JPH08267058A - Ultraviolet ray irradiation device - Google Patents

Ultraviolet ray irradiation device

Info

Publication number
JPH08267058A
JPH08267058A JP7335595A JP7335595A JPH08267058A JP H08267058 A JPH08267058 A JP H08267058A JP 7335595 A JP7335595 A JP 7335595A JP 7335595 A JP7335595 A JP 7335595A JP H08267058 A JPH08267058 A JP H08267058A
Authority
JP
Japan
Prior art keywords
water
treated
electrode
irradiation device
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7335595A
Other languages
Japanese (ja)
Inventor
Tatsuo Hara
龍雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP7335595A priority Critical patent/JPH08267058A/en
Publication of JPH08267058A publication Critical patent/JPH08267058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE: To provide an ultraviolet ray irradiation device low in deterioration of the ultraviolet strength irradiated to a matter to be treated and capable of exhibiting a treating function of UV radiation over the entire range of a water to be treated circulating in a glass pipe. CONSTITUTION: This device is composed of a cylindrical closed vessel 2, two pairs of electrodes 3 provided extendedly along an axial direction of the closed vessel 2 at a nearly central part of the closed vessel 2 and presenting a square sectional plane, of which the corners are rounded, and 20 glass pipes 4 for circulating a water to be treated which is provided around the electrode 3 and having 3.5mm diameter and 0.7mm wall thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外線照射装置に関す
る。さらに詳しくは、原子力発電所の一次冷却水または
半導体製造用超純水等に対して紫外線を照射することに
より、水中の有機物を分解、除去するTOC分解の他、
種々の水処理装置に用いられる紫外線照射装置に関す
る。なお、本紫外線照射装置が適用される被処理水には
水のような低粘度流体はもとより、高粘度流体および液
中に粒体や粉体等の固体が分散されたものも含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet irradiation device. More specifically, in addition to TOC decomposition that decomposes and removes organic substances in water by irradiating primary cooling water of a nuclear power plant or ultrapure water for semiconductor production with ultraviolet rays,
The present invention relates to an ultraviolet irradiation device used in various water treatment devices. The water to be treated to which the present ultraviolet irradiation device is applied includes not only low-viscosity fluids such as water but also high-viscosity fluids and liquids in which solids such as particles and powders are dispersed.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】紫外
線は水中を通過する過程で有機物や水そのものを分解し
つつ自らはこれらに吸収されてしまう。その吸収程度は
真空紫外線では大きなものとなる。すなわち、紫外線が
被処理水の内部に到達しうる深度が100μm程度と浅
いため、それより深いところでは被処理水中のTOC除
去は困難である。したがって、被処理水全体に効果的に
紫外線を照射するには特別な工夫が必要である。そのた
めに、別途攪拌機を備えて被処理水を攪拌することも考
えられるが機構が複雑になるとともに、十分な効果も期
待できない。そこで、紫外線照射方向の水層の厚さをで
きるだけ小さくする必要が生じる。
2. Description of the Related Art Ultraviolet rays are absorbed by these substances while decomposing organic substances and water itself while passing through water. The degree of absorption is large with vacuum ultraviolet rays. That is, since the depth at which ultraviolet rays can reach the inside of the water to be treated is as shallow as about 100 μm, it is difficult to remove TOC in the water to be treated at a deeper depth. Therefore, special measures are required to effectively irradiate the entire water to be treated with ultraviolet rays. Therefore, it may be possible to stir the water to be treated by separately providing a stirrer, but the mechanism becomes complicated and a sufficient effect cannot be expected. Therefore, it becomes necessary to reduce the thickness of the water layer in the ultraviolet irradiation direction as much as possible.

【0003】一方、エキシマ紫外線照射装置には、被処
理物を電極から物理的に隔離する目的で、および希ガス
やハロゲンガス等の封入ガスを散逸させない目的で紫外
線透過性を有するガラス管等のいわば窓部材(以下、ガ
ラス管で代表させる)が組み込まれている。このガラス
管の材料としては一般的に石英ガラスやCaF2 等が用
いられる。
On the other hand, the excimer ultraviolet irradiation device is provided with a glass tube or the like having ultraviolet transparency for the purpose of physically isolating the object to be processed from the electrode and for preventing the escape of the enclosed gas such as rare gas or halogen gas. So to speak, a window member (hereinafter represented by a glass tube) is incorporated. Quartz glass, CaF 2 or the like is generally used as the material of the glass tube.

【0004】しかしながら、電極間放電により発光され
た紫外線は前記ガラス管を透過するときにその一部がガ
ラス管材料によって吸収されていまう。したがって、こ
のガラス管の厚さをあまり厚くしすぎると、被処理物に
照射される紫外線の強度が低下するために処理効率が低
下してしまう。
However, the ultraviolet rays emitted by the inter-electrode discharge are partially absorbed by the glass tube material when passing through the glass tube. Therefore, if the thickness of this glass tube is made too thick, the intensity of the ultraviolet rays with which the object to be treated is reduced will decrease the processing efficiency.

【0005】したがって、被処理水量の増加はあらゆる
方面で要望されているが、そのためにガラス管の径を大
きくすると、紫外線が透過すべき被処理水層の厚さが大
きくなるとともに、耐圧強度維持のためにガラス厚さを
大きくしなければならない。
Therefore, an increase in the amount of water to be treated has been demanded in all directions. For that reason, if the diameter of the glass tube is increased, the thickness of the water to be treated which ultraviolet rays should pass through becomes large and the pressure resistance is maintained. Because of this, the glass thickness must be increased.

【0006】いずれにしても使用時の紫外線の強度が低
下してしまう。さらに、ガラス管の紫外線透過性を向上
せしめるために、石英ガラスの場合には高純度化が必要
となって高価なものとなり、大型化にともなってさらに
高価になる。CaF2 の場合も単結晶であることから高
価なものとなり、また大型品を製造することはほとんど
不可能である。
In any case, the intensity of ultraviolet rays during use is reduced. Further, in order to improve the ultraviolet ray transmittance of the glass tube, in the case of quartz glass, high purity is required and it becomes expensive, and it becomes more expensive as it becomes larger. For CaF 2 also becomes expensive since it is a single crystal, also possible to manufacture a large-sized article is almost impossible.

【0007】本発明はかかる課題を解決するためになさ
れたものであり、被処理水を流通させるガラス管を小径
且つ薄肉にし、これを多数本配備することにより、大容
量化が安価に達成され、紫外線強度を著しく低下させる
ことなく、被処理水全体に効率よく紫外線を照射するこ
とができる紫外線照射装置を提供することを目的として
いる。
The present invention has been made to solve the above problems, and a large capacity can be achieved at a low cost by reducing the diameter and thinness of the glass tube through which the water to be treated is circulated and arranging a large number thereof. An object of the present invention is to provide an ultraviolet irradiation device capable of efficiently irradiating ultraviolet rays to the entire water to be treated without significantly reducing the ultraviolet intensity.

【0008】[0008]

【課題を解決するための手段】本発明の紫外線照射装置
は、放電エネルギによってエキシマ化して紫外線を発光
するガスが封入される密閉容器と、該密閉容器内に装着
された少なくとも一対の電極と、密閉容器に装備された
被処理水が流通する多数本の細径且つ薄肉のガラス管と
から構成されている。
An ultraviolet irradiating device of the present invention comprises a hermetically sealed container in which a gas that excimates by discharge energy and emits ultraviolet light is sealed, and at least a pair of electrodes mounted in the hermetically sealed container. It is composed of a large number of thin and thin glass tubes through which water to be treated, which is installed in a closed container, flows.

【0009】そして、前記密閉容器を実質的に筒状に
し、該密閉容器のほぼ中央部に密閉容器の軸方向に沿っ
て前記電極を延設し、該電極の回りに前記ガラス管を密
閉容器の軸方向に沿って配列するのが組み立てが容易
で、しかも被処理水に効率よく紫外線を照射しうる点で
好ましい。
Then, the closed container is formed into a substantially cylindrical shape, the electrode is provided at an approximately central portion of the closed container along the axial direction of the closed container, and the glass tube is closed around the electrode. It is preferable to arrange them along the axial direction because the assembling is easy and the water to be treated can be efficiently irradiated with ultraviolet rays.

【0010】また、前記多数本のガラス管の上流端およ
び下流端のうち少なくとも上流端に、全ガラス管と連通
する配水室が形成されておれば、給水が便利であるのは
もとより、各ガラス管に均等量の被処理水を配水するこ
とができ、しかも各ガラス管に被処理水を乱流状態で配
水しやすいという点で好ましい。もちろん、全ガラス管
の下流端に連通する集水室をも設けた場合には処理され
た水を取り出すのに便利であることは明らかである。
Further, if a water distribution chamber communicating with all the glass tubes is formed at least at the upstream end of the upstream end and the downstream end of the plurality of glass tubes, not only the water supply is convenient, but also each glass is provided. This is preferable in that it is possible to distribute an equal amount of water to be treated to the pipes and to easily distribute the water to be treated to each glass pipe in a turbulent state. Of course, it is obvious that it is convenient to take out the treated water when a water collecting chamber communicating with the downstream ends of all the glass tubes is also provided.

【0011】また、前記電極の表面にグラスライニング
層を形成するのが無声放電やコロナ放電がアーク放電に
移行するのを防止するために、剥離のおそれの少ない保
護層を形成しうる点で好ましい。
Further, it is preferable to form a glass lining layer on the surface of the electrode in order to prevent a silent discharge or a corona discharge from being transferred to an arc discharge, because a protective layer with less risk of peeling can be formed. .

【0012】さらに、前記電極を中空にし、該電極の空
洞に冷却剤を供給し且つ排出するための冷却剤供給手段
を装備するのが放電によって加熱される電極の損傷を防
止し且つ電極を冷却するによって放電効率を向上せしめ
うる点で好ましい。
Further, it is preferable to make the electrode hollow and to equip the cavity of the electrode with a coolant supplying means for supplying and discharging a coolant so as to prevent the electrode from being heated by the discharge from being damaged and to cool the electrode. This is preferable in that the discharge efficiency can be improved.

【0013】[0013]

【作用】本発明の紫外線照射装置によれば、ガラス管が
細径であるため、被処理水の水層の厚さが小さくなる。
すなわち、表面から約100μm以上の深さの、紫外線
が到達しにくい領域の被処理水の割合を減少させること
ができるため、TOC除去効率が向上する。さらに、細
径ガラス管の使用により被処理水を乱流状態で流すこと
ができるため、被処理水のガラス管との接触部分が常に
更新される。それにより、照射される紫外線が有効に作
用を奏することができる。このように、流通する被処理
水のほぼ全体にわたって紫外線の処理作用が発揮される
ので、とくに被処理水の攪拌等の特別な機構を必要とし
ない。しかも、被処理水が流通するガラス管の肉厚が薄
いので被処理物に照射される紫外線強度の低下が少な
い。その結果、装置の製造コスト低減が可能となり、し
かも高効率の処理が維持される。
According to the ultraviolet irradiation apparatus of the present invention, since the glass tube has a small diameter, the thickness of the water layer of the water to be treated becomes small.
That is, it is possible to reduce the ratio of the water to be treated in the region where the ultraviolet rays are hard to reach at a depth of about 100 μm or more from the surface, so that the TOC removal efficiency is improved. Further, since the water to be treated can be made to flow in a turbulent state by using the small diameter glass tube, the contact portion of the water to be treated with the glass tube is constantly updated. Thereby, the irradiated ultraviolet rays can effectively act. In this way, since the action of treating ultraviolet rays is exerted on almost all of the circulating treated water, no special mechanism such as stirring of the treated water is required. Moreover, since the glass tube through which the water to be treated circulates is thin, the intensity of the ultraviolet rays irradiated to the object to be treated is not significantly reduced. As a result, the manufacturing cost of the device can be reduced, and highly efficient processing can be maintained.

【0014】[0014]

【実施例】つぎに、添付の図面を参照しつつ本発明の紫
外線照射装置の実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the ultraviolet irradiation device of the present invention will be described below with reference to the accompanying drawings.

【0015】図1は本発明の紫外線照射装置の一実施例
を示す概略縦断面図、図2は図1のA−A線断面図であ
る。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the ultraviolet irradiation apparatus of the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG.

【0016】図1に示されているのは紫外線照射装置1
であって、円筒状の密閉容器2と、この密閉容器2のほ
ぼ中央部に密閉容器2の軸線に沿って配設された二対の
電極3(図2参照)と、二対の電極3の周囲に密閉容器
2の軸線に沿って配設された20本のガラス管4(図2
参照)とから構成されている。そして、各対の電極3間
には高周波高圧電源5が接続されており、通電によって
電極3間に放電が生じるようにされている。この放電の
エネルギにより、密閉容器2内に封入されているガス
(希ガス、ハロゲンガスまたはこれらの混合ガス等)に
固有の波長の紫外線が発光される。
FIG. 1 shows an ultraviolet irradiation device 1
And a cylindrical closed container 2, two pairs of electrodes 3 (see FIG. 2) arranged along the axis of the closed container 2 at substantially the center of the closed container 2, and two pairs of electrodes 3. Twenty glass tubes 4 arranged along the axis of the closed container 2 (see FIG. 2).
See) and. A high-frequency high-voltage power supply 5 is connected between the electrodes 3 of each pair, and a discharge is generated between the electrodes 3 by energization. Due to the energy of this discharge, ultraviolet rays having a wavelength peculiar to the gas (a rare gas, a halogen gas, a mixed gas thereof, or the like) sealed in the closed container 2 are emitted.

【0017】被処理水Wは給水口6から密閉容器2の一
端に形成された配水チャンバ7を通って各ガラス管4に
至り、紫外線を照射されて密閉容器2の他端に形成され
た集水チャンバ8を通って取出口9から取り出される。
配水チャンバ7を設けることによって各ガラス管4に均
等量の被処理水Wを送り込めることはもとより、被処理
水Wが一旦配水チャンバ7に充満した後、流れ方向を変
えて各ガラス管4に流入することにより、乱流を形成し
やすく、紫外線照射部分が頻繁に更新されることにな
る。
The water W to be treated reaches each glass tube 4 from the water supply port 6 through the water distribution chamber 7 formed at one end of the closed container 2, and is irradiated with ultraviolet rays to be collected at the other end of the closed container 2. It is taken out from the outlet 9 through the water chamber 8.
Not only can the equal amount of water to be treated W be sent to each glass tube 4 by providing the water distribution chamber 7, but also after the water to be treated W once fills the water distribution chamber 7, the flow direction is changed to each glass tube 4. By flowing in, a turbulent flow is likely to be formed, and the ultraviolet irradiation part is frequently updated.

【0018】本実施例では3.5mmの直径で、0.7
mmの肉厚のガラス管4が使用されている。そして、2
0本のガラス管4が二対の電極3の周囲に10本ずつ同
心状の二円に沿って等間隔に配設されている。ガラス管
は前記寸法に限定されることはなく、水の処理量やガラ
ス管の長さ等に応じて適宜選択すればよい。また、ガラ
ス管の本数も20本に限定されることはない。
In the present embodiment, the diameter is 3.5 mm and 0.7
A glass tube 4 with a wall thickness of mm is used. And 2
Zero glass tubes 4 are arranged around the two pairs of electrodes 10 at equal intervals along two concentric circles. The glass tube is not limited to the above size, and may be appropriately selected depending on the amount of water to be treated, the length of the glass tube, and the like. Further, the number of glass tubes is not limited to 20.

【0019】さらに、ガラス管の配列も図2のものに限
定されることはなく、電極3間の放電のエネルギによる
紫外線が満遍なく全ガラス管に照射されるような配列で
あればよい。
Further, the arrangement of the glass tubes is not limited to that shown in FIG. 2, and any arrangement may be used as long as the ultraviolet rays due to the energy of the discharge between the electrodes 3 are evenly applied to all the glass tubes.

【0020】本実施例では電極3は二対装備されている
が、本発明では二対に限定されることはなく、被処理水
の量等に応じて一対または三対以上備えてもよい。
In the present embodiment, two pairs of electrodes 3 are provided, but the present invention is not limited to two pairs, and one or three or more pairs may be provided depending on the amount of water to be treated and the like.

【0021】図示のごとく、電極3の外表面にはグラス
ライニング10が施されている。正常なコロナ放電や無
声放電を生ぜしめ、アーク放電への移行を防止するため
である。かかる目的からして、剥離、破損のおそれがき
わめて少ない点でグラスライニングが最適である。
As shown in the figure, the outer surface of the electrode 3 is provided with a glass lining 10. This is to cause normal corona discharge and silent discharge and prevent transition to arc discharge. For this purpose, the glass lining is most suitable because the risk of peeling and breakage is extremely small.

【0022】さらに、前記電極3は中空にされており、
その内部空洞3aに冷却剤が流れるように構成されてい
る。なぜなら、放電によって加えられたエネルギによる
電極の加熱を抑制して損傷を防止し、また、電極を冷却
することによって放電効率を向上しうるからである。冷
却剤としては、冷水やエチレングリコール等の公知のも
のが用いられる。本実施例では一対の電極3を冷却剤が
いわば直列に流れるように、図示のごとく電極3の端部
同士がチューブ11によって連通されている。
Further, the electrode 3 is hollow,
The coolant is configured to flow into the internal cavity 3a. This is because the heating of the electrode due to the energy applied by the discharge can be suppressed to prevent damage, and the electrode can be cooled to improve the discharge efficiency. As the cooling agent, known ones such as cold water and ethylene glycol are used. In this embodiment, the ends of the electrodes 3 are communicated with each other by the tubes 11 as shown in the figure so that the coolant flows in a series between the pair of electrodes 3.

【0023】しかし、本発明ではとくに直列に限定され
ることはなく、各電極3個々に冷却剤を流す、いわば並
列状に構成してもよい。
However, the present invention is not particularly limited to the series connection, and a coolant may be flown into each electrode 3 individually, that is, in parallel.

【0024】また、本実施例ではその密閉容器2が円筒
状に形成されているが、本発明ではとくに円筒状に限定
されることはない。たとえば、角筒状等にしてもよい。
Further, although the closed container 2 is formed in a cylindrical shape in this embodiment, the present invention is not limited to a cylindrical shape. For example, it may be a rectangular tube or the like.

【0025】密閉容器2の内周面には、発生する紫外線
を反射するように反射被膜12が形成されている。な
お、密閉容器2の内面に直接反射被膜を形成することに
限定されることはなく、たとえば、密閉容器2の内面に
沿って反射板を設置してもよい。この反射被膜12(ま
たは反射板)は紫外線を望ましくは全反射するような、
たとえば、金属材料の全面にアルミニウムを蒸着したも
のや、金属材料の表面を研磨仕上げしたもの、また、研
磨後に高温酸化処理し、さらに酸液によってウェットエ
ッチング処理したもの、反射面に誘電体多層膜をコーテ
ィングした反射鏡またはガラス部分が石英ガラスである
鏡を使用することができる。
A reflective coating 12 is formed on the inner peripheral surface of the closed container 2 so as to reflect the generated ultraviolet rays. The reflective coating is not limited to being directly formed on the inner surface of the closed container 2, and a reflective plate may be installed along the inner surface of the closed container 2, for example. This reflective coating 12 (or reflector) preferably totally reflects ultraviolet rays,
For example, a metal material with aluminum vapor-deposited on its entire surface, a metal material with a polished surface, a high-temperature oxidation treatment after polishing, and a wet etching treatment with an acid solution, and a dielectric multilayer film on the reflecting surface. It is possible to use a reflecting mirror coated with or a mirror in which the glass portion is quartz glass.

【0026】本発明の紫外線照射装置は低粘度流体はも
とより、高粘度流体および液中に粒体や粉体等の固体が
分散された被処理物にも適用しうることは明らかであ
る。
It is obvious that the ultraviolet irradiation device of the present invention can be applied not only to a low-viscosity fluid but also to a high-viscosity fluid and an object to be treated in which solids such as granules and powders are dispersed.

【0027】[0027]

【発明の効果】本発明によれば、従来に比べて同一量の
被処理水に対する紫外線照射部分がはるかに増大する。
したがって、ガラス管を流通する被処理水のほぼ全体に
わたって紫外線の処理作用が発揮され、被処理水の攪拌
等の特別な機構を必要としない。しかも、被処理物に照
射される紫外線強度の低下が少ない。その結果、装置の
製造コスト低減および高効率の処理が可能となる。
EFFECTS OF THE INVENTION According to the present invention, the ultraviolet irradiation portion for the same amount of water to be treated is much increased as compared with the conventional case.
Therefore, the treatment effect of ultraviolet rays is exerted on almost all the water to be treated flowing through the glass tube, and no special mechanism such as stirring of the water to be treated is required. Moreover, the decrease in the intensity of ultraviolet light applied to the object to be treated is small. As a result, the manufacturing cost of the device can be reduced and highly efficient processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紫外線照射装置の一実施例を示す概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an embodiment of an ultraviolet irradiation apparatus of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1・・・紫外線照射装置 2・・・密閉容器 3・・・電極 4・・・ガラス管 10・・・グラスライニング 1 ... Ultraviolet irradiation device 2 ... Airtight container 3 ... Electrode 4 ... Glass tube 10 ... Glass lining

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放電エネルギによってエキシマ化して紫
外線を発光するガスが封入される密閉容器と、該密閉容
器内に装着された少なくとも一対の電極と、密閉容器に
装備された被処理水が流通する多数本の細径且つ薄肉の
ガラス管とから構成されてなる紫外線照射装置。
1. A hermetically sealed container in which a gas that excimates by discharge energy and emits ultraviolet rays is enclosed, at least a pair of electrodes mounted in the hermetically sealed container, and water to be treated provided in the hermetically sealed container flows. An ultraviolet irradiator comprising a large number of thin and thin glass tubes.
【請求項2】 前記密閉容器が実質的に筒状を呈してお
り、該密閉容器のほぼ中央部に密閉容器の軸方向に沿っ
て前記電極が延設されており、該電極の回りに前記ガラ
ス管が密閉容器の軸方向に沿って配列されてなる請求項
1記載の紫外線照射装置。
2. The closed container has a substantially cylindrical shape, the electrode extends along the axial direction of the closed container in a substantially central portion of the closed container, and the electrode is provided around the electrode. The ultraviolet irradiation device according to claim 1, wherein the glass tubes are arranged along the axial direction of the closed container.
【請求項3】 前記多数本のガラス管の上流端および下
流端のうち少なくとも上流端に、全ガラス管と連通する
配水室が形成されてなる請求項1記載の紫外線照射装
置。
3. The ultraviolet irradiation device according to claim 1, wherein a water distribution chamber communicating with all the glass tubes is formed at least at an upstream end of the upstream ends and the downstream ends of the plurality of glass tubes.
【請求項4】 前記電極の表面にグラスライニング層が
形成されてなる請求項1記載の紫外線照射装置。
4. The ultraviolet irradiation device according to claim 1, wherein a glass lining layer is formed on the surface of the electrode.
【請求項5】 前記電極が中空にされており、該電極の
空洞に冷却剤を供給し且つ排出するための冷却剤供給手
段が装備されてなる請求項1記載の紫外線照射装置。
5. The ultraviolet irradiation device according to claim 1, wherein the electrode is hollow, and a coolant supplying means for supplying and discharging a coolant is provided in the cavity of the electrode.
JP7335595A 1995-03-30 1995-03-30 Ultraviolet ray irradiation device Pending JPH08267058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7335595A JPH08267058A (en) 1995-03-30 1995-03-30 Ultraviolet ray irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7335595A JPH08267058A (en) 1995-03-30 1995-03-30 Ultraviolet ray irradiation device

Publications (1)

Publication Number Publication Date
JPH08267058A true JPH08267058A (en) 1996-10-15

Family

ID=13515784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7335595A Pending JPH08267058A (en) 1995-03-30 1995-03-30 Ultraviolet ray irradiation device

Country Status (1)

Country Link
JP (1) JPH08267058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046142A1 (en) * 2012-09-21 2014-03-27 千代田工販株式会社 Medium-pressure external-beam type ultraviolet ray irradiation device, and device for inactivating microorganisms in ballast water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046142A1 (en) * 2012-09-21 2014-03-27 千代田工販株式会社 Medium-pressure external-beam type ultraviolet ray irradiation device, and device for inactivating microorganisms in ballast water
JP2014061483A (en) * 2012-09-21 2014-04-10 Chiyoda Kohan Co Ltd Intermediate pressure outer irradiation type ultraviolet lamp and microorganism inactivation device for ballast water

Similar Documents

Publication Publication Date Title
KR100189794B1 (en) Process for oxidation of an article surface
CN101177315B (en) The water disinfection apparatus
US5971565A (en) Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)
TW526287B (en) Dielectric barrier discharge lamp and dry cleaning device using the same
TWI504970B (en) Ultraviolet radiation device
TWI487973B (en) Liquid crystal panel manufacturing apparatus and method for manufacturing the liquid crystal panel
TW200917323A (en) Excimer lamps
JPH09312285A (en) Double wall microwave plasma applicator
JPH08267058A (en) Ultraviolet ray irradiation device
JP4962256B2 (en) Excimer lamp light irradiation device
KR101553735B1 (en) Light irradiation apparatus
JP4284336B2 (en) Clean gas heating device and substrate drying device
JP4159745B2 (en) High power UV generation lamp
JP3268447B2 (en) Photoreaction device with built-in photoreaction tube
JPH04129167A (en) Surface discharging radiation source
JP2001052653A (en) Ultraviolet ray generating device
JP3214153B2 (en) Cleaning method using dielectric barrier discharge lamp
WO2013191003A1 (en) Fluid processing device
JP2001129391A (en) Apparatus for treatment using dielectric barrier discharge lamp
TW200917322A (en) Excimer lamp
JP2006004701A (en) Excimer lamp
JPH08309343A (en) Ultraviolet irradiation apparatus using devitrification resistant glass
JPH1110101A (en) Photorinsing apparatus
JPH08267057A (en) Ultraviolet ray irradiation device
JPH08124540A (en) Xenon irradiation device and object surface reforming device using the irradiation device