JPH0827039B2 - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JPH0827039B2
JPH0827039B2 JP2301310A JP30131090A JPH0827039B2 JP H0827039 B2 JPH0827039 B2 JP H0827039B2 JP 2301310 A JP2301310 A JP 2301310A JP 30131090 A JP30131090 A JP 30131090A JP H0827039 B2 JPH0827039 B2 JP H0827039B2
Authority
JP
Japan
Prior art keywords
ice
water
liquid
storage tank
fluorinert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2301310A
Other languages
Japanese (ja)
Other versions
JPH04174229A (en
Inventor
勝也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2301310A priority Critical patent/JPH0827039B2/en
Publication of JPH04174229A publication Critical patent/JPH04174229A/en
Publication of JPH0827039B2 publication Critical patent/JPH0827039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、空調等に使用される氷蓄熱装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an ice heat storage device used for air conditioning and the like.

(従来の技術) 氷蓄熱を有する空気調和システムは、昼間に集中する
冷房用電力需要を低減するために、安価な深夜電力を利
用でき、かつ熱源機器容量の半減による契約電力を低減
できるので、ビル空調や、地域冷暖房システム等の比較
的大容量の空調システムへの適用が期待されている。
(Prior Art) Since an air conditioning system having ice heat storage can use inexpensive late-night power in order to reduce power demand for cooling concentrated in the daytime, and contract power can be reduced by halving the heat source equipment capacity. It is expected to be applied to building air conditioning systems and relatively large capacity air conditioning systems such as district heating and cooling systems.

この氷蓄熱装置は、その氷の製造方法において、間接
熱交換方式と直接熱交換方式に大別される。
This ice heat storage device is roughly classified into an indirect heat exchange system and a direct heat exchange system in the ice production method.

間接熱交換方式とは、製氷用伝熱管(銅チューブ、ポ
リエチレンチューブ等)を用いる方法であり、伝熱管の
内側又は外側に低温の冷媒(フロン等)又は不凍液(通
称ブライン)を流し、伝熱管の反対の壁面に氷を生成、
着氷する方法である。
The indirect heat exchange method is a method that uses a heat transfer tube for ice making (copper tube, polyethylene tube, etc.), and a low-temperature refrigerant (CFC, etc.) or antifreeze liquid (commonly known as brine) is flown inside or outside the heat transfer tube. Ice on the opposite wall of
This is a method of landing on ice.

この伝熱管の管外・管内壁面に氷を生成着氷する方式
は、壁面に生成される氷の厚みが徐々に増して行くと、
氷自身の熱伝導率が非常に小さい為、被冷却液である水
から、冷却媒体(フロン、ブライン)への移動熱量が氷
の厚みに応じて小さくなり、氷の生長速度が遅くなる。
この氷の生長速度を増すには、冷却媒体の温度を下げる
必要があるが、冷却媒体の温度を下げると、冷凍機の成
績係数が低下するという難点がある。
This method of forming ice on the outer and inner wall surfaces of the heat transfer tube causes ice to accumulate as the thickness of the ice generated on the wall gradually increases.
Since the thermal conductivity of ice itself is very small, the amount of heat transferred from the water to be cooled to the cooling medium (CFC, brine) becomes smaller according to the thickness of the ice, and the growth rate of ice becomes slower.
In order to increase the growth rate of this ice, it is necessary to lower the temperature of the cooling medium, but if the temperature of the cooling medium is lowered, there is a drawback that the coefficient of performance of the refrigerator decreases.

また、水槽内に伝熱管を配し、水の中に浸漬する方式
では、氷の充填率(通称IPF;ICE Packing Factor)は、
伝熱管のピッチの小さい方がよいが、この場合には、水
槽内に多数の伝熱管を配することになり、氷の占有容積
が減少する。逆に、伝熱管のピッチを大きくし、伝熱管
の表面に着氷する氷の厚みを増すと、前記したように、
冷凍機の成績係数が下がるばかりではなく、解氷して冷
水を取り出す場合に、伝熱管群内及び1本の伝熱管の円
周方向の氷の厚さの減少度が不均一になり、冷水の取り
出し温度がハッチングを起こすことがある。そして最悪
の場合には、製氷・解氷時に隣接する伝熱管に着氷した
氷同士が接触合体(通称:ブリッジング)を起こし、伝
熱管に余計な力を与え、伝熱管を破損することもある。
よって全体として氷の充填率(IPF)を上げることは困
難で、蓄熱水槽(冷水蓄熱)に比較して、蓄熱効率が格
段によくなるとは限らない。
In addition, in the method of arranging the heat transfer tube in the water tank and immersing it in water, the ice filling rate (commonly called IPF: ICE Packing Factor) is
It is better that the pitch of the heat transfer tubes is smaller, but in this case, a large number of heat transfer tubes are arranged in the water tank, and the volume occupied by ice is reduced. On the contrary, if the pitch of the heat transfer tube is increased and the thickness of the ice accreting on the surface of the heat transfer tube is increased, as described above,
Not only does the coefficient of performance of the refrigerator decrease, but when the ice water is thawed and cold water is taken out, the degree of decrease in the thickness of ice in the heat transfer tube group and in the circumferential direction of one heat transfer tube becomes uneven, and cold water The take-out temperature may cause hatching. In the worst case, the ice that has adhered to adjacent heat transfer tubes during ice making / thawing may come into contact with each other (commonly known as bridging), giving extra force to the heat transfer tubes and damaging the heat transfer tubes. is there.
Therefore, it is difficult to raise the ice filling rate (IPF) as a whole, and the heat storage efficiency is not necessarily much better than that of the heat storage water tank (cold water heat storage).

また、この間接熱交換方式の中でも、氷の充填率の低
下と冷凍機の成績係数の低下を考慮して、製氷用の伝熱
管を水中に浸漬するのではなく、製氷部と氷を貯蔵する
槽を分離した通称ハーベストタイプと呼ばれる氷蓄熱シ
ステムが考案されている。このタイプの氷蓄熱システム
は、上部に製氷部を設置し、製氷用の伝熱管表面に一定
(比較的薄く冷凍機の成績係数が低下しない程度の厚
さ)の厚さの氷を着氷させた後、その伝熱管の表面を高
温の冷媒ガス等(コンプレッサ吐出ガス)で暖め、製氷
した氷を下部の貯蔵槽に貯めて行く方式である。
In addition, in this indirect heat exchange system, the ice making section and the ice are stored instead of immersing the heat transfer pipe for ice making in consideration of the decrease in the filling rate of ice and the decrease in the coefficient of performance of the refrigerator. An ice heat storage system, which is commonly called a harvest type with a separate tank, has been devised. This type of ice heat storage system has an ice making part installed on the top, and ice of a constant thickness (thickness that does not decrease the coefficient of performance of the refrigerator) is deposited on the surface of the heat transfer tube for ice making. After that, the surface of the heat transfer tube is warmed with a high-temperature refrigerant gas (compressor discharge gas) and the ice made is stored in the lower storage tank.

しかし、この方式は、上部製氷部において、伝熱管の
冷却(製氷)−加熱(降氷)という二段階の過程が存在
し、そのコントロールも複雑になる上に、下部氷貯蔵槽
における解氷を均一に行なう方法がむずかしい。しか
も、上記製氷部は、従来の氷蓄熱槽とそれほど寸法が変
らず、全体的に大きなシステムになってしまう。
However, in this method, there is a two-step process of cooling (ice making) -heating (ice falling) of the heat transfer tube in the upper ice making part, and the control becomes complicated, and in addition, the thaw of the lower ice storage tank It is difficult to do it uniformly. Moreover, the size of the ice making unit is not so different from that of the conventional ice heat storage tank, resulting in a large system as a whole.

その他に、間接熱交換方式の一種として、製氷用の伝
熱管を通して熱交換(冷却)するのであるが、この場
合、被冷却液に水にエチレングリコール等の不凍液を混
ぜた液を用いるものと、水を或る流速で流せば0℃以下
にしても凍結しないという現象を利用した連続流れの過
冷却水を用いるものとがある。
In addition, as a kind of indirect heat exchange method, heat is exchanged (cooled) through a heat transfer tube for ice making, but in this case, a liquid in which an antifreeze liquid such as ethylene glycol is mixed with water is used as a liquid to be cooled, There is one that uses a continuous flow of supercooled water that utilizes the phenomenon that if water is flowed at a certain flow velocity, it does not freeze even at 0 ° C or lower.

上記被冷却液に水と不凍液を混ぜたものを利用する方
式は、製氷用伝熱管を介してこの被冷却液を冷却し、そ
の凍結温度(0℃よりも低い)以下にして、被冷却液中
の水分を凍らせ、シャーベッド状(固液2相流)にし、
そのまま搬送可能にしたシステムである。このシステム
は、不凍液と水を混合したことから、粘度や熱伝導率が
悪く、熱交換性能が低いばかりでなく、被冷却液中の水
分を凍らせて行くと、被冷却液中の不凍液の濃度が高く
なり、増々水分の凍結温度が低くなっていく。そのため
この水分を凍らせるのに、冷却する冷却液の温度を増々
下げねばならず、冷凍機の成績係数が更に低下するとい
う問題がある。また、このシャーベッド状被冷却液を直
接空調機へ搬送するのは、ポンプ動力が非常に大きくな
るばかりでなく、この被冷却液の温度が低いので、空調
機の空気側で結露が生じ、空調機の寿命を縮めてしま
う。
The method using a mixture of water and an antifreeze liquid in the liquid to be cooled is such that the liquid to be cooled is cooled through a heat transfer tube for ice making, and the freezing temperature (lower than 0 ° C.) or lower is applied to the liquid to be cooled. Freeze the water inside to form a shear bed (solid-liquid two-phase flow),
It is a system that can be transported as it is. Since this system mixes antifreeze and water, the viscosity and thermal conductivity are poor, and not only the heat exchange performance is low, but when the water in the liquid to be cooled is frozen, the antifreeze liquid in the liquid to be cooled will The higher the concentration, the lower the freezing temperature of water. Therefore, in order to freeze this water, the temperature of the cooling liquid to be cooled must be lowered more and more, and there is a problem that the coefficient of performance of the refrigerator further decreases. Further, to directly convey this sheared liquid to be cooled to the air conditioner, not only the pump power becomes very large, but also because the temperature of this liquid to be cooled is low, condensation occurs on the air side of the air conditioner, It shortens the life of the air conditioner.

上記過冷却水(−4℃程度)を熱交換する方式は、水
の連続流れの過程で水温を0℃以下まで過冷却する方式
であり、この過冷却水の連続流れを蓄熱水槽に戻す際に
衝突板を設け、運動エネルギーを無くし、過冷却水の一
部を氷粒として析出させ、蓄熱水槽に貯える方式であ
る。この方式では、シャーベッド状の氷の蓄熱水槽に貯
蔵することができ、伝熱管表面で製氷しないので冷凍機
の成績係数も割合高く、水槽内は氷粒と水だけなので氷
の充填率も高いが、この過冷却水の連続流れを作り出す
過程において淀みなく水を流す必要があるため、直管し
か使用できず、その直管の中でも、入口から水流を一様
にする部分、冷却液により冷却する部分とが必要で、そ
の直管の長さを長くせざるを得ず、この過冷却器自身が
長大になってしまい、設置スペースが問題になる。ま
た、過冷却水自身の流量増大に伴ないその温度制御かむ
ずかしい上、現実には冷却液に冷媒を使用することは、
蒸発熱伝達の不均一に起因し、管内での凍結層の生じる
恐れがあるので、ブラインを介して過冷却水を製造する
ことになるので、それほど冷凍機の成績係数は良くな
い。
The method of exchanging heat of the supercooled water (about -4 ° C) is a method of supercooling the water temperature to 0 ° C or less in the process of continuous flow of water, and when returning the continuous flow of the supercooled water to the heat storage water tank. This is a system in which a collision plate is installed to eliminate kinetic energy, part of the supercooled water is deposited as ice particles, and stored in a heat storage water tank. With this method, it can be stored in a sheared ice water storage tank, and the coefficient of performance of the refrigerator is high because it does not make ice on the surface of the heat transfer tubes. The ice filling rate is also high because the water tank contains only ice particles and water. However, since it is necessary to flow water without stagnation in the process of creating a continuous flow of this supercooled water, only a straight pipe can be used. Among these straight pipes, the part that makes the water flow uniform from the inlet, cooling by the cooling liquid It is necessary to increase the length of the straight pipe, and this supercooler itself becomes large in size, and the installation space becomes a problem. In addition, it is difficult to control the temperature of the supercooled water itself as the flow rate of the supercooled water increases, and in reality, it is difficult to use a refrigerant as the cooling liquid.
The coefficient of performance of the refrigerator is not so good because supercooled water is produced through the brine because a frozen layer may be generated in the pipe due to the non-uniformity of evaporation heat transfer.

一方、直接熱交換方式は、冷媒ガスを水中に直接吹き
込む方式である。この直接熱交換方式は、冷凍機内の膨
張弁を出た後の低温の冷媒を水槽の底部・側部から水中
に吹き込むので、間接熱交換方式に比較して冷却液(冷
媒)の温度を高くすることができるので冷凍機の成績係
数は良好である。また、水槽の中で冷媒と水の直接接触
による熱交換なので、熱交性能も良好で、水槽中に伝熱
管等の容積を占有するものがないので、氷の充填率(IP
F)も良好である。そして、冷凍機の蒸発器に当たる部
分がそのまま氷蓄熱槽になるので、システムとして簡素
化できる。
On the other hand, the direct heat exchange method is a method in which a refrigerant gas is directly blown into water. This direct heat exchange method blows the low-temperature refrigerant after it leaves the expansion valve in the refrigerator into the water from the bottom and sides of the water tank, so the temperature of the cooling liquid (refrigerant) is higher than that of the indirect heat exchange method. Therefore, the coefficient of performance of the refrigerator is good. In addition, since the heat exchange is performed by direct contact between the refrigerant and water in the water tank, the heat exchange performance is good, and there is nothing that occupies the volume of the heat transfer tubes etc. in the water tank.
F) is also good. Since the portion of the refrigerator corresponding to the evaporator directly serves as the ice heat storage tank, the system can be simplified.

しかし、冷媒ガス(通常フロン)中に水が入いると、
冷媒と水とが反応して腐食性の塩素ガスを発生する上、
冷媒中に含まれる圧縮機用の潤滑油を水槽中に混入させ
ることができないので、冷媒と潤滑油の分離が必要であ
り、逆に水槽中で蒸発する冷媒ガス中に含まれる水分が
圧縮機内で悪影響を引き起こすため冷媒ガス中の水分除
去も必要である。また、この蒸発器でもある氷蓄熱槽は
高圧容器となってしまうので、大型化には向かない。
However, if water enters the refrigerant gas (usually CFC),
Refrigerant and water react to generate corrosive chlorine gas,
Since it is not possible to mix the lubricating oil for the compressor contained in the refrigerant into the water tank, it is necessary to separate the refrigerant and the lubricating oil. Conversely, the water contained in the refrigerant gas that evaporates in the water tank cannot be mixed in the compressor. It is also necessary to remove the water content in the refrigerant gas, since this will cause adverse effects. Moreover, since the ice heat storage tank which is also this evaporator becomes a high-pressure container, it is not suitable for upsizing.

(発明が解決しようとする課題) 氷蓄熱の製造方法は直接熱交換方式と間接熱交換方式
とに大別されるが、下記するような個別の欠点を有して
いる。すなわち 伝熱管の表面で製氷・着氷する方式は、冷凍機の成
績係数の低下、氷の充填率が低い、解氷性能が悪い、伝
熱管の破損等の欠点。
(Problems to be Solved by the Invention) Although methods for manufacturing ice heat storage are roughly classified into a direct heat exchange system and an indirect heat exchange system, they have individual drawbacks as described below. In other words, the method of making and icing ice on the surface of the heat transfer tube has drawbacks such as a low coefficient of performance of the refrigerator, a low ice filling rate, poor deicing performance, and damage to the heat transfer tube.

製氷部と氷貯蔵槽とを組み合せたシステムは構成が
複雑で、全体に大型化するという欠点。
The system that combines the ice making unit and the ice storage tank has a complicated structure, and has the drawback of increasing the overall size.

被冷却液に水と不凍液とを混ぜた方式は、冷凍機の
成績係数の低下、搬送動力の増大、空調機への悪影響等
の欠点。
The method of mixing water and antifreeze with the liquid to be cooled has drawbacks such as a low coefficient of performance of the refrigerator, an increase in transport power, and an adverse effect on the air conditioner.

過冷却水の連続流れを利用する方式は、過冷却器の
長大化、過冷却水の温度制御のむずかしさ等の欠点。
The method that uses a continuous flow of supercooled water has drawbacks such as lengthening of the supercooler and difficulty in controlling the temperature of the supercooled water.

冷媒液(ガス)を直接水中に吹き込む方式は、腐食
性ガスの発生、油及び水分の分離の必要性、高圧容器で
あるいう欠点。
The method in which the refrigerant liquid (gas) is directly blown into water has the drawbacks of generation of corrosive gas, necessity of separation of oil and water, and high pressure vessel.

を有するが、全体として解氷が現実的には良好に行な
われない。
However, as a whole, deicing is not practically performed well.

本発明は、前述した氷蓄熱器の欠点すなわち、冷凍機
の成績係数の低下、氷の充填率の低さ、解氷性能、シス
テムの複雑さ・大型化を回避するようにした氷蓄熱装置
を提供することを目的とする。
The present invention provides the above-mentioned drawbacks of the ice heat storage device, that is, a reduction in the coefficient of performance of the refrigerator, a low ice filling rate, a deicing performance, and an ice heat storage device that avoids the complexity and size of the system. The purpose is to provide.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明の氷蓄熱装置は、氷蓄熱槽の底部に貯溜部を設
け、この貯溜部に、比重量が水の1.5倍以上で凝固点が
マイナス50℃以下の水に不溶のフロリナート液を貯溜
し、このフロリナート液を冷凍サイクルにより0℃以下
の温度を保つようにするとともに、氷蓄熱槽と貯溜部を
配管で結び、氷蓄熱槽の水を貯溜部のフロリナート液に
噴霧して氷を析出するように構成される。
(Means for Solving the Problems) The ice heat storage device of the present invention is provided with a reservoir at the bottom of the ice heat storage tank, and water having a specific weight of 1.5 times or more and a freezing point of minus 50 ° C. or less is provided in the reservoir. The insoluble Fluorinert solution is stored in the tank, and the Fluorinert solution is kept at a temperature of 0 ° C or lower by a refrigeration cycle. The ice heat storage tank and the storage section are connected by piping, and the water in the ice storage tank is stored in the Fluorinert solution. It is configured to spray ice to deposit ice.

(作用) 本発明の氷蓄熱装置においては、氷蓄熱槽の水を配管
を介して貯溜部のフロリナート液に噴霧し、噴霧状をな
す水を、冷凍サイクルにより0℃以下の温度を保ってい
るフロリナート液と直接熱交換し、直接冷却すること
で、その水が0℃以下になると氷となり、比重差による
浮力の影響で上部へ上昇し、上側に位置する水の中に入
り込む。水とフロリナートが一緒に入ると、水とフロリ
ナートは完全に分離し、氷は水の液面上部に集められ、
フロリナートは底に沈殿し、氷蓄熱槽に氷の塊が生成さ
れる。
(Operation) In the ice heat storage device of the present invention, the water in the ice heat storage tank is sprayed on the Fluorinert liquid in the storage portion through the pipe, and the water in the spray state is kept at a temperature of 0 ° C. or lower by the refrigeration cycle. By directly exchanging heat with the Fluorinert liquid and cooling it directly, the water becomes ice when the temperature becomes 0 ° C or less, rises to the upper part due to the influence of buoyancy due to the difference in specific gravity, and enters the water located above. When the water and the Fluorinert enter together, the water and the Fluorinert are completely separated, and the ice is collected on the upper surface of the water,
Fluorinert settles to the bottom, forming ice blocks in the ice storage tank.

(実施例) 以下本発明の一実施例を図面につき説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による氷蓄熱装置の全体構成を示し、
この氷蓄熱装置の氷蓄熱槽1の底部2は、側壁部3の下
端から中央方向に下方に傾斜した傾斜面となっており、
その底部2の中央部には氷蓄熱槽1と一体に貯蔵槽4が
設けられている。上記貯蔵槽4の中には整流板5が上下
方向に延びるように配置され、貯溜槽4の内部を2室4
a,4bに仕切っている。整流板5の長さは貯蔵槽4の高さ
より短く、整流板5の下端と貯蔵槽4の底部6との間に
連通部7を、整流板5の上側に連通部8を形成し、整流
板5により貯蔵槽4の室4aと,室4bとを通る循環流が形
成される。
FIG. 1 shows the overall structure of the ice heat storage device according to the present invention.
The bottom portion 2 of the ice heat storage tank 1 of this ice heat storage device is an inclined surface inclined downward from the lower end of the side wall portion 3 toward the center,
A storage tank 4 is provided integrally with the ice heat storage tank 1 at the center of the bottom portion 2. A straightening plate 5 is arranged in the storage tank 4 so as to extend in the vertical direction, and the interior of the storage tank 4 is divided into two chambers.
It is divided into a and 4b. The length of the straightening vane 5 is shorter than the height of the storage tank 4, and the communication portion 7 is formed between the lower end of the straightening vane 5 and the bottom portion 6 of the storage tank 4, and the communication portion 8 is formed above the straightening vane 5. The plate 5 forms a circulating flow through the chamber 4a and the chamber 4b of the storage tank 4.

上記貯蔵槽4の一方の室4bには、熱交換器9が配置さ
れ、この熱交換器9は配管10を介して外部に設けた冷凍
機11に接続され、貯蔵槽4に収容されるフロリナート液
12を冷却するようにしている。
A heat exchanger 9 is arranged in one chamber 4b of the storage tank 4, and the heat exchanger 9 is connected via a pipe 10 to a refrigerator 11 provided outside, and a Fluorinert housed in the storage tank 4 is provided. liquid
I'm trying to cool 12.

フロリナート液12は、無色・透明・無臭・不活性な液
体で、完全にフッ素化された構造をしており、炭素原子
Cとフッ素原子Fのみの結合である。このフロリナート
液12は炭素原子Cとフッ素原子Fの結合数に応じて、沸
点と凝固点(流動点と同じ)は異なるが、凝固点が−20
℃以下のものがほとんどである。そして、比重量も0℃
付近では1.7〜1.8kg/lで氷の2倍程度である。また水の
フロリナートへの溶解性は、温度10℃で7.2ppmと少なく
不溶と考えても問題がない。よって、水槽内に水とフロ
リナートを一緒に入れると、完全に分離し、フロリナー
トが底に沈殿し、水がその上に浮く型になる。
The Fluorinert liquid 12 is a colorless, transparent, odorless, and inert liquid, has a completely fluorinated structure, and is a bond of only carbon atoms C and fluorine atoms F. This Fluorinert liquid 12 has a boiling point and a freezing point (same as the pour point) depending on the number of bonds of carbon atoms C and fluorine atoms F, but the freezing point is -20.
Most are below ℃. And the specific weight is 0 ℃
In the vicinity, it is 1.7 to 1.8 kg / l, which is about twice that of ice. Further, the solubility of water in Fluorinert is as low as 7.2 ppm at a temperature of 10 ° C, and it can be considered that it is insoluble. Therefore, when water and Fluorinert are put together in the water tank, they are completely separated, and the Fluorinert settles on the bottom, and the water floats on it.

本発明においては、上記フロリナート液12として、比
重量が水の1.7〜1.8倍で、凝固点が−50℃程度のものが
選定される。
In the present invention, the Fluorinert liquid 12 having a specific weight of 1.7 to 1.8 times that of water and a freezing point of about −50 ° C. is selected.

一方上記氷蓄熱槽1の側壁部3の上部には取水口13が
設けられ、また氷蓄熱槽1の内部には、この取水口13を
囲むように仕切板14が配置されている。また、貯蔵槽4
の底部6の室4aに対応した部位には、ノズル15が配置さ
れている。上記側壁部3に設けた取水口13と底部6に設
けたノズル15とは、配管16により接続されている。この
配管16には、取水口13の方から順にフィルタ17、水吹き
込み用ポンプ18、逆止弁19が配置されている。
On the other hand, a water intake 13 is provided above the side wall 3 of the ice heat storage tank 1, and a partition plate 14 is arranged inside the ice heat storage tank 1 so as to surround the water intake 13. Also, storage tank 4
A nozzle 15 is arranged at a portion of the bottom portion 6 corresponding to the chamber 4a. The water intake 13 provided on the side wall portion 3 and the nozzle 15 provided on the bottom portion 6 are connected by a pipe 16. A filter 17, a water blowing pump 18, and a check valve 19 are arranged in this pipe 16 in this order from the water intake 13.

なお、第1図で符号20は、生成された氷塊である。 It should be noted that reference numeral 20 in FIG. 1 is a generated ice block.

つぎに作用を説明する。 Next, the operation will be described.

まず、貯蔵槽4にフロリナート液12を貯溜し、氷蓄熱
槽1に水21を所定の液面まで満たす。貯蔵槽4のフロリ
ナート液12と氷蓄熱槽1の水21は不溶であるから、両液
は完全に分離し、水21とフロリナート液12との界面22が
常に存在する。
First, the Fluorinert liquid 12 is stored in the storage tank 4, and the ice heat storage tank 1 is filled with water 21 up to a predetermined liquid level. Since the Fluorinert liquid 12 in the storage tank 4 and the water 21 in the ice heat storage tank 1 are insoluble, both liquids are completely separated, and the interface 22 between the water 21 and the Fluorinert liquid 12 is always present.

ついで、冷凍機11を作動させて、貯蔵槽4に貯溜した
フロリナート液12を熱交換器9により、フロリナート液
5を0℃以下に維持する。
Then, the refrigerator 11 is operated to keep the Fluorinert solution 5 stored in the storage tank 4 at 0 ° C. or lower by the heat exchanger 9.

つぎに、配管16に設けた水吹き込み用ポンプ18を作動
させて、氷蓄熱槽1内の水を、側壁3に設けた取水口13
から取水し、その水に含まれる異物をフィルタ17に補集
した後、逆止弁10を通して水吹き込みノズル15よりフロ
リナート液12の中に吹き込む。フロリナート液12に吹き
込まれた水4は、フロリナート液5の中で水の噴霧水塊
(粒)23となって、吹き込み圧力と浮力によって、フロ
リナート液12と熱交換され、冷却されながら、矢印Aで
示すように上部へ上昇して行き、水21とフロリナート液
12との界面22を越えて、上部の水中を上昇して行く。こ
の時、フロリナート液12による冷却で氷となったもの
は、更に水中を上昇し、液面付近(既に氷が存在する場
合は氷の底面)まで上昇し、氷塊(粒)が蓄積される。
Next, the water blowing pump 18 provided in the pipe 16 is operated to remove the water in the ice heat storage tank 1 from the water intake 13 provided in the side wall 3.
Water is taken from the filter, foreign matter contained in the water is collected by the filter 17, and then blown into the Fluorinert liquid 12 from the water blowing nozzle 15 through the check valve 10. The water 4 blown into the Fluorinert liquid 12 becomes sprayed water lumps (grains) 23 of water in the Fluorinert liquid 5, and is exchanged with the Fluorinert liquid 12 by the injection pressure and buoyancy, and while being cooled, the arrow A Ascend to the top as shown by, and water 21 and Fluorinert liquid
It goes up through the interface 22 with 12 and rises in the upper water. At this time, what becomes ice by cooling with the Fluorinert liquid 12 further rises in the water, rises to near the liquid surface (bottom surface of ice when ice already exists), and ice blocks (grains) are accumulated.

一方、フロリナート貯蔵槽4内では、フロリナート液
12中で噴霧水塊又は氷塊(粒)が上昇するのに伴ない、
フロリナート液12は、第2図に示すように、加熱されな
がら上昇流を生じるが、フロリナート液12は、フロリナ
ート液整流板13を設けたことにより、第2図で符号Bで
示すように、水を吹き込む部分では、フロリナート液12
は上昇し、冷凍機11の熱交換器9を配する部分では下降
流が生じ、フロリナート液12の循環流が生ずる。この循
環流の発生のため、フロリナート液12と熱交換器9内を
流れる冷媒とは良好な熱交換が維持され、常時0℃以下
のフロリナート液12とすることができる。
On the other hand, in the Fluorinert storage tank 4, the Fluorinert solution is
As the sprayed water mass or ice mass (grain) rises in 12
As shown in FIG. 2, the Fluorinert liquid 12 produces an ascending flow while being heated. However, the Fluorinert liquid 12 is provided with the Fluorinert liquid rectifying plate 13, so Fluorinate liquid 12
Rises, and a descending flow occurs in the portion of the refrigerator 11 where the heat exchanger 9 is arranged, and a circulating flow of the Fluorinert liquid 12 occurs. Due to the generation of this circulating flow, good heat exchange between the Fluorinert liquid 12 and the refrigerant flowing in the heat exchanger 9 is maintained, and the Fluorinert liquid 12 at 0 ° C. or less can be always obtained.

また、噴霧水塊または氷塊の上昇流に伴ない、フロリ
ナート液12が随伴して上昇し、フロリナート貯蔵槽4か
ら飛び出してしまう場合、上部の氷蓄熱槽1内の水の対
流がほとんどないため、随伴フロリナート液12は降下
し、底部傾斜板2に沿って流下することにより再びフロ
リナート貯蔵槽4に戻される。
In addition, when the Fluorinert liquid 12 rises together with the upward flow of the spray water mass or the ice lump and jumps out from the Fluorinert storage tank 4, there is almost no convection of water in the upper ice heat storage tank 1, The associated Fluorinert liquid 12 descends and flows back along the bottom inclined plate 2 to be returned to the Fluorinert storage tank 4 again.

しかして、冷却媒体のフロリナート液12中で、水が連
続的に氷として析出し、水の上部に氷として貯えるの
で、氷の充填率は高く、また、粘度が低く、表面張力の
小さいフロリナート液12と水塊とが直接接触で熱交換す
るので、フロリナート液12と水との熱交換率は非常に良
好である。また、冷凍機11の熱交換器9とフロリナート
液12との熱交換は、フロリナート液12が、水を底部から
吹き込むことによる循環流があるため、その熱交換率も
良好である。そのため、冷凍機11の成績係数も割合高く
なる。そして、フロリナート液12の中に水を吹き込ん
で、水塊の状態で冷却されるので、生成される氷の大き
さは小さく、氷粒となって、貯えるので、解氷性能は良
好である。
Then, in the Fluorinert solution 12 of the cooling medium, water is continuously precipitated as ice and stored as ice in the upper part of the water, so the filling rate of ice is high, the viscosity is low, and the Fluorinert solution with a small surface tension is used. Since 12 and the water mass exchange heat directly, the heat exchange rate between the Fluorinert liquid 12 and water is very good. Further, the heat exchange between the heat exchanger 9 of the refrigerator 11 and the Fluorinert liquid 12 has a good heat exchange rate because the Fluorinert liquid 12 has a circulating flow by blowing water from the bottom. Therefore, the coefficient of performance of the refrigerator 11 is also relatively high. Then, since water is blown into the Fluorinert liquid 12 to be cooled in the state of a water mass, the size of the generated ice is small, and the ice particles are stored as ice particles, so that the deicing performance is good.

しかも、氷蓄熱槽1の下部に冷却・氷の析出部である
フロリナート貯蔵槽4を設け、水を吹き込むためのポン
プ18と逆止弁19とそれらを連通する配管16を設置するだ
けなので、全体のシステムも簡素で、大型化することも
容易である。また、フロリナート液12は、沸点も50℃以
上と高く、かつ水面に浮いてくることはないので、フロ
リナート液12が使用とともに少なくなってしまうことは
ほとんどなく、しかも、氷蓄熱槽1の底部に底部傾斜板
2があるので、フロリナート液は貯蔵槽4に戻り、ま
た、フロリナート液12は、Cl原子を含まないのでオゾン
層を破壊することもなく、沸点も高いので(50℃以上)
で大気に拡散する量もわずかで、不活性なので、環境へ
の悪影響もない。また、水槽は大気開放型で簡易な容器
で十分である。
Moreover, since the Fluorinert storage tank 4 which is a cooling / ice precipitation portion is provided below the ice heat storage tank 1, and only the pump 18 for blowing in water, the check valve 19 and the pipe 16 for connecting them are installed. The system is simple and can be easily enlarged. In addition, since the Fluorinert liquid 12 has a high boiling point of 50 ° C. or higher and does not float on the water surface, the Fluorinert liquid 12 rarely decreases with use, and moreover, it does not remain on the bottom of the ice heat storage tank 1. Since there is the bottom inclined plate 2, the Fluorinert liquid returns to the storage tank 4, and since the Fluorinert liquid 12 does not contain Cl atoms, it does not destroy the ozone layer and has a high boiling point (50 ° C or higher).
The amount that diffuses into the atmosphere is small, and since it is inert, there is no adverse effect on the environment. The water tank is open to the atmosphere and a simple container is sufficient.

第3図は本発明の他の実施例を示す。この実施例で
は、フロリナート貯蔵槽4の側壁の内側付近に冷凍機11
の熱交換器9aを配し、フロリナート貯蔵槽4の底部の中
心に水吹き込みノズル15を設置している。この構成にし
ても、中心では、水の吹き込み圧力と浮力により上昇す
る噴霧水塊または氷塊(粒)がフロリナート液12に上昇
流を生じさせ、側壁近傍に配置してある冷凍機11の熱交
換器9aが下降流を生じさせるので、フロリナート液12の
循環流が生ずる。
FIG. 3 shows another embodiment of the present invention. In this embodiment, the refrigerator 11 is provided near the inside of the side wall of the Fluorinert storage tank 4.
Of the heat exchanger 9a, and a water injection nozzle 15 is installed at the center of the bottom of the Fluorinert storage tank 4. Even with this configuration, in the center, the sprayed water mass or ice mass (grains) that rises due to the blowing pressure and buoyancy of water causes an upward flow in the Fluorinert liquid 12, and the heat exchange of the refrigerator 11 arranged near the side wall. Since the vessel 9a produces a downward flow, a circulating flow of the Fluorinert liquid 12 is produced.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、氷蓄熱槽の底部に
貯溜部を設け、この貯溜部に、比重量が水の1.5倍以上
で凝固点がマイナス50℃以下の水に不溶のフロリナート
液を貯溜し、このフロリナート液を冷凍サイクルにより
0℃以下の温度を保つようにするとともに、氷蓄熱槽と
貯溜部を配管で結び、氷蓄熱槽の水を貯溜部のフロリナ
ート液に噴霧して氷を析出するようにしたので、フロリ
ナート液と水塊と直接接触熱交換し、フロリナート液の
循環流による熱交換器との熱交換効率が向上し、冷凍機
の成績係数が高くなり、また上部の氷蓄槽には水と氷し
か存在しないので、氷の充填率が高く、しかも、水塊
(粒)をフロリナート液で冷却するので、できる氷の大
きさは小さく、解氷性能は良好であり、また、システム
は簡易で、大型化も容易である。
As described above, according to the present invention, a storage part is provided at the bottom of the ice heat storage tank, and in this storage part, a Fluorinert liquid insoluble in water having a specific weight of 1.5 times or more and a freezing point of -50 ° C or less is added. It is stored and the temperature of this Fluorinert is kept at 0 ° C or lower by a refrigeration cycle. Also, the ice heat storage tank and the storage section are connected by piping, and the water in the ice storage tank is sprayed onto the Fluorinet solution in the storage section to form ice. Since it is deposited, it directly exchanges heat with the fluorinate liquid and the water mass, improves the heat exchange efficiency with the heat exchanger due to the circulating flow of the fluorinate liquid, increases the coefficient of performance of the refrigerator, and Since there is only water and ice in the storage tank, the filling rate of ice is high, and since the water mass (grains) is cooled by the Fluorinert liquid, the size of the ice that can be formed is small and the deicing performance is good, In addition, the system is simple and can be easily enlarged. A.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による氷蓄熱装置の全体構成図、第2図
は冷却・氷析出部であるフロリナート貯蔵槽の詳細図、
第3図はフロリナート貯蔵槽の他の実施例を示す図であ
る。 1……氷蓄熱槽、2……底部、3……側壁部、4……貯
蔵槽、5……整流板、9……熱交換器、12……フロリナ
ート液、13……取水口、15……ノズル、16……配管、20
……氷、22……界面。
FIG. 1 is an overall configuration diagram of an ice heat storage device according to the present invention, FIG. 2 is a detailed diagram of a Fluorinert storage tank which is a cooling / ice depositing section,
FIG. 3 is a view showing another embodiment of the Fluorinert storage tank. 1 ... Ice heat storage tank, 2 ... Bottom part, 3 ... Side wall part, 4 ... Storage tank, 5 ... Rectifier plate, 9 ... Heat exchanger, 12 ... Fluorinert liquid, 13 ... Intake port, 15 ...... Nozzle, 16 ...... Piping, 20
...... Ice, 22 ...... interface.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】氷蓄熱槽の底部に貯溜部を設け、この貯溜
部に、比重量が水の1.5倍以上で凝固点がマイナス50℃
以下の水に不溶のフロリナート液を貯溜し、このフロリ
ナート液を冷凍サイクルにより0℃以下の温度を保つよ
うにするとともに、氷蓄熱槽と貯溜部を配管で結び、氷
蓄熱槽の水を貯溜部のフロリナート液に噴霧して氷を析
出することを特徴とする氷蓄熱装置。
1. A storage unit is provided at the bottom of an ice heat storage tank, and the storage unit has a specific weight of 1.5 times that of water or more and a freezing point of -50.degree.
The following water-insoluble Fluorinert liquid is stored, and this Fluorinert liquid is kept at a temperature of 0 ° C or lower by a refrigeration cycle, and the ice heat storage tank and the storage unit are connected by pipes, and the water in the ice storage tank is stored in the storage unit. An ice heat storage device characterized by spraying the Fluorinert liquid of to deposit ice.
【請求項2】貯溜部が液貯蔵槽であり、この液貯蔵槽の
底部に配管を連結し、この配管に逆止弁を設けたことを
特徴とする請求項1記載の氷蓄熱装置。
2. The ice heat storage device according to claim 1, wherein the reservoir is a liquid storage tank, a pipe is connected to the bottom of the liquid storage tank, and a check valve is provided in the pipe.
【請求項3】フロリナート液貯蔵槽内にフロリナート液
の循環流を生じさせるためのフロリナート液整流板を設
けたことを特徴とする請求項2記載の氷蓄熱装置。
3. The ice heat storage device according to claim 2, further comprising a fluorinate liquid straightening plate for generating a circulating flow of the fluorinate liquid in the fluorinate liquid storage tank.
【請求項4】氷蓄熱槽の底部に傾斜板を設け、分散した
フロリナート液を液貯蔵槽に回収することを特徴とする
請求項2記載の氷蓄熱装置。
4. The ice heat storage device according to claim 2, wherein an inclined plate is provided at the bottom of the ice heat storage tank to collect the dispersed Fluorinert liquid in the liquid storage tank.
JP2301310A 1990-11-07 1990-11-07 Ice heat storage device Expired - Lifetime JPH0827039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301310A JPH0827039B2 (en) 1990-11-07 1990-11-07 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301310A JPH0827039B2 (en) 1990-11-07 1990-11-07 Ice heat storage device

Publications (2)

Publication Number Publication Date
JPH04174229A JPH04174229A (en) 1992-06-22
JPH0827039B2 true JPH0827039B2 (en) 1996-03-21

Family

ID=17895311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301310A Expired - Lifetime JPH0827039B2 (en) 1990-11-07 1990-11-07 Ice heat storage device

Country Status (1)

Country Link
JP (1) JPH0827039B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512852B2 (en) * 1992-07-16 1996-07-03 鹿島建設株式会社 Refrigerant for ice making
JP2696046B2 (en) * 1992-09-16 1998-01-14 株式会社東芝 Latent heat storage device
JP5285476B2 (en) * 2009-02-24 2013-09-11 伊藤組土建株式会社 Snow and ice cooling system

Also Published As

Publication number Publication date
JPH04174229A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
US4403645A (en) Compact storage of seat and coolness by phase change materials while preventing stratification
US4254635A (en) Installation for the storage of continuously generated coldness and for the intermittent emission of at least a portion of the stored cold
JPH0120334B2 (en)
US4928493A (en) Ice building, chilled water system and method
US3280586A (en) Portable cooler including holdover means
JPH0827039B2 (en) Ice heat storage device
JPH04106380A (en) Ice making device
JP2892202B2 (en) Ice storage device
JPH04165277A (en) Ice making machinery for accumulating heat
JPS63263367A (en) Ice making method for accumulating heat
JPH0359335A (en) Thermal accumulation system
JPH04313658A (en) Ice regenerator
JPH0794938B2 (en) Ice storage method and equipment for heat storage
JPH0621752B2 (en) Ice storage device for heat storage
JP2953827B2 (en) Ice storage device
JP2793765B2 (en) Internal melting type ice thermal storage device
Paliwoda Calculation of basic parameters for gravity-fed evaporators for refrigeration and heat pump systems
JP2548637B2 (en) Operating method of supercooled water production equipment
JPH04251139A (en) Ice heat accumulation device
JPH051834A (en) Ice cold-heat storage method for air-conditioning
JPH0567867B2 (en)
JPH03113253A (en) Ice heat storage device
JPH043867A (en) Ice making device
JPH0147696B2 (en)
JPH0781729B2 (en) Cooling or cooling / heating device and ice making device