 is cut off is -980 mV in this experiment, and the switch 4 is conducting. Underground pipes 2
The lowest value (lowest value) of the ground potential ■2 is -1850 m
It can be clearly seen from the - list that it is V.

第9図は地中埋設管2が非防食であるときにおけるプリ
ンタ18の印字結果を同様に示している。
FIG. 9 similarly shows the printing results of the printer 18 when the underground pipe 2 is not corrosion-protected.

これらの第8図および第9図の地中埋設管2の対地電位
は深夜、たとえばこの実験結果では、午前2時20分〜
2時35分の間において測定されており、したがって電
車軌道などによる迷走電流による悪影響が存在しない、
これに対して第10図に示されるように午r& 6時〜
6時15分における電気防食された地中埋設管2の第8
図に対応する対地電位は、たとえば第10図に示されて
いるとおり迷走電流によって地中埋設管2の対地電位が
変動する。したがって地中埋設管2の防食状況の測定は
、深夜において、迷走$流による悪影響が存在しない時
間帯で行う。
The potential to the ground of the underground pipe 2 in FIGS. 8 and 9 is late at night, for example, from 2:20 a.m. in this experimental result.
The measurements were taken between 2:35 p.m., so there is no negative effect from stray currents from train tracks, etc.
On the other hand, as shown in Figure 10, from 6:00 p.m.
No. 8 of cathodic-protected underground pipe 2 at 06:15
Regarding the ground potential corresponding to the figure, for example, as shown in FIG. 10, the ground potential of the underground pipe 2 fluctuates due to stray current. Therefore, the corrosion protection status of the underground pipe 2 is measured late at night, at a time when there is no adverse effect due to stray $flow.

本発明は、地中埋設管だけでなく、地中に埋設されたタ
ンクおよびその他の導電性物体の防食状況を検査するた
めに、広範囲に実施することができる。
The present invention can be widely implemented to inspect the corrosion protection status of underground pipes as well as underground tanks and other conductive objects.

発明の効果 以上のように本発明によれば、防食電流の供給時と遮断
時とにおける地中埋設物の対地電位の電位差を測定し、
この測定結果に基づいて地中埋設物の防食状況の検査を
行うことができるので、長期間にわたって自動的に防食
状況の検査を行うことが可能である。しかも本発明によ
れば、防食電流の供給時と遮断時とにおける地中埋設物
の対地電位をメモリにストアしておき、このメモリを操
作者がたとえば自分の会社に持帰って処理回路に接続し
てメモリのストア内容を演算処理し、前記電位差を求め
、たとえばその電位差の時間経過を観察することができ
る。
Effects of the Invention As described above, according to the present invention, the difference in potential to the ground of an underground object is measured when the anticorrosive current is supplied and when it is cut off.
Since the corrosion protection status of underground objects can be inspected based on the measurement results, it is possible to automatically inspect the corrosion protection status over a long period of time. Moreover, according to the present invention, the potential to the ground of underground objects when the anticorrosion current is supplied and cut off is stored in a memory, and the operator can take this memory back to his/her company and connect it to the processing circuit. It is possible to perform arithmetic processing on the contents stored in the memory, obtain the potential difference, and observe, for example, the elapse of the potential difference over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体の系統図、第2図は電
位測定手段7の具体的な構成を示す電気回路図、第3図
は電位測定手段7が接続される処理装置13の電気的構
成を示すブロック図、第4図は地中埋設管2が電気防食
されているときにおけるスイッチ4の導通/遮断時の対
地電位の変化を示すグラフ、第5図は地中埋設管2が非
防食であるときにおけるスイッチ4を導通/遮断したと
きの対地電位を示すグラフ、第6図は地中埋設管2が電
気防食されているときにおける対地電位の測定結果を示
すグラフ、第7図は地中埋設管2が非防食であるときに
おける対地電位の測定結果を示すグラフ、第8図はプリ
ンタ18によって電気防食されている地中埋設管2に関
連する印字状態を示す図、第9図はプリンタ18による
地中埋設管2が非防食であるときにおける印字結果を示
す図、第10図は電気防食されている地中埋設管2の迷
走電流による悪影響の状態を示す対地電位を示すグラフ
である。 1・・・地面、2・・・地中埋設管、3・・・外部電源
、4・・・タイマスイッチ、5・・・通電用電極、6・
・・縦孔、7・・・電位測定手段、8・・・制御手段、
9・・・処理回路、12・・・メモリ、13・・・照合
電極、13a・・・処理回路、14・・・データファイ
ル作成回路、15・・・入力回路、16・・・解析デー
タファイル選定回路、17・・・解析図表の選定作成回
路、1”8・・・プリンタ、19・・・目視表示手段、
20・・・フロッピディスク(イ立
FIG. 1 is an overall system diagram of an embodiment of the present invention, FIG. 2 is an electric circuit diagram showing a specific configuration of the potential measuring means 7, and FIG. 3 is a processing device 13 to which the potential measuring means 7 is connected. A block diagram showing the electrical configuration of the underground pipe 2, Fig. 4 is a graph showing the change in ground potential when the switch 4 is turned on/off when the underground pipe 2 is cathodic-protected, and Fig. 5 is a graph showing the change in ground potential when the underground pipe 2 is electrically protected. Figure 6 is a graph showing the potential to ground when the switch 4 is turned on/off when the underground pipe 2 is non-corrosion protected; FIG. 7 is a graph showing the measurement results of the ground potential when the underground pipe 2 is not corrosion-protected, and FIG. 8 is a diagram showing the printing state related to the underground pipe 2 which is cathodic-protected by the printer 18. FIG. 9 is a diagram showing the printing result by the printer 18 when the underground pipe 2 is non-corrosion-protected, and FIG. 10 is a diagram showing the state of the adverse effect of stray current on the underground pipe 2 which is cathodic-protected. This is a graph showing. DESCRIPTION OF SYMBOLS 1...Ground, 2...Underground pipe, 3...External power supply, 4...Timer switch, 5...Electrifying electrode, 6...
... Vertical hole, 7... Potential measuring means, 8... Control means,
9... Processing circuit, 12... Memory, 13... Reference electrode, 13a... Processing circuit, 14... Data file creation circuit, 15... Input circuit, 16... Analysis data file Selection circuit, 17... Analysis chart selection creation circuit, 1"8... Printer, 19... Visual display means,
20... Floppy disk (stand up)

Claims (2)

【特許請求の範囲】[Claims] (1)地中埋設物に外部電源によつて防食電流を流して
防食を行う地中埋設物の防食状況の検査方法において、 外部電源による地中埋設物への防食電流を供給/遮断し
、防食電流の供給時と遮断時とにおける地中埋設物の対
地電位の電位差を測定し、この測定結果に基づいて、地
中埋設物の防食状況の検査をすることを特徴とする地中
埋設物の防食状況の検査方法。
(1) In a method for inspecting the corrosion protection status of underground objects in which corrosion protection is carried out by passing an anti-corrosion current through an underground object using an external power source, supplying/cutting off the anti-corrosion current to the underground object using an external power source, An underground installation characterized by measuring the potential difference between the ground potential of the underground installation when an anticorrosive current is supplied and when it is cut off, and inspecting the corrosion protection status of the underground installation based on the measurement results. Method for inspecting corrosion protection status.
(2)防食電流の供給時と遮断時とにおける地中埋設物
の対地電位を、メモリにストアしておき、前記メモリの
ストア内容を処理回路によつて演算処理して前記電位差
を求めることを特徴とする特許請求の範囲第1項記載の
地中埋設物の防食状況の検査方法。
(2) The ground potential of the underground object when the anticorrosive current is supplied and cut off is stored in a memory, and the contents stored in the memory are processed by a processing circuit to obtain the potential difference. A method for inspecting the corrosion protection status of underground objects as set forth in claim 1.
JP33925789A 1989-12-26 1989-12-26 Inspecting method for corrosion state of body buried underground Pending JPH03197858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33925789A JPH03197858A (en) 1989-12-26 1989-12-26 Inspecting method for corrosion state of body buried underground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33925789A JPH03197858A (en) 1989-12-26 1989-12-26 Inspecting method for corrosion state of body buried underground

Publications (1)

Publication Number Publication Date
JPH03197858A true JPH03197858A (en) 1991-08-29

Family

ID=18325738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33925789A Pending JPH03197858A (en) 1989-12-26 1989-12-26 Inspecting method for corrosion state of body buried underground

Country Status (1)

Country Link
JP (1) JPH03197858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404104A (en) * 1992-03-11 1995-04-04 Agip S.P.A. - Snam S.P.A. Device and method for monitoring and locating defects in, and detachment of, the protective covering of underground or immersed metal structures or pipelines
JP2007033133A (en) * 2005-07-25 2007-02-08 Nippon Steel Engineering Co Ltd Method and system for monitoring corrosion prevention state
JP2007071712A (en) * 2005-09-07 2007-03-22 Tokyo Gas Co Ltd Soundness evaluation device, soundness remote evaluation system, soundness evaluation method and soundness evaluation program for anticorrosion-objective pipeline
JP2008196947A (en) * 2007-02-13 2008-08-28 Tokyo Gas Co Ltd Abnormal low grounding spot detection method and detection system of buried metal pipeline
JP2009198242A (en) * 2008-02-20 2009-09-03 Tokyo Gas Co Ltd Corrosion risk measuring and evaluating method of embedded metal pipeline

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404104A (en) * 1992-03-11 1995-04-04 Agip S.P.A. - Snam S.P.A. Device and method for monitoring and locating defects in, and detachment of, the protective covering of underground or immersed metal structures or pipelines
JP2007033133A (en) * 2005-07-25 2007-02-08 Nippon Steel Engineering Co Ltd Method and system for monitoring corrosion prevention state
JP4698318B2 (en) * 2005-07-25 2011-06-08 新日鉄エンジニアリング株式会社 Anticorrosion state monitoring method and system
JP2007071712A (en) * 2005-09-07 2007-03-22 Tokyo Gas Co Ltd Soundness evaluation device, soundness remote evaluation system, soundness evaluation method and soundness evaluation program for anticorrosion-objective pipeline
JP2008196947A (en) * 2007-02-13 2008-08-28 Tokyo Gas Co Ltd Abnormal low grounding spot detection method and detection system of buried metal pipeline
JP2009198242A (en) * 2008-02-20 2009-09-03 Tokyo Gas Co Ltd Corrosion risk measuring and evaluating method of embedded metal pipeline

Similar Documents

Publication Publication Date Title
Parker et al. Pipeline Corrosion and Cathodic Protection: A Practical Manual for Corrosion Engineers, Technicians, and Field Personnel
JP4767145B2 (en) Cathodic protection system and cathodic protection method by galvanic anode method, pipeline soundness evaluation system and soundness evaluation method
EP2757306A1 (en) Method and equipment for identifying and measuring alternating current interference in buried ducts
US20200378885A1 (en) Multielectrode Probes For Monitoring Fluctuating Stray Current Effects And Ac Interference On Corrosion Of Burried Pipelines And Metal Structures
JP4343090B2 (en) Method and apparatus for measuring and evaluating stray current corrosion risk for buried metal body cathodic protected
JP2008281433A (en) Method and apparatus for measuring/evaluating cathode corrosion condition of underground pipeline
CA2555092A1 (en) System and method for measuring electric current in a pipeline
GB2025056A (en) Evaluating Corrosive Activity
JPH03197858A (en) Inspecting method for corrosion state of body buried underground
EP0148267A1 (en) Method and device for detecting damage to buried object
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
EP0693681B1 (en) Apparatus and methods for measuring the ohmic-drop-free potential and for coating integrity evaluation in presence of stray currents
Zakowski et al. Some aspects of potential measurements in a stray current field
JP2846017B2 (en) Method and apparatus for measuring ground potential of underground objects
Pawson Close Interval Potential Surveys Planning, Execution, Results
Leeds et al. Cathodic protection
Nielsen AC corrosion
Du Cathodic protection and stray current measurement and monitoring
JP4367601B2 (en) Current measuring system, measuring apparatus and measuring method
US7125482B2 (en) Use of electrochemistry to detect buried service lead (Pb) and copper (Cu) water pipes
Abdulwahab et al. Instrumentation in cathodic protection systems: field survey
Jankowski Monitoring methods of cathodic protection of pipelines
Escalante Measuring the Corrosion of Metals in Soil
JPS5922118Y2 (en) Current anode device for underground pipes
West et al. Civil Engineering Corrosion Control. Volume 2. Cathodic Protection Testing Methods and Instruments