JP2007033133A - Method and system for monitoring corrosion prevention state - Google Patents

Method and system for monitoring corrosion prevention state Download PDF

Info

Publication number
JP2007033133A
JP2007033133A JP2005214281A JP2005214281A JP2007033133A JP 2007033133 A JP2007033133 A JP 2007033133A JP 2005214281 A JP2005214281 A JP 2005214281A JP 2005214281 A JP2005214281 A JP 2005214281A JP 2007033133 A JP2007033133 A JP 2007033133A
Authority
JP
Japan
Prior art keywords
current
anticorrosion
coating
measuring device
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005214281A
Other languages
Japanese (ja)
Other versions
JP4698318B2 (en
Inventor
Takashi Ohira
尚 大平
Nobuhiro Sasaki
信博 佐々木
Ryuji Koga
隆二 古賀
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2005214281A priority Critical patent/JP4698318B2/en
Publication of JP2007033133A publication Critical patent/JP2007033133A/en
Application granted granted Critical
Publication of JP4698318B2 publication Critical patent/JP4698318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system for monitoring a corrosion prevention state, where a function is installed for detecting a troublesome state (for example, damage on a coating) for maintaining an excellent corrosion prevention state with position accuracy to the degree between each observation point. <P>SOLUTION: When monitoring the corrosion prevention state of a buried metal to which a coating and electric protection is applied, a direct-current measuring device 1 for measuring in the noncontact state the magnitude and the flowing direction of a protective current for the buried metal at at least one measuring spot is mounted so that a magnetic path is interlinked with the protective current. The current quantity and the flowing direction of the protective current measured by the direct-current measuring device 1 are discriminated, and a protective potential and a direct-current measured value at the measuring spot are discriminated based on the discriminated current quantity and flowing direction of the protective current, and the corrosion prevention state of the coating and the buried metal is evaluated based on the discriminated protective potential and direct-current measured value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、防食を施された埋設金属管などにおける電気防食状態を監視するための防食状態監視方法及びシステムに関する。   The present invention relates to an anticorrosion state monitoring method and system for monitoring an anticorrosion state in a buried metal pipe or the like subjected to anticorrosion.

国内の高圧ガス導管等に代表される埋設導管には、鋼管の腐食に伴う漏洩事故を防止するために土壌と接触する外面にポリエチレンなどの塗覆装を施し、かつ塗覆装に欠陥が生じた場合に欠陥部を防食するために電気防食を併用している。埋設物の電気防食方法としては、防食対象物の電位を外部電源又は犠牲陽極を用いて卑方向に引き下げ陰極防食状態をつくりだす手法が従来から用いられており、導管管理者はこの防食状態を良好に維持することが要求されている。   In order to prevent leakage accidents caused by corrosion of steel pipes, buried pipes typified by domestic high-pressure gas pipes are coated with a coating such as polyethylene on the outer surface that comes into contact with the soil, and the coating is defective. In order to prevent the defective part from being corroded, the anticorrosion is used together. As a method for preventing corrosion of buried objects, a method of creating a cathodic protection state by lowering the potential of the object to be protected in the base direction by using an external power source or a sacrificial anode has been conventionally used. Is required to be maintained.

従来において主流となる埋設導管の防食状態の監視方法としては、標準電極に対する埋設導管の電位を測定し、規定値以下に卑電位であれば良しとする方法である。埋設導管上に200〜1,000mの間隔で設置したターミナルボックスにおいて、埋設導管に接続したターミナルケーブルと地表に設置した照合電極の間に直流電位差計を接続し、管対地電位を測定することにより、これを実行することとなる。   Conventionally, as a method of monitoring the anticorrosion state of a buried conduit that has become the mainstream, the potential of the buried conduit with respect to a standard electrode is measured, and if the potential is below a specified value, it is acceptable. By measuring the tube-to-ground potential by connecting a DC potentiometer between the terminal cable connected to the buried conduit and the reference electrode installed on the ground surface in the terminal box installed at an interval of 200 to 1,000 m on the buried conduit This will be done.

また、地上部に直流電源をおき防食対象と接地極間に直流電圧をかけて防食を行う外部電源方式では、電源部の防食電流出力を読み取り、防食状態の監視を行っている。   Moreover, in the external power supply system in which a direct current power source is set on the ground and a direct current voltage is applied between the anticorrosion object and the ground electrode, the anticorrosion current output of the power supply unit is read to monitor the anticorrosion state.

また、マグネシウムなどの犠牲陽極を導管近傍に多数分散させて埋設し、ターミナルケーブルにて導管と電気的に接続する流電陽極方式の電気防食方法では、前記、管対地電位に加えてターミナルケーブルにシャント抵抗を挿入し、陽極の発生電流を測定する。   In addition, in the cathodic protection method of the galvanic anode method in which a large number of sacrificial anodes such as magnesium are dispersed and embedded in the vicinity of the conduit and electrically connected to the conduit by a terminal cable, in addition to the pipe-to-ground potential, the terminal cable Insert a shunt resistor and measure the current generated at the anode.

また、他の防食状態監視方法として、金属性の鏃(以降プローブという)を模擬的な損傷と見立てて埋設地点近傍に打ち込み、防食対象と電気的に接続してそこに流れる防食電流を測定することにより、防食状態の確認を行う例もある。   As another method for monitoring the anticorrosion state, a metal pit (hereinafter referred to as a probe) is assumed to be simulated damage and is driven in the vicinity of the buried point, electrically connected to the anticorrosion object, and the anticorrosive current flowing therethrough is measured. In some cases, the anticorrosion state is confirmed.

また、何らかの理由により、導管の塗覆装が傷つけられそのまま土中に放置されていると防食状態が悪化するので、かかる損傷部を検知する技術が従来において提案されている。   Further, if the coating of the conduit is damaged for some reason and left as it is in the soil, the anticorrosion state deteriorates, and thus a technique for detecting such a damaged part has been proposed.

また、特許文献1においては、導管に交流信号を多種類印加し、各計測地点で信号電流と電圧を計測して損傷を推定する方法が開示されている。
特開平8−145934号公報
Patent Document 1 discloses a method of estimating damage by applying many types of AC signals to a conduit and measuring signal current and voltage at each measurement point.
JP-A-8-145934

従来行われている電気防食管理では前述した電位監視、およびプローブによる監視、外部電源装置の出力監視である。   Conventional anticorrosion management includes the above-described potential monitoring, monitoring by a probe, and output monitoring of an external power supply device.

電位監視においてはターミナルボックスで測定される管対地電位が基準電位より卑電位に保たれていても損傷部周辺の環境、例えば塗覆装の損傷部に大規模な構造物が接触し、その結果、かかる接触箇所に防食電流が大量に流入してしまう場合もある。かかる場合には、本来目的としている防食対象物について、十分な電流が流れ込んでいるか否かを直接確認することができず、腐食進行を見逃してしまう可能性がある。 In the potential monitoring, even if the tube-to-ground potential measured by the terminal box is kept lower than the reference potential, a large-scale structure comes into contact with the environment around the damaged part, for example, the damaged part of the coating. In some cases, a large amount of anticorrosion current flows into the contact area. In such a case, it is not possible to directly check whether or not a sufficient current flows for the originally intended anticorrosion target, and there is a possibility that the progress of corrosion may be overlooked.

プローブによる監視についても同様であり、環境により防食電流は左右されるため、プローブで十分な防食電流が確認されたとしても、それが直接的に損傷部に十分な防食電流が流入しているという点に結びつく訳ではない。   The same applies to the monitoring by the probe, and since the anticorrosion current depends on the environment, even if a sufficient anticorrosion current is confirmed by the probe, it is said that a sufficient anticorrosion current flows directly into the damaged part. It does not lead to a point.

外部電源装置による防食電流の出力監視においては、外電接続部近傍での防食電流については、十分に識別することができるが、防食対象とする埋設導管全線においての防食電流分布を把握することができないという問題点があった。   In the output monitoring of the anticorrosive current by the external power supply device, the anticorrosive current in the vicinity of the external power connection can be sufficiently identified, but the anticorrosive current distribution in the entire buried conduit as the anticorrosion target cannot be grasped. There was a problem.

流電陽極方式では陽極発生電流を測定する際に回路中にシャントなどの計測器を接続しなければならない。   In the galvanic anode method, a measuring instrument such as a shunt must be connected in the circuit when measuring the anode current.

このため、上述の如く長距離にわたる埋設導管などの防食管理において、導管内を流れる防食電流を直接測定することができなかったため、電位監視やプローブ監視または電源出力監視といった不確定性のある従来の防食状態監視手法に新しい監視手法を付加する必要性があった。   For this reason, in the anticorrosion management of buried conduits over long distances as described above, the anticorrosion current flowing in the conduits could not be directly measured. Therefore, conventional methods with uncertainties such as potential monitoring, probe monitoring or power output monitoring. There was a need to add a new monitoring method to the anticorrosion state monitoring method.

ちなみに、良好な防食状況を阻害する塗覆装の欠陥検出には従来から様々な技術が開発されてきている。   Incidentally, various techniques have been developed in the past for detecting defects in coatings that hinder good anticorrosion conditions.

例えば、特許文献1に代表される導管に交流信号を多種類印加し、各計測地点で信号電流と電圧を計測して損傷を推定する構成においては、長距離にわたる監視対象区間への交流信号の印加により、信号の伝播は分布定数にみられる伝播形態を示し、直流を印加した場合のような単調な減衰を示さず、フェランチ現象に代表されるうねりを示す伝播形態となる。このため単純な損傷判定基準は適用できず、かつ損傷が入ることで、その伝播形態が複雑に変化するため、損傷の検知についての誤判定が起こりやすく、検出不能に陥る場合もあった。また、システムの構成要素も増加し、装置コストやメンテナンスコストの増大といった問題も生じていた。   For example, in a configuration in which many types of AC signals are applied to a conduit represented by Patent Document 1 and damage is estimated by measuring signal current and voltage at each measurement point, the AC signal to the monitoring target section over a long distance is used. By application, the propagation of the signal shows the propagation form seen in the distribution constant, does not show the monotonous attenuation as in the case of applying the direct current, and becomes the propagation form showing the swell represented by the ferrant phenomenon. For this reason, a simple damage determination criterion cannot be applied, and since the propagation form changes in a complicated manner due to damage, an erroneous determination regarding the detection of damage is likely to occur and the detection may be impossible. In addition, the number of components of the system has increased, causing problems such as an increase in apparatus cost and maintenance cost.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、良好な防食状況を維持するのに不都合な状況(例えば塗覆装の損傷など)を観測点間程度の位置精度で検知する機能を実装した防食状態監視方法及びシステムを提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the purpose of the present invention is to create a situation that is inconvenient for maintaining a good anticorrosion situation (for example, damage to the coating). An object of the present invention is to provide an anticorrosion state monitoring method and system in which a function of detecting at a position accuracy between observation points is implemented.

本発明を適用した防食状態監視方法は、上述した課題を解決するために、塗覆装および電気防食が施された埋設金属の防食状態を監視する防食状態監視方法において、 少なくとも1箇所の計測地点で該埋設金属の防食電流の大きさ及び流れる方向を非接触で測定する直流計測装置センサ部を防食電流に対して磁路が鎖交するように装着し、当該直流計測装置により測定した防食電流の電流量および流れる方向を識別し、上記識別した防食電流の電流量および流れる方向に基づいて直流電流測定値を判別するとともに、さらに防食電位測定装置により防食電位を判別し、判別した防食電位及び直流電流測定値に基づいて、塗覆装及び埋設金属の防食状態を評価する。   In order to solve the above-described problems, the anticorrosion state monitoring method to which the present invention is applied is an anticorrosion state monitoring method for monitoring the anticorrosion state of a buried metal subjected to coating and electrocorrosion. At least one measurement point In a non-contact DC measurement device for measuring the magnitude and direction of the anticorrosion current of the buried metal, a sensor unit is mounted so that the magnetic path is linked to the anticorrosion current, and the anticorrosion current measured by the DC measurement device The current amount and the flowing direction of the current are identified, and the DC current measurement value is determined based on the identified current amount and the flowing direction of the anticorrosive current, and the anticorrosion potential is further determined by the anticorrosion potential measuring device. Based on the measured DC current, the anticorrosion state of the coating and buried metal is evaluated.

また、本発明を適用した防食状態監視システムは、塗覆装および電気防食が施された埋設金属の防食状態を監視する防食状態監視システムにおいて、少なくとも1箇所の計測地点で該埋設金属の防食電流の大きさ及び流れる方向を非接触で測定する直流計測装置と、防食電位を判別する防食電位測定装置と、上記直流計測装置により測定された防食電流の電流量および流れる方向を通信網を介して識別するとともに、上記防食電位測定装置により判別された防食電位を通信網を介して取得する制御装置とを備え、上記制御装置は、上記識別した防食電流の電流量および流れる方向に基づいて、直流電流測定値を判別し、この判別した直流電流測定値と上記取得した防食電位とに基づいて、塗覆装及び埋設金属の防食状態を評価する。   Further, the anticorrosion state monitoring system to which the present invention is applied is an anticorrosion state monitoring system that monitors the anticorrosion state of a buried metal that has been coated and catalyzed. The anticorrosion current of the buried metal at at least one measurement point. A direct current measuring device that measures the size and direction of flow in a non-contact manner, an anticorrosive potential measuring device that determines the anticorrosion potential, and a current amount and a flowing direction of the anticorrosive current measured by the direct current measuring device via a communication network And a control device that acquires the anticorrosion potential determined by the anticorrosion potential measuring device via a communication network, and the control device performs direct current based on the current amount and the flowing direction of the identified anticorrosion current. A current measurement value is determined, and the anticorrosion state of the coating and the buried metal is evaluated based on the determined DC current measurement value and the acquired anticorrosion potential.

本発明では、可搬型の防食電流計測装置とし、導管管理者は該装置を携帯して管理区間を巡回し、装着可能箇所で防食電流の電流量およびその方向を計測することができる。各地点で計測した電流値は、塗覆装が健全で抵抗値が非常に高ければキルヒホッフの第1法則が適用できるが、長距離にわたる導管では塗覆装が土壌と接触する面積が膨大となるため、塗覆装の抵抗値が非常に高くてもわずかながら減衰し伝播する。逆にいえばある計測地点の間に微小な減衰以上の防食電流の変化が観測されればこの地点間のどこかで防食電流の消費されている不具合があることが推定できる。   In the present invention, the portable anticorrosion current measuring device is used, and the conduit administrator can carry the device and go around the management section, and measure the current amount and direction of the anticorrosive current at the place where the wearable portion can be mounted. Kirchhoff's first law can be applied to the current value measured at each point if the coating is sound and the resistance value is very high, but in a long-distance conduit, the area where the coating is in contact with the soil becomes enormous. For this reason, even if the resistance value of the coating is very high, it attenuates and propagates slightly. Conversely, if a change in the anticorrosion current exceeding a small attenuation is observed between a certain measurement point, it can be estimated that there is a problem that the anticorrosion current is consumed somewhere between these points.

なお、本発明で得られる欠陥部は、ある計測点間のおおよその位置であるため、正確な位置を特定する場合は欠陥の存在が認められた区間において、例えば前述した特公平7−52166号公報に開示されている技術を併用し、詳細な位置を判別することができる。   In addition, since the defect part obtained by the present invention is an approximate position between certain measurement points, when specifying an accurate position, in the section in which the existence of the defect is recognized, for example, Japanese Patent Publication No. 7-52166 described above. A detailed position can be determined using the technique disclosed in the publication.

さらに従来から行われている電位分布監視を併用すると、防食電流値と防食電位値から導管の抵抗値を算出することができ、定量的な評価が可能となる。この各地点での防食電流値や従来からの防食電位記録、およびこれらから算出される導管の抵抗値を長期にわたり監視、データ化して、その変化を解析することにより、塗覆装劣化進行具合を推定し劣化進行の早い区間には対策を打つことが可能となる。   Furthermore, when the conventional potential distribution monitoring is used in combination, the resistance value of the conduit can be calculated from the anticorrosion current value and the anticorrosion potential value, and quantitative evaluation becomes possible. The corrosion resistance value at each point, the conventional anticorrosion potential record, and the resistance value of the conduit calculated from these values are monitored and converted to data over a long period of time, and the changes are analyzed to determine the progress of coating deterioration. It is possible to take countermeasures for the estimated and rapidly progressing sections.

また、本発明では、据え置き型の防食電流計測装置に測定結果を電話回線やインターネットにて送信する通信機能を持たせる構成としてもよい。防食対象区間の複数箇所に据え置き型の防食電流計測装置を配置し、各地点の計測データを1箇所に集めて各地点間の防食電流の電流量および流れる方向をリアルタイムに監視することでその時点での導管全体の防食状況を一挙に把握することができる。同一絶縁区間内で防食用電源が1箇所の排流点で行われる防食システムにおいて、外部電源方式を採用している導管では、土木重機の接触事故などで塗覆装に損傷が起こり、防食電流が損傷部へ流入した場合には上流部(外部電源側)に配置した計測装置の防食電流計測結果が損傷部への流入防食電流分増加することになる。このことより異変を計測した地点から防食電流の下流方向(絶縁端方向)で次の計測地点までの範囲で異変が起こっていることをリアルタイムに検知することが可能となる。   Moreover, in this invention, it is good also as a structure which provides the communication function which transmits a measurement result by a telephone line or the internet to a stationary type anti-corrosion current measuring device. By installing stationary anti-corrosion current measuring devices at multiple locations in the anti-corrosion target area, collecting measurement data at each location in one location and monitoring the current and flow direction of the anti-corrosion current between each location in real time It is possible to grasp the anticorrosion situation of the entire conduit at once. In the anticorrosion system where the anticorrosion power supply is carried out at one discharge point in the same insulation section, the coating using the external power supply system is damaged due to a contact accident of the civil engineering heavy machinery, and the anticorrosion current When the gas flows into the damaged part, the anticorrosive current measurement result of the measuring device arranged in the upstream part (external power supply side) increases by the inflow anticorrosive current to the damaged part. From this, it becomes possible to detect in real time that an anomaly has occurred in a range from the point where the anomaly was measured to the next measurement point in the downstream direction (insulation end direction) of the anticorrosion current.

また、電気防食管理区間の終点である絶縁継手近傍では、絶縁継手性能が正常であればこの地点での直流、交流の電流値は零アンペアとなる。逆に絶縁近傍での直流または交流の電流が検出された場合に、絶縁継手の性能不良を確定することが可能となる。   Also, in the vicinity of the insulation joint that is the end point of the anticorrosion management section, if the insulation joint performance is normal, the direct current and alternating current values at this point are zero amperes. On the contrary, when a direct current or alternating current in the vicinity of insulation is detected, it becomes possible to determine the performance failure of the insulated joint.

この手法は埋設導管だけでなく陸上露出のタンクなどの配管絶縁継手などの性能確認にも応用することができる。   This method can be applied not only to buried conduits but also to confirming the performance of piping insulation joints such as tanks exposed on land.

さらに河川横断部などで橋梁に導管が添架されたような状況で添架部において固定金具と導管の鋼材がメタルタッチするまたは、大規模構造物出入り部などで導管鋼材と構造物鉄筋などがメタルタッチした場合は防食電流が構造物鉄筋等に流入するため莫大な防食電流が消費されたり防食電位の貴化がおこり防食管理上非常に具合の悪い環境となる。   In addition, when the conduit is attached to the bridge at a river crossing or the like, the metal fittings of the fixing bracket and the pipe are metal touched at the bridge, or the steel pipe and the steel bar of the structure are touched at the entrance and exit of the large-scale structure. In this case, since the anticorrosion current flows into the structural reinforcing bars and the like, an enormous anticorrosion current is consumed or the anticorrosion potential becomes precious, resulting in an extremely unfavorable environment in terms of anticorrosion management.

このようなメタルタッチも防食電流の増加という形で検知可能である。   Such a metal touch can also be detected in the form of an increase in anticorrosion current.

また、請求項7記載の発明では、長距離に渡る絶縁管理区間が設定され単独の外部電源では防食状態が維持されないため、2箇所以上の外部電源を接続して防食状態を維持している導管、または複数の犠牲陽極の接続による電気防食法が適用されている場合、各ステーション部における防食電流の供給源を特定するには本技術で使用している直流電流測定装置で防食電流の流れる方向を確認し、電流の上流側にある電源あるいは犠牲陽極と特定することができる。このような場合、本技術で課題としているメタルタッチの発生検知ではメタルタッチ前後において防食電流の大幅な変動や電流の流れる方向の反転や減少が観測されるためメタルタッチ発生を検知することができる。   Further, in the invention according to claim 7, since the insulation control section over a long distance is set and the anticorrosion state is not maintained with a single external power supply, the conduit maintaining the anticorrosion state by connecting two or more external power supplies In the case of applying an anticorrosion method by connecting a plurality of sacrificial anodes, the direction of the anticorrosion current flowing in the DC current measuring device used in this technology is used to specify the source of the anticorrosion current at each station. Can be identified as a power source or sacrificial anode on the upstream side of the current. In such a case, the occurrence of metal touch, which is a problem in the present technology, can detect the occurrence of metal touch because a large fluctuation in the anticorrosion current and inversion and decrease in the direction of current flow are observed before and after the metal touch. .

以下、本発明の実施の形態について図面を参照しながら具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

本発明を適用した防食状態監視システム10は、例えば図1に示すように、18kmの絶縁区間を持つガス導管3に対して適用される。このガス導管3における絶縁区間には5つのステーションA〜Eが設けられており、それぞれのステーションA〜Eに対して、巡視員2が巡回し、可搬型の直流電流計測装置1を使用して、防食電流の測定を行うものである。ステーションAには外部電源装置4が配設されており、ガス導管3全線を電気防食する。巡視員2は各ステーションA〜Eにおいてガス導管3の地上露出部に直流電流計測装置1を装着することにより、各ステーションA〜Eでの防食電流を測定する。   The anticorrosion state monitoring system 10 to which the present invention is applied is applied to a gas conduit 3 having an insulation section of 18 km, for example, as shown in FIG. Five stations A to E are provided in the insulating section of the gas conduit 3, and the patrolman 2 patrols each station A to E and uses the portable DC current measuring device 1. The anticorrosion current is measured. The station A is provided with an external power supply device 4 for electrically protecting the entire gas conduit 3. The patrolman 2 measures the anticorrosion current at each station A to E by attaching the direct current measuring device 1 to the ground exposed portion of the gas conduit 3 at each station A to E.

直流電流計測装置1は、ステーションA〜Eのように導管が地上に露出した場所に装着可能で橋梁架管部、共同坑などでも装着することが可能である。また、場合によっては掘削を行い導管を露出させて装着、計測することも可能である。さらに、半永久的に装着する場合は、掘削工事を行い地中部に防水型の直流計測装置を装着し、そのまま埋め込みにして計測ターミナルのみ地表に露出させて計測することも可能である。   The direct current measuring device 1 can be mounted at a place where the conduit is exposed to the ground like the stations A to E, and can also be mounted at a bridge bridge section, a common mine, or the like. In some cases, it is possible to perform excavation and expose the conduit to mount and measure. Furthermore, when installing semipermanently, it is also possible to carry out excavation work, attach a waterproof DC measuring device in the underground, and embed it as it is to expose only the measuring terminal to the ground surface for measurement.

この防食電流の測定方法は例えば国際出願番号PCT/JP03/07729開示技術に従って計測を行うことにより、防食電流の電流量および電流の方向を測定して記録する方式を採用してもよい。このような技術を構成要素として導管に直流センサーを装着して、磁気ブリッジの平衡を実現すれば導管を流れる防食電流の電流量とその流れる向きを計測することが可能となる。   As a method for measuring the anticorrosive current, for example, a method of measuring and recording the amount and direction of the anticorrosive current by measuring according to the technology disclosed in International Application No. PCT / JP03 / 07729 may be adopted. If such a technique is used as a component and a DC sensor is attached to the conduit to achieve the balance of the magnetic bridge, it is possible to measure the amount of anticorrosive current flowing through the conduit and the direction in which it flows.

このとき、巡視員2は、従来から行われている電気防食の管理手法を兼ねて実行するようにしてもよい。この従来の管理手法は、例えば、防食電位の計測や防食電源の出力監視、プローブが設置されている場合は、プローブ電流の測定などその他導管運用の諸雑務等も含まれる。巡視員2は、測定した防食電流の電流量及びその方向をデータとして記録し、またこれを持ち帰って管理記録として保存することとなる。   At this time, the patrolman 2 may perform the management method of the anti-corrosion conventionally performed. This conventional management method includes, for example, various other operations such as measurement of the anticorrosion potential, monitoring of the output of the anticorrosion power supply, and measurement of the probe current when a probe is installed, and other miscellaneous operations of the conduit. The patrolman 2 records the measured current amount and direction of the anticorrosion current as data, and brings it back and stores it as a management record.

各ステーションA〜Eにおいて計測した防食電流の変化を図2に示す。通常の如く、ポリエチレン塗覆装をガス導管に適用し、外部電源方式で防食システムを構成すると、塗覆装が健全な新設時であればキルヒホッフの第1法則が適用できる。しかしながら、ガス導管3が長距離に亘って配設されている場合には、塗覆装が土壌と接触する面積が膨大となり、導管の抵抗値が非常に高くてもわずかながら減衰し伝播する。   The change of the anticorrosion current measured in each station A to E is shown in FIG. As usual, when polyethylene coating is applied to the gas conduit and the anticorrosion system is configured by an external power supply system, Kirchhoff's first law can be applied if the coating is sound and newly installed. However, when the gas conduit 3 is arranged over a long distance, the area where the coating is in contact with the soil becomes enormous, and even if the resistance value of the conduit is very high, it is attenuated and propagates slightly.

このため数十キロメートルにわたるガス導管3においても管径や環境によって違うが外部電源出力は多くて数百(mA)オーダーである。防食の管理区間端である絶縁継手5bでは絶縁性能が正常であればこの地点での防食電流は0(mA)として計測される。本実施例の場合、防食電流は外部電源4から絶縁継手5bに向かい80(mA)から0(mA)まで減衰しながら伝播している。 For this reason, even in the gas conduit 3 extending over several tens of kilometers, the external power output is on the order of several hundreds (mA) at most, although it varies depending on the pipe diameter and environment. If the insulation performance is normal in the insulating joint 5b which is the end of the anticorrosion management section, the anticorrosion current at this point is measured as 0 (mA). In the case of the present embodiment, the anticorrosion current propagates from the external power supply 4 toward the insulating joint 5b while being attenuated from 80 (mA) to 0 (mA).

この図2においては、竣工時の塗覆装が健全な場合を実線で示す。また、ステーションB−C間において、図1に示すように土木重機6で模擬的な塗覆装の損傷点を形成させたとき、各ステーション位置A〜Eでの防食電流の計測値を図2中の一点鎖線で示す。 In FIG. 2, a solid line indicates a case where the coating at the time of completion is sound. In addition, when the damage points of the simulated coating are formed by the civil engineering heavy machine 6 between the stations B and C as shown in FIG. 1, the measured values of the anticorrosion current at each station position A to E are shown in FIG. It is indicated by a one-dot chain line.

この損傷を加えた損傷点に防食電流Id(mA)が流入し、ステーションAの外部電源装置4へ帰還していくことになる。このため、損傷点よりも外部電源4側にあるステーションAおよびステーションBでの防食電流の計測値はId(mA)分増加することになる。   The anticorrosion current Id (mA) flows into the damaged point where the damage is added, and returns to the external power supply device 4 of the station A. For this reason, the measured value of the anticorrosion current at the station A and the station B located on the external power supply 4 side from the damage point increases by Id (mA).

通常、巡視員2により収集される巡視記録データ解析方法としては、各計測点A〜Eにおける日々の防食電流の変動を求め、管理基準に定められた以上の変動を示した場合は防食状況に異常があるとして異常データを示した計測地点近傍の詳細調査を行うことにしている。   Normally, as the inspection record data analysis method collected by the patrolman 2, the fluctuation of the daily anticorrosion current at each of the measurement points A to E is obtained, and if the fluctuation more than that defined in the management standard is indicated, the anticorrosion situation is indicated. A detailed survey will be conducted in the vicinity of the measurement point where the abnormal data is indicated as being abnormal.

また、防食監視区間の端部である絶縁継手5bの部分でも直流電流計測装置を装着して防食電流を測定し絶縁継手5bの絶縁性能の監視を行っている。通常、絶縁継手5bが正常であれば防食電流は0(mA)として検出され、正常でなければ防食電流が計測され修理を必要とすることとなる。   Also, the insulation joint 5b is monitored by monitoring the insulation performance of the insulation joint 5b by installing a direct current measuring device on the insulation joint 5b, which is the end of the corrosion prevention monitoring section. Normally, if the insulating joint 5b is normal, the anticorrosion current is detected as 0 (mA), and if it is not normal, the anticorrosion current is measured and repair is required.

図3に竣工時の絶縁継手5bが健全な場合の防食電流分布を一点鎖線で示す。また、この図3において、絶縁継手5bの絶縁抵抗が不良で延伸方向の導管から防食電流Iiが流入している場合の防食電流分布を実線で示す。絶縁継手5bの性能が良好であれば絶縁継手5bでの防食電流は0(mA)である。これに対して、絶縁継手5bが不良であればIi(mA)の流入によるシフトが全ステーションA〜Eにおいて測定されることとなる。   FIG. 3 shows the anticorrosion current distribution when the insulation joint 5b at the time of completion is healthy by a one-dot chain line. Further, in FIG. 3, the anticorrosion current distribution in the case where the insulation resistance of the insulating joint 5b is poor and the anticorrosion current Ii flows from the duct in the extending direction is indicated by a solid line. If the performance of the insulating joint 5b is good, the anticorrosion current in the insulating joint 5b is 0 (mA). On the other hand, if the insulating joint 5b is defective, the shift due to the inflow of Ii (mA) is measured at all stations A to E.

また、本発明を適用した防食状態監視システム1では、長期的な監視により防食電流が徐々に上昇している部分や降下している部分などを見つけ出すことができ、緩やかな塗覆装の劣化の進行をも識別することができる。   Moreover, in the anticorrosion state monitoring system 1 to which the present invention is applied, it is possible to find a portion where the anticorrosion current is gradually increased or a portion where the anticorrosion current is gradually increasing by long-term monitoring. Progress can also be identified.

例として、図4に示すように数ヶ月、数年オーダーのデータ管理によりステーションA並びにステーションBの防食電流が徐々に増加する場合は、ステーションB−C間に他構造物の接触による微小な損傷が形成されているものと推測することができ、さらにこれを放置しておけば、かかる損傷が徐々に拡大していくことが懸念される。   For example, as shown in FIG. 4, when the anticorrosion current of the station A and the station B gradually increases due to the data management of several months and years, the minute damage due to the contact of other structures between the stations B-C. If this is left unattended, there is a concern that such damage will gradually expand.

導管管理者は、以上のような管理形態をとることで短期的にも長期的にも防食の不具合区間を限定して調査と対処を施すことが可能となる。   By adopting the management form as described above, the conduit manager can perform investigation and countermeasures by limiting the anticorrosion failure section in the short term and the long term.

図5は、通信網7を介して防食状態を経時的に監視する防食状態監視システム11の構成を示している。   FIG. 5 shows the configuration of the anticorrosion state monitoring system 11 that monitors the anticorrosion state over time via the communication network 7.

この防食状態監視システム11では、18kmの絶縁区間を持つガス導管3において、各ステーションA〜Eにつき露出導管に据え置き型の直流電流計測装置1を装着する。直流電流計測装置1は、防食電流計測値および防食電流の流れる方向をデータ化し、これを通信網7を介して導管管理者受信機8へ伝送する。この直流電流計測装置1には、通常のPC(パーソナルコンピュータ)と同様の機能を実装させるようにしてもよく、通信網7を介して送信されてきた送信要求を受けてデータを転送するようにしてもよいし、また自身の図示しないROMに格納された制御プログラムに基づいて、かかるデータを定期的に転送するようにしてもよい。   In this anticorrosion state monitoring system 11, in the gas conduit 3 having an insulation section of 18 km, the stationary DC current measuring device 1 is mounted on the exposed conduit for each station A to E. The direct current measuring device 1 converts the measured value of the anticorrosive current and the direction in which the anticorrosive current flows, and transmits this data to the conduit manager receiver 8 via the communication network 7. The DC current measuring device 1 may be provided with the same function as that of a normal PC (personal computer), and may be configured to transfer data in response to a transmission request transmitted via the communication network 7. Alternatively, such data may be periodically transferred based on a control program stored in its own ROM (not shown).

また、この直流電流計測装置1には、通信網7との間で有線又は無線通信を実行するための図示しない通信I/Fが実装されている。この図示しない通信I/Fは、通信網7と接続するための回線制御回路と、データ通信を行うための信号変換装置としてのモデムによって実現される。この図示しない通信I/Fは、直流電流計測装置1の制御部からの各種命令に変換処理を施してこれを通信網7側へ送出するとともに、通信網7からのデータを受信した場合にはこれに所定の変換処理を施すことになる。   In addition, the direct current measuring device 1 is equipped with a communication I / F (not shown) for executing wired or wireless communication with the communication network 7. The communication I / F (not shown) is realized by a line control circuit for connecting to the communication network 7 and a modem as a signal conversion device for performing data communication. The communication I / F (not shown) performs conversion processing on various commands from the control unit of the DC current measuring device 1 and sends it to the communication network 7 side, and receives data from the communication network 7. This is subjected to a predetermined conversion process.

通信網7は、各ステーションA〜Eに配設された直流電流計測装置1と導管管理者受信機8との間で電話回線を介して接続されるインターネット網を始め、TA/モデムと接続されるISDN(Integrated Services Digital Network)/B(broadband)−ISDN等のように、情報の双方向送受信を可能とした公衆通信網等で構成される。   The communication network 7 is connected to a TA / modem including an Internet network connected via a telephone line between the DC current measuring device 1 and the conduit manager receiver 8 arranged in each station A to E. ISDN (Integrated Services Digital Network) / B (broadband) -ISDN or the like, and is configured by a public communication network or the like that enables bidirectional transmission and reception of information.

導管管理者受信機8は、PC等で構成され、通信網7を介して各直流電流計測装置1から伝送されてきた防食電流計測値および防食電流の流れる方向のデータを取得し、これをディスプレイを介して導管管理者に対して表示するとともに、データベース化する。継続してデータを取得する場合には、各直流電流計測装置1から定期的に伝送されてくる電流情報を図示しないハードディスク内に格納しておき、これらを事後的にチェックすることにより、長期的な監視をも実現することが可能となる。   The conduit manager receiver 8 is composed of a PC or the like, acquires the corrosion protection current measurement value transmitted from each DC current measuring device 1 via the communication network 7 and the data of the direction in which the corrosion protection current flows, and displays the data. It is displayed to the conduit manager via the network and is made into a database. When data is continuously acquired, current information periodically transmitted from each DC current measuring device 1 is stored in a hard disk (not shown), and these are checked afterwards for a long time. Monitoring can be realized.

この防食状態監視システム11において、導管管理者は各ステーションA〜Eを巡回することなく、防食電流量と流れる方向をリアルタイムに常時監視でき、日常の防食状態監視業務を容易に遂行ことが可能となる。また、導管全体の防食状況を一挙に把握することができる。   In this anticorrosion state monitoring system 11, the conduit manager can always monitor the amount of anticorrosion current and the flowing direction in real time without going around the stations A to E, and can easily carry out daily anticorrosion state monitoring work. Become. Moreover, it is possible to grasp the corrosion prevention status of the entire conduit at a stroke.

ここで監視区間の導管に土木重機6の接触事故が発生して塗覆装が破壊され防食電流が損傷部に流入すると損傷部から外部電源までのステーションでの防食電流値が増加する現象となりこの防食電流増加を検知することで損傷発生の判定を行う。防食電流分布は実施例1で示した図2と同じ分布となる。また、この防食状態監視システム11では、リアルタイムに各ステーションA〜Eの防食電流の変化を監視できるので、図6に示すように、各ステーションA〜Eの防食電流の数時間から数分オーダーでの変化を識別することも可能となる。   Here, if a civil engineering heavy machinery 6 contact accident occurs in the conduit of the monitoring section and the coating is destroyed and the anticorrosive current flows into the damaged part, the anticorrosive current value at the station from the damaged part to the external power source increases. The occurrence of damage is determined by detecting an increase in the anticorrosion current. The anticorrosion current distribution is the same as that shown in FIG. Further, in this anticorrosion state monitoring system 11, since the change in the anticorrosion current of each station A to E can be monitored in real time, the anticorrosion current of each station A to E is on the order of several hours to several minutes as shown in FIG. It is also possible to identify changes in

この図6ではある損傷発生時tにおいてステーションBおよびステーションC間において、防食電流Idが流入する損傷が発生した場合を示している。 In between this figure in 6 is damaged upon occurrence t 1 at station B and station C, shows a case where damage protection current Id flows occurs.

導管管理者は、各ステーションA〜Eで計測される防食電流値の増減に対して閾値(図6においては一点破線で示す)を設定する。そして、各ステーションA〜Eにおいてリアルタイムに計測される防食電流値に対して閾値を越えた時点(この場合は損傷発生時t)において、かかる損傷が発生されたものとして判別する。なお、導管管理者受信機8において、かかる損傷が発生したものと判別された場合に、警報を発する機構を取り入れることにより、導管管理者に対して注意を促すようにしてもよい。 The conduit manager sets a threshold value (indicated by a one-dot broken line in FIG. 6) for the increase / decrease of the anticorrosion current value measured at each of the stations A to E. Then, it is determined that such damage has occurred at the time when the threshold value is exceeded with respect to the anticorrosion current value measured in real time in each of the stations A to E (in this case, at the time of damage occurrence t 1 ). The conduit manager receiver 8 may be alerted to the conduit manager by incorporating a mechanism that issues an alarm when it is determined that such damage has occurred.

また、図6に示す損傷点の推定では、ステーションA、Bは電流値が上昇して閾値を超えているが、それ以外のステーションC〜Eでは閾値を超えていないため、ステーションB−C間において不具合が発生したと判断することが可能となる。このため、導管管理者は警報が発せられた時点で、ステーションB−C間を巡視し、異常が無いかを調査することとなる。   Further, in the estimation of the damage point shown in FIG. 6, the current values of the stations A and B increase and exceed the threshold value, but the other stations C to E do not exceed the threshold value. It is possible to determine that a problem has occurred in. For this reason, the conduit manager patrols between stations B and C at the time when an alarm is issued, and investigates whether there is any abnormality.

このように、防食状態監視システム11では、ガス導管3の異常をリアルタイムで管理者に通報できるため損傷の拡大を防ぎ、即座に復旧する措置を取ることができ、またガス導管3に対して危害を加える原因を排除することができ、ひいては致命的な事故を防止することが可能となる。   In this way, the anticorrosion state monitoring system 11 can notify the administrator of the abnormality of the gas conduit 3 in real time, so that it is possible to take measures to prevent the damage from spreading and recover immediately. It is possible to eliminate the cause of adding, and thus to prevent a fatal accident.

また、本防食状態監視システム10、11においては、図示しない交流測定装置を追加することにより、ガス導管3に誘導される誘導電流も測定することができるようになる。このため高圧送電線に併走する導管などは直流の防食電流を計測することに加えて商用周波数の電流成分を測定して誘導電流を把握し、交流腐食への調査も行うことができる。   In addition, in the anticorrosion state monitoring systems 10 and 11, an induced current induced in the gas conduit 3 can be measured by adding an AC measuring device (not shown). For this reason, in addition to measuring the direct current anticorrosive current, conduits running alongside the high voltage power transmission line can measure the current component of the commercial frequency to grasp the induced current, and can also investigate the alternating current corrosion.

図7は、通信網7を介して防食状態を経時的に監視する防食状態監視システム12の構成を示している。   FIG. 7 shows a configuration of the anticorrosion state monitoring system 12 that monitors the anticorrosion state over time via the communication network 7.

この防食状態監視システム12では、18kmの絶縁区間を持つガス導管3において各ステーションA〜Eにおける露出導管に据え置き型の直流電流計測装置1を装着している。また、この区間を電気防食する外部電源装置4aおよび4bを絶縁区間両端に2つ配置した場合の運用例を示している。   In this anticorrosion state monitoring system 12, the stationary DC current measuring device 1 is mounted on the exposed conduits in the stations A to E in the gas conduit 3 having an insulation section of 18 km. In addition, an operation example in the case where two external power supply devices 4a and 4b for preventing corrosion in this section are arranged at both ends of the insulating section is shown.

図8は、防食状態監視システム12により測定した各ステーションA〜Eにおける防食電流を示している。この図8では、各ステーションA〜Eにおいて外部電源4aで形成される回路の直流電流を正とし、外部電源4bで形成される回路の直流電流を負としてプロットしている。中心付近のCステーションにおいては両端の外部電源4a,4bの影響が拮抗し、防食電流は小さな値として計測されている。   FIG. 8 shows the anticorrosion current at each of the stations A to E measured by the anticorrosion state monitoring system 12. In FIG. 8, the direct current of the circuit formed by the external power supply 4a in each station A to E is plotted as positive, and the direct current of the circuit formed by the external power supply 4b is plotted as negative. In the C station near the center, the influences of the external power sources 4a and 4b at both ends are antagonized, and the anticorrosion current is measured as a small value.

この図8において、ステーションB−C間に大規模な他構造物(例えば大規模コンクリート構造物の鉄筋)等が地震などにより塗覆装が破られ、メタルタッチをおこして他構造物に防食電流が大量に流れ込んだ場合の電流分布を点線で示す。   In FIG. 8, the coating of a large-scale other structure (for example, a reinforcing bar of a large-scale concrete structure) between stations B and C is broken due to an earthquake, etc., and a metal touch is caused to cause a corrosion-proof current to the other structure. The current distribution when a large amount of flows in is shown by dotted lines.

かかる場合において、両端にあるステーションA、E、及びステーションB及びDでは、計測している防食電流の流れる方向は変わらず、電流量の増減が観測されることになる。また、ステーションCにおいては防食電流の流れ方向の反転が起こっており外部電源4aで形成される電気回路から外部電源4bで形成される電気回路への移行となる。   In such a case, in the stations A and E and the stations B and D at both ends, the direction in which the measured anticorrosion current flows does not change, and an increase or decrease in the current amount is observed. Further, in the station C, the flow direction of the anticorrosion current is reversed, and the electric circuit formed by the external power supply 4a is shifted to the electric circuit formed by the external power supply 4b.

図9は、防食状態監視システム12により測定した各ステーションA〜Eにおける防食電流の時間変化を示している。上述した防食状態監視システム11と同様に損傷発生時tにおいて損傷が発生したことを検知することができる。 FIG. 9 shows the change over time of the anticorrosion current in each of the stations A to E measured by the anticorrosion state monitoring system 12. Damage in damage occurring during t 1 in the same manner as corrosion condition monitoring system 11 described above can be detected that has occurred.

即ち、従来の判定方法に実施例1および2で示している従来の損傷区間の判定方法に当てはめると、計測地点から見た防食電流の下流側に損傷があると判定できるのでこの実施例においてもステーションB−C間で異常が起こっていると判定できる。   That is, if the conventional determination method is applied to the conventional damage section determination method shown in Examples 1 and 2, it can be determined that there is damage downstream of the anticorrosion current as viewed from the measurement point. It can be determined that an abnormality has occurred between the stations B-C.

このように従来の交流用のカレントトランスフォーマで行えなかった電流方向(すなわち電源方向確定)も本技術では行うことができ、本事例に示すように複数の防食電流供給源が混在する中でも損傷の発生と発生区間を検知することができる。   In this way, the current direction (that is, the determination of the power supply direction) that could not be performed by the conventional current transformer for alternating current can also be performed by this technology. As shown in this example, damage occurs even when a plurality of anticorrosive current supply sources coexist. And the occurrence interval can be detected.

即ち、本発明は、従来の防食電位管理やプローブによる防食電流流入密度管理、さらに外部電源の出力管理といった防食状態の監視技術に加えて直接計測が難しかった防食電流を測定する直流電流計測技術を導入することで効果的で確実な防食状態の管理方法を提供することができる。   That is, the present invention provides a direct current measuring technique for measuring the anticorrosive current, which is difficult to directly measure, in addition to the conventional anticorrosive potential management, the anticorrosive current inflow density management by the probe, and the output control of the external power supply, and the like. By introducing it, it is possible to provide an effective and reliable method for managing the anticorrosion state.

また、本発明では、リアルタイムで全線にわたる防食電流の監視により従来交流信号で行っていた防食区間の塗覆装監視を交流電源や信号計測装置などの設備投入なしに突発的に発生する防食機能を損なうような事故に対しても対応ができる。さらに長期的な監視により徐々に劣化する防食状況の検知も可能となりこれに基づいた適切な対応をとることができるようになり導管保守管理の効率と信頼性を向上させることが可能となる。   In the present invention, the anti-corrosion function that suddenly generates coating monitoring of the anti-corrosion section, which has been conventionally performed with an AC signal by monitoring the anti-corrosion current over the entire line in real time, without the installation of equipment such as an AC power supply or a signal measuring device. It is possible to deal with accidents that can be damaged. Furthermore, it is possible to detect the corrosion prevention condition that gradually deteriorates by long-term monitoring, and it is possible to take an appropriate response based on this, and it is possible to improve the efficiency and reliability of conduit maintenance management.

また、本発明においては、導管管理者受信機8から、通信網7を介して外部電源4aへアクセスし、そこから流すべき防食電流量を制御できるようにしてもよい。このとき、導管管理者受信機8は、塗覆装に不具合があると判断された場合に、通信網7を介して外部電源装置にアクセスし、その流すべき防食電流量を上げるように命令するようにしてもよい。かかる場合には、外部電源4aに対して、通信機能を実装することになる。   Further, in the present invention, the conduit manager receiver 8 may access the external power supply 4a via the communication network 7 and control the amount of anticorrosion current to be flowed from there. At this time, when it is determined that there is a problem with the coating, the conduit manager receiver 8 accesses the external power supply device via the communication network 7 and instructs to increase the amount of anticorrosion current to be passed. You may do it. In such a case, a communication function is mounted on the external power supply 4a.

なお、本発明で得られる欠陥部はある計測点間のおおよその位置であるため、正確な位置を特定する場合は欠陥の存在が認められた区間において、例えば前述した特公平7−52166号公報に開示されている技術を併用し、詳細な位置を判別するようにしてもよい。 In addition, since the defect part obtained by the present invention is an approximate position between certain measurement points, when specifying an accurate position, in the section where the existence of the defect is recognized, for example, the above-mentioned Japanese Patent Publication No. 7-52166. The detailed position may be determined by using the technique disclosed in the above.

さらに従来から行われている電位分布監視を併用すると防食電流値と防食電位値から塗覆装の抵抗値を算出することができ定量的な評価が可能となる。ちなみに、この防食電位は、例えば従来から利用されている防食電位測定装置を利用するようにしてもよい。この各地点での防食電流値や従来からの防食電位記録およびこれらから算出される塗覆装の抵抗値を長期にわたり監視、データ化してその変化を解析することにより塗覆装劣化進行具合を推定し劣化進行の早い区間には対策を打つなどができる。 Further, when used together with conventional potential distribution monitoring, the resistance value of the coating can be calculated from the anticorrosion current value and the anticorrosion potential value, and quantitative evaluation becomes possible. Incidentally, for this anticorrosion potential, for example, a conventional anticorrosion potential measuring device may be used. The corrosion resistance value at each point, the conventional anticorrosion potential record, and the coating resistance value calculated from these values are monitored over a long period, converted into data, and the change is estimated to estimate the progress of coating deterioration. However, measures can be taken for sections where deterioration progresses quickly.

本発明の実施形態を示す全体図である。1 is an overall view showing an embodiment of the present invention. 各ステーションでの防食電流測定結果を示す図である。It is a figure which shows the anticorrosion current measurement result in each station. 絶縁継手の絶縁性能が不良の場合の各ステーションで測定される電流分布を示す図である。It is a figure which shows the electric current distribution measured in each station in case the insulation performance of an insulation coupling is defect. 長期的な塗覆装の不具合進行した場合の防食電流変化を示す図である。It is a figure which shows the anti-corrosion current change at the time of the malfunction of a long-term coating coating progressing. 本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 時刻tにおいてB、C間に損傷が発生した場合につき、時系列で示した図である。B at time t 1, per If damage occurs between C, illustrates in time series. 本発明のさらなる他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 図7に示す実施形態における各ステーションでの防食電流測定結果を示す図である。It is a figure which shows the anticorrosion current measurement result in each station in embodiment shown in FIG. 図7に示す実施形態において、B、C間に損傷が発生した場合につき、時系列で示した図である。In the embodiment shown in FIG. 7, it is the figure shown in time series about the case where damage generate | occur | produced between B and C. FIG.

符号の説明Explanation of symbols

1 直流電流計測装置
2 監視員
3 ガス導管
4 外部電源装置
5 絶縁継手
6 土木重機
7 通信網
8 導管管理者受信機
10、11、12 防食状態監視システム
DESCRIPTION OF SYMBOLS 1 DC current measuring device 2 Monitoring person 3 Gas conduit 4 External power supply device 5 Insulation joint 6 Civil engineering machinery 7 Communication network 8 Conduit manager receiver 10, 11, 12 Corrosion prevention state monitoring system

Claims (11)

塗覆装および電気防食が施された埋設金属の防食状態を監視する防食状態監視方法において、
少なくとも1箇所の計測地点で該埋設金属の防食電流の大きさ及び流れる方向を非接触で測定する直流計測装置センサ部を防食電流に対して磁路が鎖交するように装着し、
当該直流計測装置により測定した防食電流の電流量および流れる方向を識別し、
上記識別した防食電流の電流量および流れる方向に基づいて直流電流測定値を判別するとともに、さらに防食電位測定装置により防食電位を判別し、
判別した防食電位及び直流電流測定値に基づいて、塗覆装及び埋設金属の防食状態を評価すること
を特徴とする防食状態監視方法。
In the anticorrosion state monitoring method for monitoring the anticorrosion state of the buried metal subjected to coating and electrocorrosion protection,
Attach a DC measuring device sensor unit that measures the magnitude and direction of the anticorrosion current of the buried metal in a non-contact manner at least at one measurement point so that the magnetic path is linked to the anticorrosion current,
Identify the amount of anticorrosive current measured by the DC measuring device and the direction of flow,
While determining the direct current measurement value based on the current amount and the flowing direction of the identified anticorrosion current, and further determining the anticorrosion potential by the anticorrosion potential measuring device,
An anticorrosion state monitoring method characterized in that the anticorrosion state of coating and buried metal is evaluated based on the determined anticorrosion potential and DC current measurement value.
防食電流の電流量および流れる方向を継続して監視し、防食電流の増加を検知した場合、防食電流の下流(絶縁端)方向に塗覆装に損傷などの不具合があると判断すること
を特徴とする請求項1記載の防食状態監視方法。
It is characterized by continuously monitoring the amount of anticorrosive current and the direction of flow, and if an increase in the anticorrosive current is detected, it is determined that there is a defect such as damage to the coating in the downstream (insulating end) direction of the anticorrosive current. The anticorrosion state monitoring method according to claim 1.
同一絶縁区間内で防食用電源が1箇所の排流点で行われる防食システムにおいて、少なくとも2箇所の計測地点で直流計測装置を装着することにより防食電流を計測し、上記各計測地点間の電流量の差異を算出し、下流側(絶縁端)電流が上流(電源)側電流値に対して基準値以上減衰している場合、該計測点間の塗覆装に不具合があると判断すること
を特徴とする請求項1記載の防食状態監視方法。
In the anticorrosion system in which the anticorrosion power supply is performed at one discharge point in the same insulation section, the anticorrosion current is measured by attaching a DC measuring device at at least two measurement points, and the current between the above measurement points. Calculate the difference in quantity, and if the downstream (insulation end) current is attenuated more than the reference value with respect to the upstream (power supply) side current value, determine that the coating between the measurement points is defective. The anticorrosion state monitoring method according to claim 1.
塗覆装に不具合があるか否かの判断を、上記電流計測装置に対して通信網を介して接続された制御装置により実行すること
を特徴とする請求項2又は3記載の防食状態監視方法。
4. The anticorrosion state monitoring method according to claim 2, wherein the determination as to whether or not there is a defect in coating is performed by a control device connected to the current measuring device via a communication network. .
上記制御装置により塗覆装に不具合があると判断された場合に、上記通信網を介して上記防食電流を流す外部電源装置にアクセスし、その流すべき防食電流量を制御すること
を特徴とする請求項4記載の防食状態監視方法。
When it is determined by the control device that there is a problem with coating, the external power supply device through which the anticorrosive current is supplied is accessed via the communication network, and the amount of anticorrosive current to be supplied is controlled. The anticorrosion state monitoring method according to claim 4.
直流計測装置を絶縁継手近傍に装着し絶縁継手の絶縁性能を調査すること
を特徴とする請求項1記載の防食状態監視方法。
The anticorrosion state monitoring method according to claim 1, wherein a DC measuring device is mounted in the vicinity of the insulating joint and the insulating performance of the insulating joint is investigated.
2箇所以上の防食用電源により、電気防食を施した区間において防食電流の電流方向の反転または減少が起こった場合に電流の下流方向に異常があると判断すること
を特徴とする請求項1記載の防食状態監視方法。
2. It is determined that there is an abnormality in the downstream direction of the current when the current direction of the anticorrosion current is reversed or reduced in the section where the anticorrosion is performed by two or more anticorrosive power sources. Anti-corrosion status monitoring method.
塗覆装および電気防食が施された埋設金属の防食状態を監視する防食状態監視システムにおいて、
少なくとも1箇所の計測地点で該埋設金属の防食電流の大きさ及び流れる方向を非接触で測定する直流計測装置と、
防食電位を判別する防食電位測定装置と、
上記直流計測装置により測定された防食電流の電流量および流れる方向を通信網を介して識別するとともに、上記防食電位測定装置により判別された防食電位を通信網を介して取得する制御装置とを備え、
上記制御装置は、上記識別した防食電流の電流量および流れる方向に基づいて、直流電流測定値を判別し、この判別した直流電流測定値と上記取得した防食電位とに基づいて、塗覆装及び埋設金属の防食状態を評価すること
を特徴とする防食状態監視システム。
In the anti-corrosion state monitoring system for monitoring the anti-corrosion state of the buried metal that has been coated and electrically protected,
A direct current measuring device that measures the magnitude and direction of the anticorrosion current of the buried metal in a non-contact manner at least at one measurement point;
An anti-corrosion potential measuring device for determining the anti-corrosion potential;
A controller that identifies the amount and direction of the anticorrosive current measured by the DC measuring device via a communication network, and obtains the anticorrosive potential determined by the anticorrosive potential measuring device via the communication network. ,
The control device determines a direct current measurement value based on the current amount and the flowing direction of the identified anticorrosion current, and based on the determined direct current measurement value and the acquired anticorrosion potential, An anti-corrosion state monitoring system characterized by evaluating the anti-corrosion state of buried metal.
同一絶縁区間内で防食用電源が1箇所の排流点で行われる防食システムにおいて、上記制御装置は、防食電流の電流量および流れる方向を継続して監視し、防食電流の増加を検知した場合、防食電流の下流(絶縁端)方向に塗覆装に損傷などの不具合があると判断すること
を特徴とする請求項8記載の防食状態監視システム。
In the anticorrosion system where the anticorrosion power supply is performed at one discharge point in the same insulation section, the control device continuously monitors the amount and direction of the anticorrosion current and detects an increase in the anticorrosion current. 9. The anticorrosion state monitoring system according to claim 8, wherein it is determined that there is a defect such as damage to the coating in the downstream (insulation end) direction of the anticorrosion current.
同一絶縁区間内で防食用電源が1箇所の排流点で行われる防食システムにおいて、上記直流計測装置は、少なくとも2箇所の計測地点に装着され、
上記制御装置は、上記各計測地点間の電流量の差異を算出し、下流側(絶縁端)電流が上流(電源)側電流値に対して基準値以上減衰している場合、該計測点間の塗覆装に不具合があると判断すること
を特徴とする請求項8記載の防食状態監視システム。
In the anti-corrosion system where the anti-corrosion power supply is performed at one discharge point in the same insulation section, the DC measurement device is mounted at at least two measurement points,
The control device calculates the difference in current amount between the measurement points, and when the downstream (insulation end) current is attenuated by more than the reference value with respect to the upstream (power supply) side current value, the measurement point The anticorrosion state monitoring system according to claim 8, wherein it is determined that there is a defect in the coating of the anticorrosion.
上記制御装置は、塗覆装に不具合があると判断した場合に、上記通信網を介して上記防食電流を流す外部電源装置にアクセスし、その流すべき防食電流量を制御すること
を特徴とする請求項8〜10のうち何れか1項記載の防食状態監視システム。
When the control device determines that there is a problem with the coating, the control device accesses the external power supply device through which the anticorrosion current flows through the communication network, and controls the amount of anticorrosion current to be supplied. The anticorrosion state monitoring system according to any one of claims 8 to 10.
JP2005214281A 2005-07-25 2005-07-25 Anticorrosion state monitoring method and system Expired - Fee Related JP4698318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214281A JP4698318B2 (en) 2005-07-25 2005-07-25 Anticorrosion state monitoring method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214281A JP4698318B2 (en) 2005-07-25 2005-07-25 Anticorrosion state monitoring method and system

Publications (2)

Publication Number Publication Date
JP2007033133A true JP2007033133A (en) 2007-02-08
JP4698318B2 JP4698318B2 (en) 2011-06-08

Family

ID=37792591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214281A Expired - Fee Related JP4698318B2 (en) 2005-07-25 2005-07-25 Anticorrosion state monitoring method and system

Country Status (1)

Country Link
JP (1) JP4698318B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053161A (en) * 2009-09-04 2011-03-17 Hitachi Ltd System for analysis of anticorrosion data
NL2007684C2 (en) * 2011-10-31 2013-05-06 Holding Invest En Man H I M B V METHOD AND SYSTEM FOR DETERMINING THE EXTENT OF THE GENERATION OF A PIPE NET OF A HEATING SYSTEM.
JP2015507210A (en) * 2012-02-16 2015-03-05 エレクトロ スキャン、インク. System and method for collecting, analyzing and archiving conduit defect data
CN107893231A (en) * 2017-11-20 2018-04-10 中国能源建设集团广东省电力设计研究院有限公司 Limit the means of defence of direct current grounding pole corrosion buried metal pipeline and buried system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197858A (en) * 1989-12-26 1991-08-29 Osaka Gas Co Ltd Inspecting method for corrosion state of body buried underground
JPH0495868A (en) * 1990-08-13 1992-03-27 Tokyo Gas Co Ltd Evaluation method of electric protection effect of underground buried pipe
JPH04331900A (en) * 1991-05-07 1992-11-19 Nippon Steel Corp Device for detecting damage on corrosion preventing coating on buried metal pipe
JPH0712950A (en) * 1993-06-17 1995-01-17 Japan Steel & Tube Constr Co Ltd Method and device for detecting position of buried pipe and corrosion preventing current
JPH1137400A (en) * 1997-07-18 1999-02-12 Tokyo Gas Co Ltd Surge current monitoring method of pipe line
JP2000303195A (en) * 1999-04-16 2000-10-31 Susumu Yamaguchi Automatic control circuit of electrolytic protection
JP2001116714A (en) * 1999-10-19 2001-04-27 Nippon Steel Corp Apparatus and method for judging damage of coated embedded metal conductor
JP2001194340A (en) * 2000-01-11 2001-07-19 Osaka Gas Co Ltd Measuring instrument for state of cathodic protection
JP2003185100A (en) * 2001-12-19 2003-07-03 Osaka Gas Co Ltd Piping network control system
JP2004083996A (en) * 2002-08-27 2004-03-18 Tokyo Gas Co Ltd Cathodic corrosion protective device for external power source, and remote monitoring system for corrosion protection data
JP2005091191A (en) * 2003-09-18 2005-04-07 Nippon Steel Corp Method of detecting defective part in coating of embedded metal pipe

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197858A (en) * 1989-12-26 1991-08-29 Osaka Gas Co Ltd Inspecting method for corrosion state of body buried underground
JPH0495868A (en) * 1990-08-13 1992-03-27 Tokyo Gas Co Ltd Evaluation method of electric protection effect of underground buried pipe
JPH04331900A (en) * 1991-05-07 1992-11-19 Nippon Steel Corp Device for detecting damage on corrosion preventing coating on buried metal pipe
JPH0712950A (en) * 1993-06-17 1995-01-17 Japan Steel & Tube Constr Co Ltd Method and device for detecting position of buried pipe and corrosion preventing current
JPH1137400A (en) * 1997-07-18 1999-02-12 Tokyo Gas Co Ltd Surge current monitoring method of pipe line
JP2000303195A (en) * 1999-04-16 2000-10-31 Susumu Yamaguchi Automatic control circuit of electrolytic protection
JP2001116714A (en) * 1999-10-19 2001-04-27 Nippon Steel Corp Apparatus and method for judging damage of coated embedded metal conductor
JP2001194340A (en) * 2000-01-11 2001-07-19 Osaka Gas Co Ltd Measuring instrument for state of cathodic protection
JP2003185100A (en) * 2001-12-19 2003-07-03 Osaka Gas Co Ltd Piping network control system
JP2004083996A (en) * 2002-08-27 2004-03-18 Tokyo Gas Co Ltd Cathodic corrosion protective device for external power source, and remote monitoring system for corrosion protection data
JP2005091191A (en) * 2003-09-18 2005-04-07 Nippon Steel Corp Method of detecting defective part in coating of embedded metal pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053161A (en) * 2009-09-04 2011-03-17 Hitachi Ltd System for analysis of anticorrosion data
NL2007684C2 (en) * 2011-10-31 2013-05-06 Holding Invest En Man H I M B V METHOD AND SYSTEM FOR DETERMINING THE EXTENT OF THE GENERATION OF A PIPE NET OF A HEATING SYSTEM.
EP2587170A3 (en) * 2011-10-31 2015-02-25 Holding Investments en Management (H.I.M.) B.V. Method and system for determing the extent of deterioration in a pipe network of a heating system
JP2015507210A (en) * 2012-02-16 2015-03-05 エレクトロ スキャン、インク. System and method for collecting, analyzing and archiving conduit defect data
JP2018009996A (en) * 2012-02-16 2018-01-18 エレクトロ スキャン、インク. System and method for collecting, analyzing and archiving pipe defect data
CN107893231A (en) * 2017-11-20 2018-04-10 中国能源建设集团广东省电力设计研究院有限公司 Limit the means of defence of direct current grounding pole corrosion buried metal pipeline and buried system

Also Published As

Publication number Publication date
JP4698318B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
CN108918405B (en) Online monitoring system and method for corrosion prevention effect of oil well pipeline
CN105695997A (en) Safety protection method for underground metal pipeline
KR100380113B1 (en) A Corrosion Prediction System of Underground Metallic Structures and it&#39;s Analysis Method
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP2007071712A (en) Soundness evaluation device, soundness remote evaluation system, soundness evaluation method and soundness evaluation program for anticorrosion-objective pipeline
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JP4797001B2 (en) Pipeline cathodic protection system and cathodic protection management method
EP3460451A2 (en) Integrity monitoring spool
RU2626609C1 (en) Method of estimating technical condition of insulating coating of underground pipeline
Hilleary et al. Corrosion rate monitoring in pipeline casings
McDonnell et al. Oil and Gas Pipeline Technology Finds Uses in the Water and Wastewater Industry
Kowalski The close interval potential survey (CIS/CIPS) method for detecting corrosion in underground pipelines
JP3214777B2 (en) Method and apparatus for identifying damaged part of coating of buried coated metal pipe
Wold et al. Fsm Technology-16 Years Of Field History-Experience, Status And Further Developments.
Lindemuth et al. Challenging AC Corrosion Mitigation System for 100-Mile Long Pipeline
Bolen et al. Corrosion Protection of Ductile Iron Pipe for a Large Diameter Transmission Main Project
CN111220536A (en) Method, device and system for detecting corrosion probability of pipeline
Baete et al. Unmasking AC Threats on Petrochemical Pipelines
Fatakdawala Guidelines for the Collection of Reliable and Practicable ECDA Indirect Inspection Data
Krissa et al. CP Management of Multiple Pipeline Right-Of-Ways
RU2720647C1 (en) Method of assessing technical condition of insulating coating of underground pipeline section
JP4005159B2 (en) How to identify damaged sections of a pipeline
Kioupis et al. AC-corrosion detection on electrical resistance probes connected to a natural gas transmission pipeline
RU2654012C1 (en) Method for controlling pipeline wrapping under conditions of cathode protection
Gregoor et al. Detection and assessment of AC corrosion

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees