JPH08267087A - Batch activated-sludge treatment of waste water - Google Patents

Batch activated-sludge treatment of waste water

Info

Publication number
JPH08267087A
JPH08267087A JP10159495A JP10159495A JPH08267087A JP H08267087 A JPH08267087 A JP H08267087A JP 10159495 A JP10159495 A JP 10159495A JP 10159495 A JP10159495 A JP 10159495A JP H08267087 A JPH08267087 A JP H08267087A
Authority
JP
Japan
Prior art keywords
denitrification
stage
nitrification
activated sludge
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10159495A
Other languages
Japanese (ja)
Inventor
Hideaki Yabe
英昭 矢部
Osamu Miki
理 三木
Akira Ito
彰 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10159495A priority Critical patent/JPH08267087A/en
Publication of JPH08267087A publication Critical patent/JPH08267087A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To shorten the treating time in the method for removing nitrogen and phosphorus from waste water in batches by detecting the end nitration point in the nitration stage and the end denitrification point in the denitrification stage by the change of an oxdidation-reduction potential and successively changing the succeeding stages. CONSTITUTION: In the activated-sludge treatment, methanol is added in the initial anaerobic stage (2) when the org. matter is deficient in the waste water discharged from a biological reaction tank 1 in the denitrification stage, and activated sludge is charged as a second stage. An aerobic stage (1), anaerobic stage (2), aerobic (2), settling, discharge and standby stages are successively conducted. The ammoniacal nitrogen is nitrated in the aerobic stage (1), and the nitrate nitrogen is removed in the anaerobic stage (2). In this case, the time when an increment of the oxidation-reduction potential amounts to <0.5mV /min in the nitration stage is considered to be the nitration end point, and the time when a decrement of the potential becomes >1.2 times the preceding decrement in the denitrification stage is considered to be the denitrification end point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は都市下水、団地下水、食
品加工工業の様なアンモニア態窒素およびリン酸態リン
を含有する排水から、窒素およびリンの両者を同時に除
去するための排水の回分式活性汚泥処理方法に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a batch of wastewater for simultaneously removing both nitrogen and phosphorus from wastewater containing ammonia nitrogen and phosphorous phosphate, such as municipal wastewater, underground water, and food processing industry. Type activated sludge treatment method.

【0002】[0002]

【従来の技術】回分式活性汚泥処理方法(以下、回分式
活性汚泥法と略す)は、排水の流入、好気処理、嫌気処
理、活性汚泥の固液分離、処理水の放流という一連の排
水処理の単位操作を単一の生物反応槽内で行う排水の処
理方法である。有機物、窒素、リンの同時除去を比較的
容易に行え、かつ既存の標準活性汚泥法施設を改造する
だけで窒素およびリンの除去が行えるようになるため、
近年特に注目されるようになった。
2. Description of the Related Art A batch-type activated sludge treatment method (hereinafter, abbreviated as batch-type activated sludge method) is a series of wastewater including inflow of wastewater, aerobic treatment, anaerobic treatment, solid-liquid separation of activated sludge, and discharge of treated water. This is a method of treating wastewater in which a unit treatment operation is performed in a single biological reaction tank. Simultaneous removal of organic matter, nitrogen, and phosphorus can be performed relatively easily, and nitrogen and phosphorus can be removed simply by modifying the existing standard activated sludge process facility.
In recent years, it has become particularly noticeable.

【0003】例えば、「製鉄研究」、vol329、p
66、1988には、下記の嫌気1工程−好気1工程−
嫌気2工程−好気2工程−静置工程−排出工程というサ
イクルからなる回分式活性汚泥法が記載されている。
For example, "Steelmaking Research", vol 329, p.
66 and 1988, the following anaerobic 1 step-aerobic 1 step-
A batch type activated sludge method comprising a cycle of anaerobic 2 steps-aerobic 2 steps-stationary step-discharging step is described.

【0004】嫌気1工程では、排水を生物反応槽へ導入
すると同時に生物反応槽内を嫌気性に維持することによ
り、活性汚泥からリン酸態リン(PO4-P)を放出させ
る。
In the anaerobic one step, the phosphoric acid phosphorus (PO 4 -P) is released from the activated sludge by introducing effluent into the biological reaction tank and maintaining the inside of the biological reaction tank anaerobic at the same time.

【0005】好気1工程では、生物反応槽内を好気性に
維持することにより、アンモニア態窒素(NH4-N)を
硝酸態窒素(NO3-N)へ酸化(硝化)し、有機物を酸
化分解すると同時に、リン酸態リンを活性汚泥へ過剰に
取り込ませることによりリンの除去を行う。
In the aerobic one step, by maintaining aerobic inside the biological reaction tank, ammonia nitrogen (NH 4 - N) is oxidized (nitrification) to nitrate nitrogen (NO 3- N) to remove organic matter. Simultaneously with oxidative decomposition, phosphorus is removed by incorporating phosphoric acid phosphorus into activated sludge excessively.

【0006】嫌気2工程では、生物反応槽内を嫌気性に
維持することにより硝酸態窒素を窒素ガスへ還元(脱
窒)し、窒素の除去を行う。
In the anaerobic 2 step, the nitrogen in the biological reaction tank is maintained anaerobic to reduce (denitrify) nitrate nitrogen to nitrogen gas and remove nitrogen.

【0007】好気2工程では、生物反応槽内を好気性に
維持することにより有機物の酸化分解を行う。
In the aerobic 2 step, the oxidative decomposition of the organic matter is carried out by keeping the inside of the biological reaction tank aerobic.

【0008】静置工程では、生物反応槽内の攪拌および
曝気をすべて停止することにより活性汚泥を沈降させ
る。
In the stationary step, the activated sludge is settled by stopping all stirring and aeration in the biological reaction tank.

【0009】排出工程では、生物反応槽内の上澄みを処
理水として排出する。
In the discharging step, the supernatant in the biological reaction tank is discharged as treated water.

【0010】[0010]

【発明が解決しようとする課題】回分式活性汚泥法にお
いては、アンモニア態窒素の硝化を行うための硝化工
程、硝酸態窒素の脱窒を行うための脱窒工程が必要であ
るが、これらの工程の処理時間は、排水中の窒素濃度、
処理温度などに応じて決定しなくてはならない。例え
ば、排水中の窒素濃度が高い場合には、排水中の窒素濃
度の低い場合よりも処理時間を長くする必要があり、ま
た、活性汚泥の活性が低下する冬季の様な低温時には、
夏季の様な高温時よりも処理時間を長くする必要があ
る。通常の回分式活性汚泥法において、これらの処理時
間は、流入する最大の窒素濃度の排水を冬季の最低温度
でも処理可能な時間に設定され、年間を通じて同一のス
ケジュールで運転される。
The batch type activated sludge method requires a nitrification step for nitrifying ammonia nitrogen and a denitrification step for denitrifying nitrate nitrogen. The process time depends on the nitrogen concentration in the wastewater,
It must be decided according to the processing temperature. For example, when the nitrogen concentration in the wastewater is high, it is necessary to make the treatment time longer than in the case where the nitrogen concentration in the wastewater is low, and at the time of low temperature such as winter when the activity of activated sludge decreases,
The treatment time needs to be longer than when the temperature is high such as in summer. In the normal batch activated sludge method, these treatment times are set to a time at which the inflowing wastewater having the maximum nitrogen concentration can be treated even at the lowest temperature in winter, and are operated on the same schedule throughout the year.

【0011】しかし、夏季においては硝化、脱窒に必要
な処理時間は冬季よりも短くなっているため、硝化、脱
窒工程が終了する以前に、既に実際の硝化および脱窒は
終了しているはずである。このように必要以上に硝化工
程および脱窒工程を持続することは、ブロアーや攪拌器
の稼働による消費電力の無駄になるばかりではなく、硝
化工程においては過曝気による活性汚泥の自己酸化分解
やバルキングが発生し、脱窒工程においては硝化工程に
おいて取り込んだリン酸態リンの再放出が起き、安定し
た良好な操業を阻害する原因になる可能性がある。
However, since the treatment time required for nitrification and denitrification in summer is shorter than that in winter, the actual nitrification and denitrification are already completed before the nitrification and denitrification process is completed. Should be. In this way, maintaining the nitrification and denitrification processes more than necessary not only wastes power consumption due to the operation of blowers and agitators, but also causes auto-oxidative decomposition and bulking of activated sludge due to excessive aeration in the nitrification process. Occurs, and in the denitrification process, phosphate phosphorus taken in in the nitrification process is re-released, which may hinder stable and favorable operation.

【0012】そこで、特開昭61−54296号公報に
は、生物反応槽内の溶存酸素量(DO)の測定値に応じ
て硝化工程の時間を制御する方法が、また、特開平1−
127098号公報には、排水の水温および生物反応槽
内のDOの測定値に応じて硝化工程の時間を制御する方
法が記載されている。しかし、嫌気状態である脱窒工程
においてはDOはほとんど常に0mg/リットルを示す
ため、DOを指標として脱窒工程の時間を制御すること
は不可能である。
Therefore, Japanese Patent Laid-Open No. 61-54296 discloses a method of controlling the time of the nitrification process according to the measured value of the dissolved oxygen amount (DO) in the biological reaction tank.
Japanese Patent No. 127098 describes a method of controlling the time of the nitrification step depending on the water temperature of waste water and the measured value of DO in the biological reaction tank. However, DO almost always shows 0 mg / liter in the denitrification process in an anaerobic state, and it is impossible to control the time of the denitrification process using DO as an index.

【0013】本発明の目的は、硝化工程および脱窒工程
における硝化および脱窒の終了点を適切に検知し、次の
工程へ逐次変更することにより、硝化工程および脱窒工
程の処理時間を処理条件に応じた必要最低限の時間に制
御することが可能な回分式活性汚泥法を提供することで
ある。
An object of the present invention is to appropriately detect the end points of nitrification and denitrification in the nitrification process and denitrification process, and to sequentially change to the next process to process the treatment time of the nitrification process and denitrification process. It is to provide a batch activated sludge method that can be controlled to a minimum required time according to conditions.

【0014】[0014]

【課題を解決するための手段】本発明は、アンモニア態
窒素の硝化および硝酸態窒素の脱窒、リン酸態リンの活
性汚泥への取り込み、活性汚泥と処理水の分離を1つの
生物反応槽で行う排水の回分式活性汚泥法において、排
水中のアンモニア態窒素の硝化工程における硝化の終了
点、硝酸態窒素の脱窒工程における脱窒の終了点を酸化
還元電位(ORP、銀/塩化銀電極基準)の変化量によ
り検知し、次の工程へ逐次変更することを特徴とする排
水の回分式活性汚泥法である。特に、硝化工程における
酸化還元電位(ORP、銀/塩化銀電極基準)の1分間
あたりの増加量が0.5mV/min以下になった時点
を硝化工程の終了点とすること、脱窒工程における酸化
還元電位(ORP、銀/塩化銀電極基準)の1分間あた
りの減少量がその直前の1分間あたりの酸化還元電位の
減少量の1.2倍以上となった時点を脱窒工程の終了点
とすることが好ましい。
According to the present invention, nitrification of ammonia nitrogen and denitrification of nitrate nitrogen, incorporation of phosphoric acid phosphate into activated sludge, and separation of activated sludge and treated water into one biological reaction tank. In the batch activated sludge method for wastewater carried out in 1., the end point of nitrification in the nitrification step of ammonia nitrogen in the wastewater and the end point of denitrification in the nitrification step of nitrate nitrogen are taken as redox potential (ORP, silver / silver chloride). This is a batch type activated sludge method for wastewater, which is characterized in that it is detected by the amount of change in the electrode standard) and is changed to the next step one after another. In particular, the end point of the nitrification step should be the time when the increase in the redox potential (ORP, silver / silver chloride electrode reference) per minute in the nitrification step becomes 0.5 mV / min or less. The denitrification step ends when the reduction amount of the redox potential (ORP, silver / silver chloride electrode reference) per minute is 1.2 times or more the reduction amount of the redox potential per minute immediately before that. It is preferable to set it as a point.

【0015】[0015]

【作用】酸化還元電位(ORP)は、一般に次式化1に
よって定義される。ここでORP* は反応系固有の標準
酸化還元電位、K0 はファラデー定数および気体定数よ
り定まる係数、Tは絶対温度、Ox は酸化物質の濃度、
Redは還元物質の濃度を示す。
The redox potential (ORP) is generally defined by the following equation (1). Here, ORP * is a standard oxidation-reduction potential specific to the reaction system, K 0 is a coefficient determined by the Faraday constant and gas constant, T is an absolute temperature, O x is the concentration of the oxidant,
Red represents the concentration of the reducing substance.

【0016】[0016]

【化1】 ORP=ORP* +K0 ・Tlog{(Ox )/(Red)}Embedded image ORP = ORP * + K 0 · Tlog {(O x ) / (Red)}

【0017】一方、回分式活性汚泥法における硝化工程
において、アンモニア態窒素は化2の反応によって硝酸
態窒素(NO3 )へ変換する。この反応では、還元物質
であるアンモニア態窒素が減少し、酸化物質である硝酸
態窒素が増加するため、ORPは上昇する。
On the other hand, in the nitrification step in the batch activated sludge method, ammonia nitrogen is converted into nitrate nitrogen (NO 3 ) by the reaction of Chemical formula 2. In this reaction, ammonia nitrogen, which is a reducing substance, decreases, and nitrate nitrogen, which is an oxidizing substance, increases, so that ORP increases.

【0018】[0018]

【化2】NH4 + +2O2 →NO3 - +H2 O+2H+ ## STR2 ## NH 4 + + 2O 2 → NO 3 - + H 2 O + 2H +

【0019】図1に、硝化工程におけるアンモニア態窒
素濃度、硝酸態窒素濃度、ORPの経時変化を示す(処
理温度25℃)。アンモニア態窒素の硝酸態窒素への硝
化が進行するにつれてORPは徐々に上昇するが、硝化
の終了に伴ってORPはほぼ一定の値を示すようにな
る。従って、このようなORPがほぼ一定の値を示すよ
うになる点を検出すれば、硝化の終了点が検知可能であ
る。硝化工程において連続して測定しているORPの1
分間あたりの増加量が0.5mV/min以下になった
時点において、生物反応槽内のアンモニア態窒素は5m
g/リットル以下にまで減少しているため、この時点を
ORPが一定になった点とみなして硝化工程の終了点と
すればよい。
FIG. 1 shows the changes over time in the ammonia nitrogen concentration, nitrate nitrogen concentration and ORP in the nitrification process (treatment temperature 25 ° C.). The ORP gradually increases as the nitrification of ammonia nitrogen into nitrate nitrogen progresses, but the ORP shows a substantially constant value with the end of nitrification. Therefore, the end point of nitrification can be detected by detecting the point where the ORP shows a substantially constant value. 1 of ORP measured continuously in the nitrification process
When the amount of increase per minute became 0.5 mV / min or less, the amount of ammonia nitrogen in the biological reaction tank was 5 m.
Since it has decreased to g / liter or less, this point can be regarded as the point at which the ORP becomes constant and set as the end point of the nitrification step.

【0020】また、脱窒工程において、硝酸態窒素は化
3の反応によって窒素ガス(N2 )へ変換する。この反
応では、酸化物質である硝酸態窒素が減少すると共に、
式中でHで示される還元物質である水素供与体も減少す
る。硝酸態窒素の減少はORPを低下させる方向へ、水
素供与体の増加はORPを上昇させる方向へ働くが、硝
酸態窒素の減少がORPを低下させる割合の方が水素供
与体の増加がORPを上昇させる割合よりも大きいた
め、脱窒反応の際には全体としてORPは低下する。
In the denitrification step, nitrate nitrogen is converted into nitrogen gas (N 2 ) by the reaction of Chemical formula 3. In this reaction, nitrate nitrogen, which is an oxidant, decreases,
The hydrogen donor, which is a reducing substance represented by H in the formula, also decreases. A decrease in nitrate nitrogen tends to decrease ORP, and an increase in hydrogen donor increases ORP. However, a decrease in nitrate nitrogen decreases ORP, and an increase in hydrogen donor increases ORP. Since the rate is higher than the rate of increase, the ORP is lowered as a whole during the denitrification reaction.

【0021】[0021]

【化3】 2NO3 - +10H→N2 +4H2 O+2OH- Embedded image 2NO 3 + 10H → N 2 + 4H 2 O + 2OH

【0022】図2に、脱窒工程における硝酸態窒素、O
RPの経時変化を示す(処理温度25℃)。硝酸態窒素
の脱窒が進行するにつれてORPは徐々に減少するが、
脱窒の終了に伴ってORPの減少の割合が急激になるこ
とがわかる。これは、脱窒終了後において生物反応槽内
では有機物や活性汚泥の分解が起き、様々な種類の有機
酸(還元物質)が蓄積されるためである。従って、この
ようにORPが急激に変化する点を検出すれば、脱窒の
終了点が検知可能である。そのためには、脱窒工程にお
いて連続して測定しているORPの1分間あたりの減少
量がその直前の1分間あたりのORPの減少量の1.2
倍以上になった時点を脱窒工程の終了点とすればよい。
FIG. 2 shows nitrate nitrogen and O in the denitrification process.
The time-dependent change of RP is shown (processing temperature 25 degreeC). ORP gradually decreases as the denitrification of nitrate nitrogen progresses,
It can be seen that the rate of ORP decrease becomes sharp with the completion of denitrification. This is because after the denitrification, organic substances and activated sludge are decomposed in the biological reaction tank, and various kinds of organic acids (reducing substances) are accumulated. Therefore, the denitrification end point can be detected by detecting the point at which the ORP suddenly changes. For that purpose, the ORP reduction amount per minute continuously measured in the denitrification step is 1.2 times the ORP reduction amount per minute immediately before that.
The point at which the denitrification step is doubled may be set as the end point of the denitrification step.

【0023】[0023]

【実施例】図3に、本発明を実施するために使用する回
分式活性汚泥処理装置を示す。
EXAMPLE FIG. 3 shows a batch type activated sludge treatment apparatus used for carrying out the present invention.

【0024】生物反応槽1内には、銀/塩化銀電極のO
RPセンサー2、pHセンサー3、DOセンサー4、攪
拌器5を設置し、ORPの測定値は制御装置6へ入力し
た。攪拌器5、エアーブロア8、排水供給ポンプ9、処
理水排出ポンプ10、メタノール供給ポンプ11は制御
装置6によって制御し、必要に応じて作動させた。排水
には、し尿排水の一次処理水を使用した。
In the biological reaction tank 1, O of silver / silver chloride electrode
The RP sensor 2, the pH sensor 3, the DO sensor 4, and the stirrer 5 were installed, and the ORP measurement value was input to the control device 6. The stirrer 5, the air blower 8, the waste water supply pump 9, the treated water discharge pump 10, and the methanol supply pump 11 were controlled by the control device 6 and operated as necessary. As the drainage water, the primary treated water of human waste drainage was used.

【0025】表1に1サイクルにおけるタイムスケジュ
ールを示す。
Table 1 shows the time schedule in one cycle.

【0026】[0026]

【表1】 [Table 1]

【0027】1サイクルは、嫌気1工程→好気1工程→
嫌気2工程→好気2工程→静置工程→排出工程→待機工
程という順序とした。このタイムスケジュールの場合、
アンモニア態窒素の硝化は好気1工程において、硝酸態
窒素の脱窒は嫌気2工程において主に行われた。
One cycle consists of anaerobic 1 step → aerobic 1 step →
The order is anaerobic 2 steps → aerobic 2 steps → static step → discharge step → standby step. For this time schedule,
Nitrification of ammonia nitrogen was performed mainly in the aerobic one step, and denitrification of nitrate nitrogen was mainly performed in the two anaerobic steps.

【0028】排水は嫌気1工程において排水供給ポンプ
9によって生物反応槽1内へ導入し、処理水は排出工程
において処理水排出ポンプ10によって生物反応槽容積
の半分の量を排出した。また、排水中に脱窒の際の水素
供与体となるべき有機物が不足していたため、メタノー
ルを、排水中のアンモニア態窒素の含有量(平均値)に
対してメタノール/N=2(重量比)となるように、嫌
気2工程の最初において添加した。種汚泥として下水処
理場から採取した活性汚泥を生物反応槽1内へ投入し、
1週間馴養した後、MLSSが4000〜6000mg
/リットルとなるように維持管理を行った。
The waste water was introduced into the biological reaction tank 1 by the waste water supply pump 9 in the anaerobic 1 step, and the treated water was discharged in the discharging step by the treated water discharge pump 10 in an amount half the biological reaction tank volume. In addition, since there was insufficient organic matter in the wastewater to serve as a hydrogen donor during denitrification, methanol / N = 2 (weight ratio) relative to the content (average value) of ammonia nitrogen in the wastewater. ) Was added at the beginning of the anaerobic 2 step. Activated sludge collected from the sewage treatment plant as seed sludge is put into the biological reaction tank 1,
After acclimatization for 1 week, MLSS is 4000-6000mg
It was maintained and managed so that it became / liter.

【0029】制御装置6により、好気1工程ではORP
の1分間あたりの増加量が0.5mV/minより小さ
くなった時点で次の嫌気2工程へ移るように、嫌気2工
程ではORPの1分間あたりの減少量がその直前の1分
間あたりのORPの減少量の1.2倍より大きくなった
時点で次の好気2工程へ移るように制御を行った。1サ
イクルは全体で24時間とし、好気1工程、嫌気2工程
以外の嫌気1工程、好気2工程、静置工程、排出工程の
処理時間は常に一定に設定し、排出工程終了から次のサ
イクルの嫌気1工程までの時間を待機工程とした。ま
た、比較のために、好気1工程、嫌気2工程でORPに
よる制御を行わず、すべての工程の処理時間を常に一定
の時間に設定した実験も併せて行った。
By the control device 6, the ORP is performed in the aerobic one step.
The amount of decrease in ORP per minute in the anaerobic 2 step is the ORP per minute immediately before that, so that the next step in the anaerobic 2 step is performed when the increase per minute in the above is less than 0.5 mV / min. The control was carried out so that the next two aerobic steps were performed when the amount became larger than 1.2 times the decrease amount. One cycle is 24 hours in total, and the processing time of anaerobic 1 step other than aerobic 1 step, anaerobic 2 steps, aerobic 2 steps, stationary step, and discharging step is always set to be constant, and after the discharging step, The time until the anaerobic one step of the cycle was the standby step. For comparison, an experiment was also conducted in which control by ORP was not performed in the aerobic 1 step and the anaerobic 2 step, and the processing time of all the steps was always set to a constant time.

【0030】表2に各例における処理温度および排水水
質を示す。処理温度は夏季においては20℃以上となる
が、冬季には最低8℃にまで低下した。また、排水中の
窒素濃度の変動が激しかった。
Table 2 shows the treatment temperature and drainage water quality in each example. The treatment temperature was 20 ° C. or higher in summer, but dropped to 8 ° C. in winter. Moreover, the fluctuation of nitrogen concentration in the wastewater was severe.

【0031】[0031]

【表2】 [Table 2]

【0032】表3に各例における好気1工程(硝化工
程)、嫌気2工程(脱窒工程)の処理時間の変動を示
す。実施例1に比べて排水中のアンモニア態窒素濃度が
高い実施例2、処理温度が低い実施例3では、それに対
応して処理時間は長くなった。また、処理温度が高い実
施例1と処理温度が低い実施例3では、好気1工程と嫌
気2工程の処理時間の割合も変化した。なお、比較例4
では、好気1工程の処理時間を14時間に、嫌気2工程
の処理時間を6時間に固定したが、比較例4とほぼ処理
温度が同じである実施例1では、好気1工程で5.9時
間、嫌気2工程で1.2時間の処理時間の短縮が可能で
あった。
Table 3 shows the fluctuations in the processing time of the aerobic 1 step (nitrification step) and the anaerobic 2 step (denitrification step) in each example. In Example 2 in which the concentration of ammonia nitrogen in the wastewater was higher than in Example 1 and in Example 3 in which the treatment temperature was lower, the treatment time was correspondingly longer. Further, in Example 1 in which the treatment temperature was high and Example 3 in which the treatment temperature was low, the ratio of the treatment time of the aerobic 1 step and the anaerobic 2 step also changed. Comparative Example 4
Then, the processing time for the aerobic 1 step was fixed to 14 hours and the processing time for the anaerobic 2 steps was fixed to 6 hours. It was possible to reduce the processing time by 9 hours and 1.2 hours by the anaerobic 2 steps.

【0033】[0033]

【表3】 〔比較例4は全工程の処理時間を固定〕[Table 3] [Comparative Example 4 fixes the processing time of all steps]

【0034】表4に各例における処理水の水質を示す。
実施例1、2、3いずれの場合も、アンモニア態窒素、
硝酸態窒素は1mg/リットル以下、リン酸態リンは2
mg/リットル以下にまで良好に処理された。一方、比
較例4では窒素にしては良好に処理されているものの、
嫌気2工程において活性汚泥からリン酸態リンが再溶出
したため、リン酸態リンは3.3mg/リットルという
高い値を示し、処理が不良であった。
Table 4 shows the quality of treated water in each example.
In any of Examples 1, 2, and 3, ammonia nitrogen,
Nitrate nitrogen is 1 mg / liter or less, and phosphate phosphorus is 2
It was processed well up to mg / liter or less. On the other hand, in Comparative Example 4, although nitrogen was treated well,
Phosphate phosphorus was redissolved from the activated sludge in the anaerobic two steps, and thus the phosphate phosphorus showed a high value of 3.3 mg / liter, and the treatment was poor.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明は、回分式活性汚泥法における硝
化工程および脱窒工程の処理時間を排水中の窒素濃度、
処理温度に応じた最小の時間に逐次変更するので、ブロ
アーや攪拌器の過剰な稼働による電力の消費を防止し、
かつ硝化工程における活性汚泥の自己酸化分解やバルキ
ングの発生および脱窒工程における活性汚泥からのリン
再放出を防止しながら、排水中のアンモニア態窒素、リ
ン酸態リンを処理可能である。
INDUSTRIAL APPLICABILITY The present invention determines the treatment time of the nitrification step and denitrification step in the batch activated sludge method,
Since it is changed to the minimum time depending on the processing temperature, it prevents the power consumption due to the excessive operation of the blower and the agitator.
In addition, it is possible to treat ammonia nitrogen and phosphoric acid phosphorus in wastewater while preventing auto-oxidative decomposition of activated sludge in the nitrification process and generation of bulking and re-release of phosphorus from the activated sludge in the denitrification process.

【図面の簡単な説明】[Brief description of drawings]

【図1】硝化工程におけるアンモニア態窒素、硝酸態窒
素、ORPの経時変化を示す図である。
FIG. 1 is a diagram showing changes with time of ammonia nitrogen, nitrate nitrogen, and ORP in a nitrification process.

【図2】脱窒工程における硝酸態窒素、ORPの経時変
化を示す図である。
FIG. 2 is a diagram showing changes with time of nitrate nitrogen and ORP in a denitrification process.

【図3】本発明を実施するための装置を示す図である。FIG. 3 shows an apparatus for carrying out the invention.

【符号の説明】[Explanation of symbols]

1 生物反応槽 2 ORPセンサー 3 pHセンサー 4 DOセンサー 5 攪拌器 6 制御装置 7 記録計 8 エアーブロア 9 排水供給ポンプ 10 処理水排出ポンプ 11 メタノール供給ポンプ 1 Biological Reaction Tank 2 ORP Sensor 3 pH Sensor 4 DO Sensor 5 Stirrer 6 Controller 7 Recorder 8 Air Blower 9 Waste Water Supply Pump 10 Treated Water Discharge Pump 11 Methanol Supply Pump

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア態窒素の硝化および硝酸態窒
素の脱窒、リン酸態リンの活性汚泥への取り込み、活性
汚泥と処理水の分離を1つの生物反応槽で行う排水の回
分式活性汚泥処理方法において、排水中のアンモニア態
窒素の硝化工程における硝化の終了点、硝酸態窒素の脱
窒工程における脱窒の終了点を酸化還元電位(ORP、
銀/塩化銀電極基準)の変化量により検知し、次の工程
へ逐次変更することを特徴とする排水の回分式活性汚泥
処理方法。
1. A batch-type activated sludge of wastewater in which nitrification of ammonia nitrogen and denitrification of nitrate nitrogen, incorporation of phosphorous phosphate into activated sludge, and separation of activated sludge and treated water are performed in one biological reaction tank. In the treatment method, the end point of nitrification in the nitrification step of ammonia nitrogen in the wastewater and the end point of denitrification in the nitric acid nitrogen denitrification step are regarded as redox potential (ORP,
A batch type activated sludge treatment method for wastewater, characterized by detecting the amount of change in silver / silver chloride electrode) and sequentially changing to the next step.
【請求項2】 硝化工程における酸化還元電位(OR
P、銀/塩化銀電極基準)の1分間あたりの増加量が
0.5mV/min以下になった時点を硝化工程の終了
点とすることを特徴とする請求項1記載の排水の回分式
活性汚泥処理方法。
2. A redox potential (OR) in the nitrification step.
The batch type activity of the wastewater according to claim 1, wherein the end point of the nitrification step is the time when the increase amount of P, silver / silver chloride electrode) per minute becomes 0.5 mV / min or less. Sludge treatment method.
【請求項3】 脱窒工程における酸化還元電位(OR
P、銀/塩化銀電極基準)の1分間あたりの減少量がそ
の直前の1分間あたりの酸化還元電位の減少量の1.2
倍以上となった時点を脱窒工程の終了点とすることを特
徴とする請求項1または2記載の排水の回分式活性汚泥
処理方法。
3. The redox potential (OR
P, the amount of silver / silver chloride electrode) per minute is 1.2 of the amount of decrease in the redox potential per minute immediately before that.
The batch type activated sludge treatment method for wastewater according to claim 1 or 2, wherein a time point at which the denitrification step is doubled or more is set as an end point of the denitrification step.
JP10159495A 1995-04-04 1995-04-04 Batch activated-sludge treatment of waste water Pending JPH08267087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10159495A JPH08267087A (en) 1995-04-04 1995-04-04 Batch activated-sludge treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10159495A JPH08267087A (en) 1995-04-04 1995-04-04 Batch activated-sludge treatment of waste water

Publications (1)

Publication Number Publication Date
JPH08267087A true JPH08267087A (en) 1996-10-15

Family

ID=14304715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10159495A Pending JPH08267087A (en) 1995-04-04 1995-04-04 Batch activated-sludge treatment of waste water

Country Status (1)

Country Link
JP (1) JPH08267087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501112A (en) * 2003-08-04 2007-01-25 オテヴェ・ソシエテ・アノニム Biological water treatment process and plant using activated sludge process to control aeration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501112A (en) * 2003-08-04 2007-01-25 オテヴェ・ソシエテ・アノニム Biological water treatment process and plant using activated sludge process to control aeration

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
EP1721870A1 (en) Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP3015426B2 (en) Wastewater management and treatment method
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP2001079593A (en) Removing method of nitrogen in waste water
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
JPH08267087A (en) Batch activated-sludge treatment of waste water
JP2002001388A (en) Equipment and process for treating sewage
JP2912901B1 (en) Treatment method for nitrogen-containing wastewater
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP2946163B2 (en) Wastewater treatment method
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JP3677811B2 (en) Biological denitrification method
JPH09174084A (en) Control of batchwise activated sludge treatment
JP3303475B2 (en) Operation control method of activated sludge circulation method
KR102665116B1 (en) Method for treating reject water of wastewater treatment
JP2019037912A (en) Denitrification treatment method and denitrification treatment apparatus for ammonia nitrogen containing wastewater
JPH09141294A (en) Biological nitrogen removing method
JPH09299987A (en) Intermittent aeration method
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JPH08267090A (en) Method for denitrifying waste water
JP2960273B2 (en) Operation control method of intermittent aeration type activated sludge method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205