JPH08264105A - Ferroelectrics electron emitting cold cathode - Google Patents

Ferroelectrics electron emitting cold cathode

Info

Publication number
JPH08264105A
JPH08264105A JP9442195A JP9442195A JPH08264105A JP H08264105 A JPH08264105 A JP H08264105A JP 9442195 A JP9442195 A JP 9442195A JP 9442195 A JP9442195 A JP 9442195A JP H08264105 A JPH08264105 A JP H08264105A
Authority
JP
Japan
Prior art keywords
electrode
electron emission
ferroelectric
upper electrode
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9442195A
Other languages
Japanese (ja)
Inventor
Masanori Okuyama
雅則 奥山
Seiji Omura
大村  誠司
Mikio Shimokata
幹生 下方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Okuyama Masanori
Original Assignee
Kanebo Ltd
Okuyama Masanori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Okuyama Masanori filed Critical Kanebo Ltd
Priority to JP9442195A priority Critical patent/JPH08264105A/en
Publication of JPH08264105A publication Critical patent/JPH08264105A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/306Ferroelectric cathodes

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE: To enlarge the area of emission of electrons, and also, facilitate the supply to the whole of emission face of electrons for emission so as to stabilize and increase the amount of emission, by forming electron emission and supply electrode with a specified thickness to cover an upper electrode and ferroelectrics. CONSTITUTION: An electron emission and supply electrode is made, thinner than an upper electrode and at a thickness of 5000Å or under, in the specified area as occasion demands, such that it covers the the upper electrode 2 and the ferroelectrics 3, out of general electrode material such as Pt or the like. The upper electrode 2 is made in specified area and is grounded, and the ferroelectrics 3 are made in thickness of 100nm-2000μm out of PZT ceramics or the like. An either positive or negative specified electric field is impressed, for positive and negative regions, to the lower electrode 4 by a pulse generator 4. Hereby, the stable emission of a large quantity of electrons becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子源として利用する
強誘電体電子放出冷陰極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric electron emission cold cathode used as an electron source.

【0002】[0002]

【従来の技術】図2は強誘電体を利用した強誘電体電子
放出冷陰極であり、H.Gundel等によって報告さ
れたものである(Journal of Applie
d Physics p975 69(2)(199
1))。Aは第一の電極、Bは強誘電体、Cは第二の電
極である。また、図2は特開平5−325777で記載
された強誘電体電子放出冷陰極であり、Aは第一の電
極、Bは強誘電体、Cは第二の電極、Dは絶縁膜、Eは
第三の電極である。図1および図2のように構成された
従来の強誘電体電子放出冷陰極において、第一の電極と
第二の電極の間に交番電界を印加すると、その電界の変
化に伴い強誘電体内部の分極が変化(分極反転)を起こ
し、その際に第二の電極近傍に存在する電子をク−ロン
力により弾き飛ばし、電子の放出を行うものである。
2. Description of the Related Art FIG. 2 shows a ferroelectric electron emission cold cathode using a ferroelectric substance. Reported by Gundel et al. (Journal of Applie)
d Physics p975 69 (2) (199
1)). A is a first electrode, B is a ferroelectric substance, and C is a second electrode. 2 shows a ferroelectric electron emission cold cathode described in JP-A-5-325777, in which A is a first electrode, B is a ferroelectric, C is a second electrode, D is an insulating film, and E is an E film. Is the third electrode. In the conventional ferroelectric electron emission cold cathode configured as shown in FIG. 1 and FIG. 2, when an alternating electric field is applied between the first electrode and the second electrode, the inside of the ferroelectric substance changes as the electric field changes. Changes its polarization (polarization inversion), and at that time, electrons existing in the vicinity of the second electrode are repelled by the Coulomb force to emit electrons.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、第二の電極近傍に存在する電子しか放出
に利用されない、言い換えれば電子の放出面積が限定さ
れてしまうため、電子の放出量は少なく、実用的な電子
放出源としては使用できないという問題があった。ま
た、電子放出量を増加させるためには、第二の電極を多
数或いは微細に加工し、電子の放出面積を広げなければ
ならないが、その作製工程は極めて困難であるという問
題があった。
However, in the above-mentioned structure, only the electrons existing in the vicinity of the second electrode are used for emitting electrons, in other words, the emission area of the electrons is limited. However, there is a problem that it cannot be used as a practical electron emission source. Further, in order to increase the electron emission amount, it is necessary to process the second electrode in large numbers or finely to increase the electron emission area, but there is a problem that the manufacturing process is extremely difficult.

【0004】本発明は、このような実情を鑑みなされた
もので、実用的な強誘電体電子放出冷陰極を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a practical ferroelectric electron emission cold cathode.

【0005】[0005]

【問題点を解決するための手段】上記問題点は、強誘電
体とその強誘電体の電子放出面側に形成された上部電極
と、その強誘電体の電子放出面側と反対の面に形成され
た下部電極とからなる強誘電体電子放出冷陰極におい
て、前記上部電極および強誘電体の電子放出面を覆い、
且つ厚さが上部電極よりも薄い電子放出および供給電極
を強誘電体に形成することを特徴とする強誘電体電子放
出冷陰極によって解決される。
[Problems to be Solved by the Invention] The above-mentioned problems are caused by a ferroelectric material, an upper electrode formed on the electron emission surface side of the ferroelectric material, and a surface opposite to the electron emission surface side of the ferroelectric material. In a ferroelectric electron emission cold cathode consisting of the formed lower electrode, covering the electron emission surface of the upper electrode and the ferroelectric,
A ferroelectric electron emission cold cathode is characterized in that an electron emission and supply electrode having a thickness smaller than that of an upper electrode is formed in a ferroelectric substance.

【0006】本発明における強誘電体はPZT〔Pb
(Zr,Ti)O3 〕、PLZT〔(Pb,La)(Z
r,Ti)O3 〕、BaTiO3 等の多結晶のセラミッ
ク強誘電体、LiNbO3 やLiTaO3 等の単結晶の
セラミック強誘電体、或いはPVDF等の高分子強誘電
体等が挙げられる。強誘電体の厚みは50nm〜200
0μm、好ましくは100nm〜200μmがよい。5
0nm未満では強誘電体に形成している上部電極或いは
電子放出および供給電極と下部電極が短絡してしまう問
題が生じる。また、2000μmを越えると動作電界が
非常に大きな値になり実用上問題が生じる。
The ferroelectric substance in the present invention is PZT [Pb
(Zr, Ti) O 3 ], PLZT [(Pb, La) (Z
r, Ti) O 3 ], BaTiO 3 and other polycrystalline ceramic ferroelectrics, LiNbO 3 and LiTaO 3 and other single crystalline ceramic ferroelectrics, and PVDF and other polymeric ferroelectrics. The thickness of the ferroelectric is 50 nm to 200
The thickness is 0 μm, preferably 100 nm to 200 μm. 5
If the thickness is less than 0 nm, there is a problem that the upper electrode or electron emission / supply electrode and the lower electrode formed on the ferroelectric substance are short-circuited. On the other hand, if it exceeds 2000 μm, the operating electric field becomes a very large value, which causes a problem in practical use.

【0007】本発明における電子放出および供給電極の
厚みは上部電極の厚さより薄くなければならないが、一
般には5000Å以下であり、好ましくは1000Å以
下、更に好ましくは400Å以下がよい。但し、使用す
る電極材によりその適正な値の範囲は変動する。例えば
Ptを使用した場合、好ましくは50〜1000Å、更
に好ましくは200〜400Åがよい。5000Åを越
える厚みではその厚さのため電子の放出が妨げられてし
まう。
The thickness of the electron emission and supply electrode in the present invention must be smaller than the thickness of the upper electrode, but it is generally 5000 Å or less, preferably 1000 Å or less, more preferably 400 Å or less. However, the range of the appropriate value varies depending on the electrode material used. For example, when Pt is used, it is preferably 50 to 1000Å, more preferably 200 to 400Å. If the thickness exceeds 5000 Å, the emission of electrons is hindered due to the thickness.

【0008】本発明における電子放出および供給電極の
面積は、上部電極および強誘電体の電子放出面全面を覆
った時に最大になり、このときに電子の放出量も最大と
なるが、電子の放出量を制御するため、必要に応じて上
部電極および強誘電体の電子放出面を覆う面積を制御し
てもよい。電極の設置方法は一般に用いられる方法のい
ずれでもよく、スパッタリング法や蒸着法等が挙げられ
る。
The area of the electron emission and supply electrode in the present invention is maximized when the entire surface of the electron emission surface of the upper electrode and the ferroelectric substance is covered, and the electron emission amount is also maximized at this time. In order to control the amount, the area covering the upper electrode and the electron emission surface of the ferroelectric substance may be controlled if necessary. The electrode may be installed by any of the commonly used methods, and examples thereof include a sputtering method and a vapor deposition method.

【0009】本発明における電子放出および供給電極の
材質としては、一般に電極材として用いられるものであ
ればいずれのものでもよく、Pt,Au,Cu,Al,
W,Ni,Cr,Cs等の金属、或いは前記金属の合金
等が挙げられる。また、電極の設置方法は一般に用いら
れる方法のいずれでもよく、スパッタリング法や蒸着法
等が挙げられる。
The material for the electron emission and supply electrodes in the present invention may be any material generally used as an electrode material, such as Pt, Au, Cu, Al,
Examples thereof include metals such as W, Ni, Cr and Cs, and alloys of the above metals. The electrode may be installed by any of the commonly used methods, and examples thereof include a sputtering method and a vapor deposition method.

【0010】本発明における上部電極は、接地されてお
り、効率よく接地させるためにはその厚さは200Å以
上であり、好ましくは400Å〜5000Å、更に好ま
しくは1000Å〜3000Åがよい。但し、使用する
電極材によりその適正値の範囲は変動する。
The upper electrode in the present invention is grounded, and in order to be grounded efficiently, its thickness is 200 Å or more, preferably 400 Å to 5000 Å, more preferably 1000 Å to 3000 Å. However, the range of the appropriate value varies depending on the electrode material used.

【0011】本発明における上部電極の形状は電子の放
出に影響が生じない限り、線状、島状、螺旋状、格子
状、ストライプ状等どのような形状を用いてもよい。
The shape of the upper electrode in the present invention may be any shape such as a linear shape, an island shape, a spiral shape, a lattice shape, or a stripe shape as long as it does not affect the emission of electrons.

【0012】本発明における上部電極の材質としては、
一般に電極材として用いられるものであればいずれのも
のでもよく、Pt,Au,Cu,Al,W,Ni,C
r,Cs等の金属、或いは前記金属の合金等が挙げられ
る。また、電極の設置方法は一般に用いられる方法のい
ずれでもよく、スパッタリング法や蒸着法等が挙げられ
る。
The material of the upper electrode in the present invention is
Any material generally used as an electrode material may be used, such as Pt, Au, Cu, Al, W, Ni, C.
Examples include metals such as r and Cs, and alloys of the above metals. The electrode may be installed by any of the commonly used methods, and examples thereof include a sputtering method and a vapor deposition method.

【0013】本発明における上部電極の面積は、上部電
極を覆って形成される電子放出および供給電極の効果を
妨げない面積にする必要があり、その面積は強誘電体の
面積の0.05〜95%、好ましくは0.5〜50%、
更に好ましくは5〜10%がよい。上部電極の面積が強
誘電体の面積の0.05%より小さいと接地が困難にな
り、また、95%を越えると充分な電子の放出が行えな
くなる。
The area of the upper electrode in the present invention must be an area that does not interfere with the effect of the electron emission and the supply electrode formed to cover the upper electrode, and the area is from 0.05 to the area of the ferroelectric substance. 95%, preferably 0.5-50%,
More preferably, it is 5 to 10%. If the area of the upper electrode is smaller than 0.05% of the area of the ferroelectric substance, it becomes difficult to ground, and if it exceeds 95%, sufficient electrons cannot be emitted.

【0014】本発明で印加する動作電界は、正と負の両
電界、或いは正または負のどちらか一方の電界のいずれ
でもよく、また、いずれの場合もその絶対値において0
〜100kv/cm、好ましくは20〜40kv/cm
がよい。100kv/cmを越える電界ではその高電界
のため電極或いは強誘電体が破壊されてしまうという問
題が生じる。
The operating electric field applied in the present invention may be either a positive electric field or a negative electric field, or a positive electric field or a negative electric field, and in either case, the absolute value thereof is 0.
-100 kv / cm, preferably 20-40 kv / cm
Is good. When the electric field exceeds 100 kv / cm, the high electric field causes a problem that the electrode or the ferroelectric substance is destroyed.

【0015】本発明における動作電界のパルス時間は、
0.01μ秒〜1000μ秒、好ましくは5μ秒〜20
0μ秒がよい。0.01μ秒未満ではパルス時間が短い
ため、充分な電子の放出量が得られない。また、100
0μ秒を越えた時間を印加しても1000μ秒以下の時
間で放出する電子の放出量以上は得られない。
The pulse time of the operating electric field in the present invention is
0.01 μsec to 1000 μsec, preferably 5 μsec to 20
0 microsecond is good. If it is less than 0.01 μsec, the pulse time is too short to obtain a sufficient electron emission amount. Also, 100
Even if a time exceeding 0 μsec is applied, the amount of electrons emitted in a time of 1000 μsec or less cannot be obtained.

【0016】本発明における下部電極の材質は、一般に
電極材として用いられるものであればいずれのものでも
よく、Pt,Au,Cu,Al,W,Ni,Cr,Cs
等の金属、或いは前記金属の合金等が挙げられる。電極
の設置方法は一般に用いられる方法のいずれでもよく、
スパッタリング法や蒸着法等が挙げられる。
The material of the lower electrode in the present invention may be any material that is generally used as an electrode material, such as Pt, Au, Cu, Al, W, Ni, Cr, Cs.
And the like, or alloys of the above metals. The electrode may be installed by any of the commonly used methods,
A sputtering method, a vapor deposition method, etc. are mentioned.

【0017】[0017]

【作用】本発明の作用は、強誘電体の電子放出面側に形
成してある上部電極および強誘電体の電子放出面を覆
い、且つその厚さが上部電極よりも薄い電子放出および
供給電極を強誘電体に形成することにより、従来強誘電
体の一部しか利用されていなかった放出面積を拡大する
と共に、放出用電子の放出面全体への供給を容易にする
ことができ、大量且つ安定した電子の放出を行う点にあ
る。
The operation of the present invention is to cover the upper electrode formed on the electron emission surface side of the ferroelectric substance and the electron emission face of the ferroelectric substance, and the thickness of which is thinner than that of the upper electrode. By forming a ferroelectric substance, it is possible to expand the emission area which was conventionally used only for a part of the ferroelectric substance and to easily supply the emission electrons to the entire emission surface. The point is that stable electron emission is performed.

【0018】[0018]

【実施例】図1に本発明における強誘電体電子放出冷陰
極の構成図を示す。1は電子放出および供給電極であ
り、上部電極および強誘電体全面にスパッタリング法や
蒸着法により形成されている。2は上部電極であり、強
誘電体にスパッタリング法や蒸着法等により形成されて
おり、接地されている。3は強誘電体である。4は下部
電極であり、強誘電体全面にスパッタリング法や蒸着法
等により形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a ferroelectric electron emission cold cathode according to the present invention. An electron emission and supply electrode 1 is formed on the entire surface of the upper electrode and the ferroelectric by sputtering or vapor deposition. Reference numeral 2 is an upper electrode, which is formed on the ferroelectric by a sputtering method, a vapor deposition method, or the like and is grounded. 3 is a ferroelectric substance. Reference numeral 4 is a lower electrode, which is formed on the entire surface of the ferroelectric material by a sputtering method, a vapor deposition method, or the like.

【0019】本実施例では、強誘電体として厚さ60μ
mのPZTセラミックスを用いた。電極は全てPtを使
用し、スパッタリング法にて設置した。下部電極は強誘
電体全面に厚さ2000Åで設置した。上部電極はスト
ライプ状に設置した。動作電界はパルスジェネレ−タ−
により正と負一対の電界を印加したが、勿論正または負
のどちらか一方の電界の印加でもよい。表1に電子放出
測定の結果を示す。尚、放出電荷量は、放出電子が測定
用電極に接続された負荷抵抗を通る際の電位差から求め
た放出電流値の時間積分により算出した。また、放出の
安定性は動作電界に追随した放出が認められたときを安
定、やや不連続に放出が認められたときをやや不安定、
放出が不連続のときを不安定とした。
In this embodiment, the ferroelectric substance has a thickness of 60 μm.
m PZT ceramics were used. All electrodes were made of Pt and were set by the sputtering method. The lower electrode was installed on the entire surface of the ferroelectric with a thickness of 2000 liters. The upper electrode was installed in a stripe shape. The operating electric field is a pulse generator
Although a pair of positive and negative electric fields is applied by the above method, it is needless to say that either positive or negative electric field may be applied. Table 1 shows the results of the electron emission measurement. The emitted charge amount was calculated by time integration of the emission current value obtained from the potential difference when the emitted electrons passed through the load resistance connected to the measurement electrode. The stability of emission is stable when emission following the operating electric field is observed, and somewhat unstable when emission is observed discontinuously,
Unstable when the release was discontinuous.

【表1】 本実施例のように上部電極および強誘電体の電子放出面
を覆い、且つ厚さが上部電極よりも薄い電子放出および
供給電極を強誘電体に形成することにより、大量且つ安
定した電子の放出が可能な強誘電体電子放出冷陰極を得
ることができた。
[Table 1] By forming an electron emission and supply electrode, which is thinner than the upper electrode and covers the electron emission surface of the upper electrode and the ferroelectric, as in the present embodiment, a large amount and stable electron emission can be achieved. It was possible to obtain a ferroelectric electron emission cold cathode capable of achieving the above.

【0020】[0020]

【発明の効果】本発明では、上部電極および強誘電体の
電子放出面を覆い、且つ厚さが上部電極よりも薄い電子
放出および供給電極を強誘電体に形成することにより、
大量且つ安定した電子の放出が可能な強誘電体電子放出
冷陰極を得ることができる。
According to the present invention, by forming an electron emission and supply electrode, which covers the upper electrode and the electron emission surface of the ferroelectric substance and is thinner than the upper electrode, in the ferroelectric substance,
It is possible to obtain a ferroelectric electron emission cold cathode capable of emitting a large amount of stable electrons.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における強誘電体電子放出冷陰
極の構成図。
FIG. 1 is a configuration diagram of a ferroelectric electron emission cold cathode according to an embodiment of the present invention.

【図2】従来の強誘電体電子放出冷陰極の構成図(Jour
nal of Applied Physics p97569(2) (1991)) 。
Fig. 2 Schematic diagram of a conventional ferroelectric electron emission cold cathode (Jour
nal of Applied Physics p97569 (2) (1991)).

【図3】従来の強誘電体電子放出冷陰極の構成図(特開
平5-325777)。
FIG. 3 is a configuration diagram of a conventional ferroelectric electron emission cold cathode (JP-A-5-325777).

【符号の説明】[Explanation of symbols]

1 電子放出および供給電極 2 上部電極 3 強誘電体 4 下部電極 1 Electron Emission and Supply Electrode 2 Upper Electrode 3 Ferroelectric 4 Lower Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体と、その強誘電体の電子放出面
側に形成された上部電極と、その強誘電体の電子放出面
側と反対の面に形成された下部電極とからなる強誘電体
電子放出冷陰極において、前記上部電極および強誘電体
の電子放出面を覆い、且つ厚さが上部電極よりも薄い電
子放出および供給電極を強誘電体に形成することを特徴
とする強誘電体電子放出冷陰極。
1. A ferroelectric comprising: a ferroelectric material, an upper electrode formed on the electron emitting surface side of the ferroelectric material, and a lower electrode formed on the surface opposite to the electron emitting surface side of the ferroelectric material. In a dielectric electron emission cold cathode, a ferroelectric material is provided, in which an electron emission and supply electrode that covers the electron emission surface of the upper electrode and the ferroelectric substance and is thinner than the upper electrode is formed in the ferroelectric substance. Body electron emission cold cathode.
JP9442195A 1995-03-27 1995-03-27 Ferroelectrics electron emitting cold cathode Pending JPH08264105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9442195A JPH08264105A (en) 1995-03-27 1995-03-27 Ferroelectrics electron emitting cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9442195A JPH08264105A (en) 1995-03-27 1995-03-27 Ferroelectrics electron emitting cold cathode

Publications (1)

Publication Number Publication Date
JPH08264105A true JPH08264105A (en) 1996-10-11

Family

ID=14109783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9442195A Pending JPH08264105A (en) 1995-03-27 1995-03-27 Ferroelectrics electron emitting cold cathode

Country Status (1)

Country Link
JP (1) JPH08264105A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651552A1 (en) * 1996-12-11 1998-06-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Cold cathode for discharge lamps, discharge lamp with this cold cathode and mode of operation for this discharge lamp
EP1265263A1 (en) * 2000-12-22 2002-12-11 Ngk Insulators, Ltd. Electron emission element and field emission display using it
EP1329928A2 (en) * 2001-12-20 2003-07-23 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US7071628B2 (en) 2002-11-29 2006-07-04 Ngk Insulators, Ltd. Electronic pulse generation device
US7129642B2 (en) 2002-11-29 2006-10-31 Ngk Insulators, Ltd. Electron emitting method of electron emitter
US7187114B2 (en) 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7288881B2 (en) 2002-11-29 2007-10-30 Ngk Insulators, Ltd. Electron emitter and light emission element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651552A1 (en) * 1996-12-11 1998-06-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Cold cathode for discharge lamps, discharge lamp with this cold cathode and mode of operation for this discharge lamp
US6157145A (en) * 1996-12-11 2000-12-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluenlampen Mbh Method of operating a discharge lamp with a cold cathode structure having ferroelectric between
EP1265263A1 (en) * 2000-12-22 2002-12-11 Ngk Insulators, Ltd. Electron emission element and field emission display using it
US7088049B2 (en) 2000-12-22 2006-08-08 Ngk Insulators, Ltd. Electron-emitting device and field emission display using the same
EP1265263A4 (en) * 2000-12-22 2006-11-08 Ngk Insulators Ltd Electron emission element and field emission display using it
EP1329928A2 (en) * 2001-12-20 2003-07-23 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
EP1329928A3 (en) * 2001-12-20 2006-02-08 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US7071628B2 (en) 2002-11-29 2006-07-04 Ngk Insulators, Ltd. Electronic pulse generation device
US7129642B2 (en) 2002-11-29 2006-10-31 Ngk Insulators, Ltd. Electron emitting method of electron emitter
US7187114B2 (en) 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7288881B2 (en) 2002-11-29 2007-10-30 Ngk Insulators, Ltd. Electron emitter and light emission element

Similar Documents

Publication Publication Date Title
JP3184296B2 (en) Ferroelectric cold cathode
DE4323821A1 (en) Pyrodetector element with oriented grown pyroelectric layer and method for its production
JPH09298324A (en) Piezoelectric thin film element, manufacture thereof, and ink jet recorder head using the same
EP1126602A3 (en) Piezoelectric resonator
DE102008025691A1 (en) Piezoelectric thin film, piezoelectric material and piezoelectric thin film and piezoelectric material manufacturing method, and piezoelectric resonator, switch element and physical probe using piezoelectric thin film
US4803392A (en) Piezoelectric transducer
US6899584B2 (en) Insulated gate field emitter array
JPH08264105A (en) Ferroelectrics electron emitting cold cathode
JP3666163B2 (en) Piezoelectric element, actuator using the same, and ink jet recording head
JPH1027539A (en) Ferroelectric cold cathode and its driving method
Angadi et al. The role of electrode material and polarization fatigue on electron emission from ferroelectric Pb (ZrxTi1− x) O3 cathodes
JPH08264104A (en) Electron emitting cold cathode for ferroelectrics
JP4114264B2 (en) Ferroelectric electron emission cold cathode
US4700261A (en) Method and apparatus for electrically charging or discharging
US20060214557A1 (en) Light source
JPWO2017135166A1 (en) Piezoelectric element
JPH06290983A (en) Thin dielectric film and manufacture thereof
Gururaja et al. Medical ultrasonic transducers with switchable frequency bands centered about f/sub 0/and 2f/sub 0
US6181063B1 (en) Election discharge device and election discharge method
EP0010227B1 (en) Piezoelectric resonator
JPH0820126A (en) Electrostatic image making apparatus
JPH10223129A (en) Ferroelectric cold cathode
JP3476845B2 (en) Dielectric element and semiconductor storage device
JPH0259566B2 (en)
EP1301949B1 (en) Method for producing a semiconductor component with a sequence of layers, for converting acoustic or thermal signals into electrical voltage changes and vice versa