JPH0826713A - Activated carbon with co2-immobilized microalgae as raw material and its production - Google Patents

Activated carbon with co2-immobilized microalgae as raw material and its production

Info

Publication number
JPH0826713A
JPH0826713A JP6180835A JP18083594A JPH0826713A JP H0826713 A JPH0826713 A JP H0826713A JP 6180835 A JP6180835 A JP 6180835A JP 18083594 A JP18083594 A JP 18083594A JP H0826713 A JPH0826713 A JP H0826713A
Authority
JP
Japan
Prior art keywords
activated carbon
microalgae
immobilized
immobilized microalgae
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6180835A
Other languages
Japanese (ja)
Inventor
Kenji Yamamura
健治 山村
Kazuyoshi Takahashi
和義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Sumitomo Heavy Industries Ltd
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Sumitomo Heavy Industries Ltd filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP6180835A priority Critical patent/JPH0826713A/en
Publication of JPH0826713A publication Critical patent/JPH0826713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize the carbon of microalgae by carbonizing and activating the CO2-immobilized microalgae fungus body. CONSTITUTION:A CO2-contg. gas and a light are supplied to a photoreactor 1, and the obtained CO2-immobilized microalgae fungus body is introduced into a separator 2 to obtain a CO2-immobilized microalgae fungus body contg. 80-95% water. The fungus body is dehydrated to 60-80% water content by a dehydrator 3, supplied to a carbonization furnace 4, heated to 500-800 deg.C and carbonized. A caking agent and water, pitch, solvent, surfactant, etc., as required, are added to the carbonized material and kneaded by a kneader 6, the kneaded material is granulated by a forming machine 7, and then the granule is activated in an activation furnace 8 at 800-1100 deg.C in an inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地球温暖化の防止が期
待されるCO2 固定化微細藻類を大量に利用可能な活性
炭及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to activated carbon capable of utilizing a large amount of CO 2 -immobilized microalgae, which is expected to prevent global warming, and a method for producing the same.

【0002】[0002]

【従来の技術】発電所及び工場のボイラー、製鉄所の焼
結炉、ごみ焼却炉、汚泥焼却炉等から多量に排出される
ガスには約5〜15%の高濃度のCO2 が含まれ、それ
が大気中に放出され、大気中のCO2 濃度が年々増加し
ている。CO2 は地球温暖化を引き起こす一物質と考え
られ、大気中へ放出されるCO2 の濃度を低減すること
が要求されている。
2. Description of the Related Art A large amount of gas discharged from boilers of power plants and factories, sintering furnaces of steel mills, refuse incinerators, sludge incinerators, etc., contains high concentration CO 2 of about 5 to 15%. , It is released into the atmosphere, and the concentration of CO 2 in the atmosphere is increasing year by year. CO 2 is considered to be a substance that causes global warming, and it is required to reduce the concentration of CO 2 released into the atmosphere.

【0003】上記CO2 発生源に対するCO2 の回収方
法として、例えば、アミン系吸収剤で捕集する方法、吸
着剤でCO2 を吸着する方法等がある。これらのCO2
の回収方法で回収したCO2 の処分方法として、例え
ば、CO2 を水素で還元してメタン等の炭化水素に還元
する方法、CO2 を深海に閉じ込めて処理する方法等が
提案されているが、今のところ、適切な処分方法がない
状況である。
As a method of recovering CO 2 from the CO 2 generation source, there are, for example, a method of collecting with an amine-based absorbent and a method of adsorbing CO 2 with an adsorbent. These CO 2
As a method of disposing CO 2 recovered by the recovery method described above, for example, a method of reducing CO 2 with hydrogen to reduce it to a hydrocarbon such as methane, a method of confining CO 2 in the deep sea and treating it have been proposed. At the moment, there is no suitable disposal method.

【0004】これらのCO2 の回収・処分方法に対し
て、太陽光等の光を利用した藻類によるCO2 の固定化
方法がある。この方法は太陽光をエネルギー源として利
用できるため、省エネルギー的な方法である。しかしな
がら、この方法でCO2 が固定されることにより藻類が
大量に増殖することになり、その藻類を処理する必要が
生ずる。例えば、この藻類からアミノ酸、蛋白、脂質等
の付加価値の高い有用物質を抽出する利用方法が考えら
れているが、多量の藻類を処理して前記物質が多量に得
られたとしても前記物質の大量需要を期待することは困
難である。この方法とは別の藻類の処分方法として、多
量の藻類を燃料として利用する方法等が提案されている
が、この方法では藻類の燃焼エネルギー(カロリー)が
低いという問題に加えて燃焼によって再びCO2 が発生
するという問題がある。
[0004] with respect to collection and disposal of these CO 2, there is a method of immobilizing CO 2 by algae using light such as sunlight. Since this method can use sunlight as an energy source, it is an energy-saving method. However, the fixation of CO 2 by this method causes a large amount of algae to grow, which necessitates treatment of the algae. For example, a method of utilizing useful substances having high added value such as amino acids, proteins, and lipids from this algae has been considered, but even if a large amount of the substance is obtained by treating a large amount of the algae, It is difficult to expect large demand. As a method of disposing algae different from this method, a method of using a large amount of algae as a fuel has been proposed. However, in this method, in addition to the problem that the combustion energy (calories) of algae is low, CO There is a problem that 2 occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明はこれらの問題
を解決するためになされたもので、CO2 固定化微細藻
類を大量に増殖させるために多量に発生する藻類菌体
を、現在、水処理、ガス処理等の吸着剤及び各種反応の
触媒等として知られている活性炭の製造の原料に用い
て、CO2 固定化微細藻類菌体由来の活性炭を提供し、
且つその製造方法を提供することを目的とする。
The present invention has been made in order to solve these problems, and it is currently proposed that a large amount of algal cells, which are generated in large amounts in order to grow large amounts of CO 2 -immobilized microalgae, be present in water. process using a raw material for the production of activated carbon known as a catalyst or the like of the adsorbent and the various reaction gases treatment or the like to provide an activated carbon from CO 2 immobilized microalgae cells,
Moreover, it aims at providing the manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記した問題点を解決す
るために、本発明の活性炭は、CO2 固定化微細藻類菌
体を炭素源として利用したことを特徴とする。
In order to solve the above-mentioned problems, the activated carbon of the present invention is characterized by using CO 2 -immobilized microalgae as a carbon source.

【0007】本発明の活性炭の製造方法は、CO2 固定
化微細藻類菌体を炭化及び賦活して活性炭に変換するこ
とを特徴とする。前記炭化は、CO2 固定化微細藻類菌
体を約500〜800℃で処理することが好ましい。ま
た、前記賦活は、得られた炭化物を水蒸気、CO2 、O
2 等の賦活性ガス雰囲気のもとに約800〜1100℃
で処理して活性炭に変換することが好ましい。また、前
記炭化及び賦活は、CO2 固定化微細藻類を水蒸気、C
2 、O2 等の存在下で炭化及び賦活して活性炭に変換
することもできる。
[0007] manufacturing method of the activated carbon of the present invention, the CO 2 immobilized microalgae cells by carbonizing and activating and converting the activated carbon. The carbonization is preferably carried out by treating CO 2 -immobilized microalgal cells at about 500 to 800 ° C. Further, the activation is carried out by using the obtained carbide as steam, CO 2 , O.
Approximately 800-1100 ℃ under an activating gas atmosphere such as 2.
Is preferably converted into activated carbon by treatment with. In addition, the carbonization and activation are performed by adding CO 2 -immobilized microalgae to steam, C
It is also possible to convert into activated carbon by carbonizing and activating in the presence of O 2 , O 2 and the like.

【0008】以下、本発明の活性炭の製造方法の一例を
図1のフローチャートに基づいて詳述する。1はC
2 、光の存在下で、微細藻類によりCO2 を固定する
ための光リアクター、2は前記光リアクター1で増殖し
た微細藻類菌体を分離するための、スクリーンフィルタ
ー、膜分離装置、遠心分離機等の分離器、3はフィルタ
ープレス、遠心分離機等の脱水機、4は脱水された微細
藻類を乾燥し、炭化するための炭化炉、5は炭化物を粉
砕するための粉砕器、6は粉砕された炭化物と他の添加
物とを混合するための混練機、7は混練物を粒状物等に
成型するための成型機、8は成型された炭化物を賦活す
るための賦活炉である。
An example of the method for producing activated carbon of the present invention will be described in detail below with reference to the flow chart of FIG. 1 is C
O 2, in the presence of light, the light reactors for fixing CO 2 by microalgae, for separating the microalgae cells grown in the light reactor 1 is 2, screen filter, membrane separator, centrifuge Such as a separator, 3 is a filter press, a dehydrator such as a centrifuge, 4 is a carbonization furnace for drying and carbonizing dehydrated microalgae, 5 is a crusher for crushing carbides, and 6 is A kneading machine for mixing the crushed carbide with other additives, 7 a molding machine for molding the kneaded material into granular materials, and 8 an activation furnace for activating the molded carbide.

【0009】図1の光リアクター1においてCO2 、栄
養源及び光が供給されて微細藻類が増殖する。光リアク
ター1におけるCO2 源としては、発電所及び工場のボ
イラー、製鉄所の焼結炉、ごみ焼却炉、汚泥焼却炉等か
ら多量に排出されるCO2 含有ガスを用いることがで
き、或いは前記CO2 含有ガスを予めアルカリ性水溶液
に吸収させて得られる重炭酸ソーダ等を使用してもよ
い。次いで増殖した微細藻類は分離器2へ導入されて、
約80〜95%の水分を含む微細藻類菌体が分離され
る。次いで、フィルタープレス等の脱水機3で更に水分
を60〜80%程度まで低減し、炭化炉4へ供給する。
なお、脱水機3を経ずに直接、炭化炉4へ供給してもよ
いし、また、脱水機3の後に乾燥機を設置して水分を充
分に除いた後、炭化炉4へ供給しても良い。炭化炉4で
は微細藻類菌体は約500〜800℃に加熱されて分解
し、炭化される。
In the photoreactor 1 of FIG. 1, CO 2 , a nutrient source and light are supplied to grow microalgae. As a CO 2 source in the photoreactor 1, a CO 2 -containing gas that is discharged in large quantities from a boiler at a power plant and a factory, a sintering furnace at a steel mill, a refuse incinerator, a sludge incinerator, or the like can be used. Sodium bicarbonate or the like obtained by previously absorbing a CO 2 -containing gas in an alkaline aqueous solution may be used. Then, the propagated microalgae are introduced into the separator 2,
Microalgal cells containing about 80-95% water are isolated. Next, the water content is further reduced to about 60 to 80% by a dehydrator 3 such as a filter press, and the water is supplied to the carbonization furnace 4.
It should be noted that it may be directly supplied to the carbonization furnace 4 without passing through the dehydrator 3, or a dryer may be installed after the dehydrator 3 to sufficiently remove water and then supplied to the carbonization furnace 4. Is also good. In the carbonization furnace 4, the microalgal cells are heated to about 500 to 800 ° C., decomposed and carbonized.

【0010】得られた炭化物にコールタールピッチ、石
油ピッチ、パルプ廃液、高分子化合物等の粘結剤、更
に、必要に応じて少量の水及びピッチと炭化物のなじみ
をよくするための溶剤や界面活性剤、押し出し成型をス
ムーズにするための潤滑剤等を加えて粉砕器5で混合粉
砕する。その後、混練機6で充分に混練した後、成型機
7で粒状に成型し、次いで賦活炉8で水蒸気、CO2
2 等の賦活ガス雰囲気下で約800〜1100℃の温
度で賦活し、粒状活性炭を得る。
To the obtained carbide, a binder such as coal tar pitch, petroleum pitch, pulp waste liquor, polymer compound, etc., and, if necessary, a small amount of water and a solvent or an interface for improving the familiarity of the pitch with the carbide. An activator, a lubricant for smoothing extrusion molding, etc. are added and mixed and pulverized by the pulverizer 5. Then, after sufficiently kneading with the kneading machine 6, the particles are molded with the molding machine 7 and then steam, CO 2 ,
Activated at a temperature of about 800 to 1100 ° C. in an atmosphere of an activated gas such as O 2 to obtain granular activated carbon.

【0011】この粒状活性炭を必要に応じて破砕すれば
破砕活性炭が得られる。上記では粒状活性炭及び破砕活
性炭を製造する方法を説明したが、粉状活性炭を製造す
ることができることは言うまでもない。この場合には炭
化炉4で得られる炭化物を造粒することなく直接、賦活
炉8へ供給して製造することができる。尚、炭化と賦活
を一つの炉で同時に行なってもよい。
Crushed activated carbon can be obtained by crushing the granular activated carbon as required. Although the method for producing granular activated carbon and crushed activated carbon has been described above, it goes without saying that powdered activated carbon can be produced. In this case, the carbide obtained in the carbonization furnace 4 can be directly supplied to the activation furnace 8 for production without being granulated. Incidentally, carbonization and activation may be carried out simultaneously in one furnace.

【0012】本方法により良質の活性炭を得ることがで
きるが、さらに触媒性能を向上或いは付与させるため
に、炭化前又は炭化後の材料に白金、パラジウム、ニッ
ケル、銅、鉄、マンガン、コバルト、バナジウム等の触
媒性化合物を添加して活性炭を製造することもでき、又
は製造した活性炭に上記の触媒性化合物の水溶液等を含
浸させ、その後、乾燥あるいは焼成して金属化合物を担
持させた活性炭を得ることもできる。
Although good quality activated carbon can be obtained by this method, platinum, palladium, nickel, copper, iron, manganese, cobalt, vanadium are used as materials before or after carbonization in order to further improve or impart catalytic performance. Activated carbon can also be produced by adding a catalytic compound such as, or the produced activated carbon is impregnated with an aqueous solution of the above-mentioned catalytic compound or the like, and then dried or calcined to obtain an activated carbon carrying a metal compound. You can also

【0013】本発明の活性炭の製造に使用される炭化
炉、賦活炉としては、通常の活性炭の製造に利用される
内熱式又は外熱式のキルン、外熱式直立炉、流動床炉、
移動床炉等を適宜、選択して使用することができる。
尚、本発明で活性炭の原料となるCO2 固定化微細藻類
としては、クロレラ等の緑藻類、スピルリナ等の藍藻類
など光合成によりCO2 を資化する多くの微細藻類が好
ましく適用できる。
As the carbonization furnace and the activation furnace used for producing the activated carbon of the present invention, there are an internal heating type or external heating type kiln, an external heating type upright furnace, a fluidized bed furnace, which are used for the production of ordinary activated carbon.
A moving bed furnace or the like can be appropriately selected and used.
As the CO 2 -immobilized microalgae used as the raw material of the activated carbon in the present invention, many microalgae that utilize CO 2 by photosynthesis such as green algae such as chlorella and cyanobacteria such as spirulina can be preferably applied.

【0014】本発明は、CO2 固定化微細藻類を原料と
して活性炭とすることができ、またその廃活性炭は水蒸
気等でガス化して水素、一酸化炭素等のガス燃料あるい
は化学原料として再利用するか、直接固体燃料として再
利用することができる。
In the present invention, CO 2 -immobilized microalgae can be used as a raw material for activated carbon, and the waste activated carbon is gasified with steam or the like and reused as a gas fuel such as hydrogen or carbon monoxide or a chemical raw material. Or it can be directly reused as solid fuel.

【0015】[0015]

【実施例】【Example】

〔実施例1〕50リットルの光リアクターでクロレラを
培養し、培養液をスクリーンフィルターで濾過して水分
約90%を含むクロレラ菌体1000gを調製した。こ
の濾過物をフィルタープレスで圧縮して脱水し、水分7
0%のクロレラ菌体を得た。この脱水クロレラ菌体を炭
化炉としての電気炉にいれ、N2 雰囲気で700℃で2
時間加熱して炭化物30gを得た。得られた炭化物を水
蒸気35%を含むN2ガス雰囲気で950℃、1.5時
間賦活して賦活物を得、それを粉砕して粉末活性炭14
gを得た。得られた粉末活性炭の比表面積は1100m
2/g(活性炭)、ヨウ素吸着能は1050mg/g(活
性炭)、メチレンブルー脱色力は140mリットル/g
(活性炭)であった。通常、一般の活性炭では比表面積
は900〜1200m2/g(活性炭)、ヨウ素吸着能は
900〜1150mg/g(活性炭)、メチレンブルー
脱色力は100〜200mリットル/g(活性炭)であ
り、本発明による活性炭は通常の活性炭と比較して遜色
のないものであった。尚、これらの物性の評価方法は以
下のとおりである。
[Example 1] Chlorella was cultured in a 50-liter photoreactor, and the culture solution was filtered through a screen filter to prepare 1000 g of Chlorella cells containing about 90% water. This filtered material is compressed with a filter press to be dehydrated, and the water content 7
0% of Chlorella cells were obtained. The dehydrated Chlorella cells were placed in an electric furnace as a carbonization furnace and kept at 700 ° C. for 2 hours in N 2 atmosphere.
After heating for 30 hours, 30 g of carbide was obtained. The obtained carbide is activated in an N 2 gas atmosphere containing 35% of steam at 950 ° C. for 1.5 hours to obtain an activated substance, which is crushed to obtain powdered activated carbon 14
g was obtained. The specific surface area of the obtained powdered activated carbon is 1100 m.
2 / g (activated carbon), iodine adsorption capacity is 1050 mg / g (activated carbon), methylene blue decolorizing power is 140 ml / g
(Activated carbon). Generally, in general activated carbon, the specific surface area is 900 to 1200 m 2 / g (activated carbon), the iodine adsorption capacity is 900 to 1150 mg / g (activated carbon), and the methylene blue decolorizing power is 100 to 200 ml / g (activated carbon). The activated carbon according to No. 1 was comparable to ordinary activated carbon. The evaluation methods of these physical properties are as follows.

【0016】 比表面積 :N2 ガスを用いてBET法で測定した。Specific surface area: Measured by BET method using N 2 gas.

【0017】ヨウ素吸着能:JIS K−1474に従
って測定した。
Iodine adsorption capacity: Measured according to JIS K-1474.

【0018】メチレンブルー脱色力:JIS K−14
70に従って測定した。
Decolorizing power of methylene blue: JIS K-14
70.

【0019】〔実施例2〕前記実施例1と同様の方法で
得られた炭化物30gに炭化物に対して20%のコール
タールピッチと少量の水を加えて混合粉砕し、更に混練
した後、押し出し成型機で径4mm、長さ10mmに成
型した。この成型物を950℃で2.5時間、水蒸気3
5%を含むN2 ガス雰囲気で賦活して径が約3.2mm
の粒状活性炭を得た。得られた活性炭の比表面積は10
50m2/g(活性炭)、ヨウ素吸着能は1000mg/
g(活性炭)、メチレンブルー脱色力は120mリット
ル/g(活性炭)であり、通常の活性炭と比較して遜色
のないものであった。
Example 2 To 30 g of the carbide obtained by the same method as in Example 1 was added 20% of coal tar pitch and a small amount of water, mixed and pulverized, further kneaded, and then extruded. It was molded into a diameter of 4 mm and a length of 10 mm with a molding machine. This molded product was heated at 950 ° C. for 2.5 hours with water vapor 3
Activated in N 2 gas atmosphere containing 5% and the diameter is about 3.2 mm
No granular activated carbon was obtained. The specific surface area of the obtained activated carbon is 10
50m 2 / g (activated carbon), iodine adsorption capacity is 1000mg /
The decolorizing power of g (activated carbon) and methylene blue was 120 ml / g (activated carbon), which was comparable to that of ordinary activated carbon.

【0020】以上の結果が示すように、本発明により微
細藻類から性能のよい活性炭が得られたことが実証され
た。
As shown by the above results, it was demonstrated that the present invention yielded activated carbon with good performance from microalgae.

【0021】[0021]

【発明の効果】本発明によれば、CO2 固定化微細藻類
を原料として活性炭を製造する方法を提供することがで
き、且つその微細藻類の約40%前後の成分である炭素
を活性炭に変換して有効利用を図ることができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a method for producing activated carbon from CO 2 -immobilized microalgae as raw material, and to convert carbon, which is a component of about 40% of the microalgae, to activated carbon. Can be used effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の活性炭の製造方法の一例を示すフロー
チャートである。
FIG. 1 is a flowchart showing an example of a method for producing activated carbon according to the present invention.

【符号の説明】[Explanation of symbols]

1 光リアクター 2 分離器 3 脱水機 4 炭化炉 5 粉砕器 6 混練機 7 成型機 8 賦活炉 1 Photoreactor 2 Separator 3 Dewatering machine 4 Carbonization furnace 5 Crusher 6 Kneader 7 Molding machine 8 Activation furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 和義 東京都港区西新橋2−8−11 第7東洋海 事ビル8階 財団法人 地球環境産業技術 研究機構内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuyoshi Takahashi 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8F Foundation for Global Environmental Industrial Technology Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CO2 固定化微細藻類菌体を炭素源とし
て利用したことを特徴とする活性炭。
1. Activated carbon characterized by using CO 2 -immobilized microalgal cells as a carbon source.
【請求項2】 CO2 固定化微細藻類菌体を炭化及び賦
活して活性炭に変換することを特徴とする活性炭の製造
方法。
2. A method for producing activated carbon, which comprises carbonizing and activating CO 2 -immobilized microalgae to convert them into activated carbon.
【請求項3】 CO2 固定化微細藻類菌体を約500〜
800℃で炭化処理し、得られた炭化物を水蒸気、CO
2 、O2 等の賦活性ガス雰囲気のもとに約800〜11
00℃で賦活して活性炭に変換することを特徴とする活
性炭の製造方法。
3. A CO 2 -immobilized microalgal cell is about 500-.
Carbonized at 800 ° C., and the obtained carbide is steamed, CO
Approximately 800-11 under an atmosphere of activating gas such as 2 , O 2
A method for producing activated carbon, which comprises activating the activated carbon at 00 ° C to convert the activated carbon.
【請求項4】 CO2 固定化微細藻類菌体を水蒸気、C
2 、O2 等の存在下で炭化及び賦活して活性炭に変換
することを特徴とする活性炭の製造方法。
4. CO 2 -immobilized microalgal cells are treated with steam and C
A method for producing activated carbon, which comprises carbonizing and activating in the presence of O 2 , O 2 or the like to convert into activated carbon.
JP6180835A 1994-07-08 1994-07-08 Activated carbon with co2-immobilized microalgae as raw material and its production Pending JPH0826713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180835A JPH0826713A (en) 1994-07-08 1994-07-08 Activated carbon with co2-immobilized microalgae as raw material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180835A JPH0826713A (en) 1994-07-08 1994-07-08 Activated carbon with co2-immobilized microalgae as raw material and its production

Publications (1)

Publication Number Publication Date
JPH0826713A true JPH0826713A (en) 1996-01-30

Family

ID=16090195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180835A Pending JPH0826713A (en) 1994-07-08 1994-07-08 Activated carbon with co2-immobilized microalgae as raw material and its production

Country Status (1)

Country Link
JP (1) JPH0826713A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088163A1 (en) * 2006-02-01 2007-08-09 Sgl Carbon Ag Carbonized biopolymers
GB2476819A (en) * 2010-01-11 2011-07-13 Univ Surrey Method for preparing activated charcoal
JP2012024752A (en) * 2010-06-22 2012-02-09 Denso Corp Adsorbing agent for noble metal and method for recovering the noble metal
JP2014100121A (en) * 2012-11-22 2014-06-05 Kurita Water Ind Ltd Method for collecting microalgae having hydrocarbon productivity
CN107262039A (en) * 2017-08-10 2017-10-20 福州大学 A kind of high-molecular biologic charcoal ball immobilized microalgae compound adsorbent and its preparation and application
CN108840334A (en) * 2018-09-03 2018-11-20 新奥石墨烯技术有限公司 Modified activated carbon and its preparation method and application
CN109158400A (en) * 2018-07-18 2019-01-08 中国热带农业科学院农产品加工研究所 A kind for the treatment of process of leather solid waste
CN113073121A (en) * 2021-04-06 2021-07-06 江苏南创化学与生命健康研究院有限公司 Nano carbon material containing high-polymerization-degree polyphosphate and preparation method of high-polymerization-degree polyphosphate
WO2021221281A1 (en) * 2020-04-27 2021-11-04 한국지역난방공사 Hybrid system of compact carbon dioxide separation membrane and carbon capture and utilization, applicable to urban power plant

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947246B2 (en) 2006-02-01 2011-05-24 Sgl Carbon Se Electrochemical capacitor, carbonized biopolymers and carbonization process
WO2007088163A1 (en) * 2006-02-01 2007-08-09 Sgl Carbon Ag Carbonized biopolymers
GB2476819B (en) * 2010-01-11 2014-05-07 Univ Surrey Activated charcoal
GB2476819A (en) * 2010-01-11 2011-07-13 Univ Surrey Method for preparing activated charcoal
US8936666B2 (en) 2010-06-22 2015-01-20 Denso Corporation Adsorption agent for noble metal, method for manufacturing the same, and method for recovering noble metal
JP2012024752A (en) * 2010-06-22 2012-02-09 Denso Corp Adsorbing agent for noble metal and method for recovering the noble metal
JP2014100121A (en) * 2012-11-22 2014-06-05 Kurita Water Ind Ltd Method for collecting microalgae having hydrocarbon productivity
CN107262039A (en) * 2017-08-10 2017-10-20 福州大学 A kind of high-molecular biologic charcoal ball immobilized microalgae compound adsorbent and its preparation and application
CN107262039B (en) * 2017-08-10 2019-05-10 福州大学 A kind of high-molecular biologic charcoal ball immobilized microalgae compound adsorbent and its preparation and application
CN109158400A (en) * 2018-07-18 2019-01-08 中国热带农业科学院农产品加工研究所 A kind for the treatment of process of leather solid waste
CN109158400B (en) * 2018-07-18 2021-05-07 中国热带农业科学院农产品加工研究所 Treatment process of leather solid waste
CN108840334A (en) * 2018-09-03 2018-11-20 新奥石墨烯技术有限公司 Modified activated carbon and its preparation method and application
WO2021221281A1 (en) * 2020-04-27 2021-11-04 한국지역난방공사 Hybrid system of compact carbon dioxide separation membrane and carbon capture and utilization, applicable to urban power plant
CN113073121A (en) * 2021-04-06 2021-07-06 江苏南创化学与生命健康研究院有限公司 Nano carbon material containing high-polymerization-degree polyphosphate and preparation method of high-polymerization-degree polyphosphate
CN113073121B (en) * 2021-04-06 2023-05-05 江苏南创化学与生命健康研究院有限公司 Nanocarbon material containing high-polymerization-degree polyphosphate and preparation method of high-polymerization-degree polyphosphate

Similar Documents

Publication Publication Date Title
CN105505414B (en) A kind of solid refuse anaerobic catalytic thermocracking process
CN110523373B (en) Preparation method of oil shale semi-coke adsorbent
CN111018309B (en) Efficient sludge energy treatment method based on hydrothermal pretreatment
CN101747943B (en) Method by utilizing livestock manure to produce hydrogenous gas and other products in a step-by-step thermal decomposition way and device
Mirmohamadsadeghi et al. Recovery of silica from rice straw and husk
EP3492558B1 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
CN101462721A (en) Technological process for cleaning preparing active carbon and active coke from lignite
Su et al. Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts
CN111302340A (en) Preparation method of biogas residue biochar
CN107841325A (en) A kind of method that high grey paper mill sludge pyrolysis of biomass blending prepares synthesis gas
JPH0826713A (en) Activated carbon with co2-immobilized microalgae as raw material and its production
CN108929737A (en) Biomass solid clean fuel and its preparation method and application
CN211078842U (en) Sludge recycling treatment system
CN111269729A (en) Method and system for preparing biochar by co-pyrolysis of sludge and waste tires
CN111545206A (en) Method for preparing advanced iron oxide carbon catalyst from biomass in one step and application
JP3577223B2 (en) Activated carbon production method using sludge
CN110938473A (en) System and method for realizing energy utilization of traditional Chinese medicine waste residues by utilizing red mud solid waste
Kobayashi et al. Catalytic pyrolysis of biomass using fly ash leachate to increase carbon monoxide production and improve biochar properties to accelerate anaerobic digestion
TWI772919B (en) Method of fabricating bio-based activated carbon having high specific area with solid digestate used as precursor
Leong et al. Microalgae-based biochar production and applications: A comprehensive review
CN104593023B (en) The biomass that will be reclaimed from building waste carry out the technique and device of gasification energy conversion
CN211645136U (en) System for utilize red mud to gu useless realization traditional chinese medicine waste residue energy utilization
CN208600439U (en) House refuse electricity generation system
CN113578249A (en) Preparation method of fly ash-based adsorption material
Jiwei et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater