JP4114264B2 - Ferroelectric electron emission cold cathode - Google Patents

Ferroelectric electron emission cold cathode Download PDF

Info

Publication number
JP4114264B2
JP4114264B2 JP07034899A JP7034899A JP4114264B2 JP 4114264 B2 JP4114264 B2 JP 4114264B2 JP 07034899 A JP07034899 A JP 07034899A JP 7034899 A JP7034899 A JP 7034899A JP 4114264 B2 JP4114264 B2 JP 4114264B2
Authority
JP
Japan
Prior art keywords
ferroelectric
cold cathode
electron emission
electrode
emission cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07034899A
Other languages
Japanese (ja)
Other versions
JP2000268709A (en
Inventor
雅則 奥山
行雄 坂部
克彦 田中
陽 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP07034899A priority Critical patent/JP4114264B2/en
Publication of JP2000268709A publication Critical patent/JP2000268709A/en
Application granted granted Critical
Publication of JP4114264B2 publication Critical patent/JP4114264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子源として利用する電子放出冷陰極に関するものであり、特に強誘電体を用いた電子放出冷陰極の構造に関するものである。
【0002】
【従来の技術】
強誘電体には、平行または反平行に並んだ永久双極子によって生じる自発分極が存在しており、外部から摂動を与えることによってこれを変化させることが可能である。例えば、電場による分極変化は分極履歴現象(ヒステリシス)として観測され、また応力や温度変化を与えるとそれぞれ圧電効果や焦電効果となって現れる。これらの現象は、強誘電体上に形成された電極への電荷の出入りによって観測されるが、電極の形状あるいは形成位置、膜厚等を適切に選択することにより、強誘電体からの電子の放出も可能となる。
【0003】
上述の強誘電体からの電子放出現象については、従来より様々な研究が行われており、例えばBaTiO3等の代表的な強誘電体単結晶に、外部から電界の印加、温度変化、光照射等の摂動を与えて分極変化を誘起すると言った各種の実験が行われていた。しかしこれらの実験は比較的緩やかな分極変化を用いたものであり、放出される電子の電流密度も10-9A/cm2と極めて小さなものであったため、実用的なデバイスへの応用は困難であると考えられていた。ところが、近年になってチタン酸ジルコン酸鉛(以下、PZTと略す)や、これに少量のLaを添加したPLZTなどの強誘電体セラミックに高速パルス電界を印加することにより、10〜102A/cm2程度の電子放出がなされることがH.Gundelらによって報告されて以来、この現象を電子デバイスへ応用しようとする機運が高まっている。
【0004】
例えば、H.Gundelらによって報告された強誘電体電子放出冷陰極1は、図1に示すように、下面電極2、強誘電体3、上面電極4をその主たる構成要素とし、また例えば特開平5−325777号公報に記載された強誘電体電子放出冷陰極5は、図2に示すように、下面電極2、強誘電体3、上面電極4に加えて絶縁膜6、補助電極7をその主たる構成要素としている。これら図1、図2に示された構成の強誘電体電子放出冷陰極は、下面電極と上面電極との間に交番電界を印加することにより、その電界の急激な変化に伴い強誘電体内部に分極の変化(分極反転)を生ぜしめ、その際に上面電極の近傍に存在する電子をクーロン力によってはじき飛ばし、電子の放出を行うものであると考えられる。
【0005】
【発明が解決しようとする課題】
しかしながら上述の強誘電体電子放出冷陰極は、以下のような問題点を有していた。
【0006】
すなわち従来の冷陰極にあっては、下面電極と上面電極との間に交番電界を印加して強誘電体内に分極反転を生ぜしめる動作を繰り返すと、強誘電体表面および/または上面電極内部に疲労および劣化が生じ、次第に電子の放出が行われなくなる。この劣化は通常、数回〜数十回程度のパルス電圧の印加で生じるため、本冷陰極をそのまま実用に供することは不可能であった。この劣化を抑制するために印加するパルス電圧の絶対値を小さくすることも考えられるが、この場合、放出される電子の電流密度が小さくなるという問題が新たに生じる。また従来の冷陰極では、未だ充分満足のゆくだけの電子放出量が得られておらず、かつその放出量も不安定であると言う問題点を有していた。
【0007】
これらの問題点から、強誘電体を用いた電子放出冷陰極は未だ実用化されていないのが現状である。従って本発明の目的は、上述の技術的問題点を克服し、寿命が長く、大きな電子の放出量を安定して得られる強誘電体電子放出冷陰極を提供することにある。
【0008】
【課題を解決するための手段】
上述の問題点を解決するために、本発明の強誘電体電子放出冷陰極は、強誘電体の両主面に裏面電極と上面電極とを有してなる強誘電体電子放出冷陰極において、上面電極の形成された強誘電体の他方主面上に、電子放出能の高い材料、例えばMgO、ZnO、CeO2、Y23、BaO、CaO、SrO等からなる保護膜を形成した。
【0009】
このように、電子の放出される主面上に電子放出能の高い材料からなる保護膜を形成することにより、寿命および放出電子量の安定性のいずれの面においても、従来の冷陰極よりも格段に優れた強誘電体電子放出冷陰極を得られることを本発明者らは見い出し、本発明を完成させるにいたった。本発明の構成を採用することにより上述の効果が得られる詳細なメカニズムは現時点では明らかでないが、おそらく分極を急激に反転させることによって強誘電体表面に集中して生じていた作用が、保護膜側に分散、緩和されつつ電子放出能の高い保護膜からの電子放出が行われることにより、冷陰極の長寿命化、放出量の安定化が図られるものと考えられる。
【0010】
なお本発明に用いる強誘電体としては、PZT、PLZT、BaTiO3等のセラミック強誘電体、PVDF等の高分子強誘電体等を用いることができる。強誘電体の厚みは、20nm〜2000μm、より好ましくは100nm〜200μmが好ましい。これは、使用条件にもよるが、強誘電体の厚みが20nmより薄くなるとその両面に形成される電極同士が短絡する恐れが高くなり、また、2000μmより厚くなると動作電界を非常に大きなものにする必要が生じるからである。また、使用する強誘電体は、バルク状のものを用いても良いし、成膜された薄膜状のものを用いても良い。
【0011】
本発明に用いる電極材料としては、一般的な電極材料をいずれも用いることが可能である。具体的には、Pt、Au、Cu、Al、Ni、Ir、Cs、Cr、W等の金属、およびこれらの合金が挙げられる。なかでも、電子の放出しやすさの面からはIr、Cs等の仕事関数の低い電極材料が望ましい。電極の形成方法は任意の成膜方法を用いることができるが、蒸着法、スパッタリング法等の成膜技法を用いることが好ましい。これは、後述の通り、本構造の冷陰極においては電極の膜厚が厚くなると電子が放出されにくくなる傾向を有しているからである。
【0012】
本発明の冷陰極で形成される電極(特に上面電極)の膜厚としては、5000Å以下、より好ましくは500Å以下が好ましい。電極の膜厚が5000Åよりも厚くなると、その厚みのため電子の放出が妨げられるためである。この値は使用する電極材料によって若干の変動はあるが、例えば電極材料としてPtを用いる場合、100〜500Å程度が最も好適である。
【0013】
本発明で印加する動作電界は、正あるいは負のいずれでも良く、またいずれの場合もその絶対値において300kV/cm程度以下の範囲が好ましい。300kV/cm程度を越える電界を印加すると、その高電界のため電極および強誘電体が破壊されるという問題が生じるからである。また、動作電界のパルス時間は、正あるいは負どちらとも0.01〜1000μ秒、より好ましくは5〜200μ秒の範囲が好ましい。0.01μ秒未満ではパルス時間が短いため充分な電子放出量が得られず、また1000μ秒を越えて電界を印加しても1000μ秒以下のパルス時間で放出する電子放出量とほとんど変わらないからである。
【0014】
【発明の実施の形態】
本発明の一実施例の強誘電体電子放出冷陰極11は主として、図3に示すように、薄板形状の強誘電体12と、強誘電体12の裏面全面に形成される下面電極13と、強誘電体12の表面にストライプ状に形成される上面電極14と、上面電極14を含む表(おもて)面全面に形成される保護膜15とから構成されている。なお、図3は冷陰極11の断面形状しか示されていないが、上面電極14および保護膜15は奥行き方向にも延びて形成されている。
【0015】
具体的には強誘電体12としては10×15mm角、50μm厚のバルク状のPZT薄板が用いられる。また、下面電極13は膜厚500nmのIr電極が、上面電極14は膜厚100nmのIr電極が、それぞれスパッタリング法によって形成される。ストライプ状の上面電極14はライン/スペースが500μm/300μmに形成される。保護膜15はMgO膜からなり、EB蒸着法によって膜厚100nmに形成される。
【0016】
ここで、上述の構成の本発明の冷陰極11と、MgO保護膜を形成されない(その他の構成は本発明の冷陰極11と同一である)従来の冷陰極(図示せず)との二種の試料につき、図4に示す測定装置を用いて、その寿命および放出電子量の安定性を測定する。なお、これら2種の冷陰極を構成する強誘電体には予め電気的に分極処理を施しておく。なお、測定に際しては、上面電極のうちの1本のストライプのみを使用する。
【0017】
以下、測定方法を具体的に説明する。まず図4に示すように、試料20を真空チャンバ21内のホルダ22に固定したうえで試料20の上面電極を接地する。次いで、パルス印加手段23によって発生する正負のパルス電圧を下面電極13に印加する。この時、印加パルスは±200V、パルス幅は10μsecとする。このパルス電圧の印加によって放出される電子は、試料20の10mm上方に配置されたコレクタ24に集められる。ここで、この電流が抵抗Rを通ることによる電位の変化をオシロスコープ25を用いて観測して放出電流のピーク値を測定し、このピーク値をもとにオシロスコープの積分演算機能を用いて時間積分することにより放出電子量を算出する。
【0018】
ここで、本発明の冷陰極11および従来の冷陰極について、上述の測定方法に従って得られた測定結果を対比して図5に示す。図5から読みとれるように、従来の冷陰極では10回程度のパルス電圧の印加によって電子の放出量がほぼ0となっている。これは、従来技術欄においても説明したように、急激な分極反転の繰り返しにより強誘電体および/または上面電極が劣化したためと考えられる。一方、保護膜15を形成した本発明の冷陰極11では、パルス電圧印加回数が1000回を越えても電圧印加開始当初と同様に電子が放出されており、かつその放出量も充分な安定性を有している。また、保護膜15を形成することにより放出量自体も従来の冷陰極に比べて3割程度多くなっていることが確認できる。
【0019】
なお、本実施例では保護膜15の材料としてMgOを用いたが、同様に二次電子放出能の高いZnO、CeO2、Y23、BaO、CaO、SrOの各材料について測定したところ、MgO膜を形成した場合と同様の効果が得られることが確認できた。また本実施例では、強誘電体12の表面全面に保護膜15を形成したが、例えば図6に示すように、強誘電体12、上面電極13、エアの3つの境界部付近に保護膜を形成することによっても同種の効果が得られる。加えて、本実施例では強誘電体としてバルク状のPZT薄板を使用したが、例えばプラズマCVD法等によって形成した薄膜状のPZT薄膜を本発明の強誘電体として使用しても構わない。
【0020】
【発明の効果】
このように、電子の放出される主面上に電子放出能の高い材料からなる保護膜を形成することにより、分極を急激に反転させることによって強誘電体内部に集中して生じていた作用が保護膜側に分散、緩和されつつ保護膜からの電子放出が行われるので、寿命および放出電子量の安定性のいずれの面においても、従来の冷陰極よりも格段に優れた強誘電体電子放出冷陰極を得られる。
【図面の簡単な説明】
【図1】 従来例の強誘電体電子放出冷陰極を示す断面図である。
【図2】 また別の従来例の強誘電体電子放出冷陰極を示す断面図である。
【図3】 本発明の強誘電体電子放出冷陰極を示す断面図である。
【図4】 強誘電体電子放出冷陰極の特性測定装置を示す概略断面図である。
【図5】 本発明の冷陰極と従来の冷陰極の電子放出特性を比較した比較図である。
【図6】 本発明の別の実施例の冷陰極を示す断面図である。
【符号の説明】
11 ・・・ 強誘電体電子放出冷陰極
12 ・・・ 強誘電体
13 ・・・ 下面電極
14 ・・・ 上面電極
15 ・・・ 保護膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron emission cold cathode used as an electron source, and more particularly to a structure of an electron emission cold cathode using a ferroelectric.
[0002]
[Prior art]
Ferroelectrics have spontaneous polarization caused by permanent dipoles arranged in parallel or antiparallel, and this can be changed by applying a perturbation from the outside. For example, a polarization change due to an electric field is observed as a polarization history phenomenon (hysteresis), and appears as a piezoelectric effect or a pyroelectric effect when a stress or temperature change is applied. These phenomena are observed by the entrance and exit of electric charges to and from the electrodes formed on the ferroelectric. By appropriately selecting the shape or formation position of the electrode, the film thickness, etc., electrons from the ferroelectric can be observed. Release is also possible.
[0003]
Various studies have been conducted on the electron emission phenomenon from the above-described ferroelectrics. For example, a typical ferroelectric single crystal such as BaTiO 3 is applied with an electric field, temperature change, and light irradiation from the outside. Various experiments have been conducted to induce polarization changes by applying perturbations such as. However, these experiments use a relatively gradual polarization change, and the current density of emitted electrons is as small as 10 -9 A / cm 2 , so that it is difficult to apply to practical devices. It was thought to be. However, in recent years, by applying a high-speed pulse electric field to a ferroelectric ceramic such as lead zirconate titanate (hereinafter abbreviated as PZT) or PLZT to which a small amount of La is added, 10 to 10 2 A That the electron emission of about / cm 2 is performed. Since being reported by Gundel et al., There is a growing momentum to apply this phenomenon to electronic devices.
[0004]
For example, H.M. As shown in FIG. 1, a ferroelectric electron emission cold cathode 1 reported by Gundel et al. Has a lower surface electrode 2, a ferroelectric material 3, and an upper surface electrode 4 as its main components, and for example, Japanese Patent Laid-Open No. 5-325777. As shown in FIG. 2, the ferroelectric electron emission cold cathode 5 described in the publication has an insulating film 6 and an auxiliary electrode 7 in addition to the lower surface electrode 2, the ferroelectric material 3, and the upper surface electrode 4, as main components. Yes. The ferroelectric electron emission cold cathode having the structure shown in FIGS. 1 and 2 applies an alternating electric field between the lower surface electrode and the upper surface electrode, so that the internal electric field of the ferroelectric material changes with a rapid change in the electric field. It is considered that a change in polarization (polarization reversal) occurs, and electrons existing in the vicinity of the upper surface electrode are repelled by Coulomb force to emit electrons.
[0005]
[Problems to be solved by the invention]
However, the ferroelectric electron emission cold cathode described above has the following problems.
[0006]
That is, in the conventional cold cathode, when an alternating electric field is applied between the lower surface electrode and the upper surface electrode and the operation of causing polarization inversion in the ferroelectric body is repeated, the surface of the ferroelectric and / or the upper surface electrode is repeated. Fatigue and deterioration occur, and electrons are no longer emitted. Since this deterioration usually occurs when a pulse voltage is applied several times to several tens of times, it has been impossible to put the cold cathode into practical use as it is. In order to suppress this deterioration, it is conceivable to reduce the absolute value of the applied pulse voltage. However, in this case, there arises a new problem that the current density of emitted electrons is reduced. In addition, the conventional cold cathode has not yet obtained a sufficiently satisfactory amount of electron emission, and has a problem that the amount of emission is unstable.
[0007]
In view of these problems, an electron emission cold cathode using a ferroelectric material has not yet been put into practical use. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a ferroelectric electron emission cold cathode which can overcome the above technical problems, has a long life, and can stably obtain a large electron emission amount.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the ferroelectric electron emission cold cathode of the present invention is a ferroelectric electron emission cold cathode having a back electrode and an upper electrode on both main surfaces of the ferroelectric, on the other main surface of the formed ferroelectric of the upper electrode, a material having high electron emission ability, e.g. MgO, ZnO, CeO 2, Y 2 O 3, BaO, CaO, to form a protective film made of SrO or the like.
[0009]
In this way, by forming a protective film made of a material having a high electron emission capability on the main surface from which electrons are emitted, in terms of both life and stability of the amount of emitted electrons, compared to conventional cold cathodes. The present inventors have found that a ferroelectric electron emission cold cathode that is remarkably excellent can be obtained, and have completed the present invention. Although the detailed mechanism by which the above-described effect can be obtained by employing the configuration of the present invention is not clear at present, the protective film is probably caused by the action concentrated on the ferroelectric surface by abruptly reversing the polarization. It is considered that the lifetime of the cold cathode and the emission amount are stabilized by emitting electrons from the protective film having high electron emission ability while being dispersed and relaxed on the side.
[0010]
As the ferroelectric used in the present invention, ceramic ferroelectrics such as PZT, PLZT, and BaTiO 3 , polymer ferroelectrics such as PVDF, and the like can be used. The thickness of the ferroelectric is preferably 20 nm to 2000 μm, more preferably 100 nm to 200 μm. Although this depends on the conditions of use, if the thickness of the ferroelectric material is less than 20 nm, the electrodes formed on both surfaces are more likely to short-circuit, and if the thickness is greater than 2000 μm, the operating electric field becomes very large. It is necessary to do this. In addition, the ferroelectric material used may be a bulk material or a thin film formed.
[0011]
Any general electrode material can be used as the electrode material used in the present invention. Specific examples include metals such as Pt, Au, Cu, Al, Ni, Ir, Cs, Cr, W, and alloys thereof. In particular, an electrode material having a low work function such as Ir or Cs is desirable in terms of the ease of electron emission. Although any film forming method can be used as the method for forming the electrode, it is preferable to use a film forming technique such as vapor deposition or sputtering. This is because, as will be described later, in the cold cathode of this structure, electrons tend to be less likely to be emitted as the electrode thickness increases.
[0012]
The thickness of the electrode (particularly the upper surface electrode) formed by the cold cathode of the present invention is preferably 5000 mm or less, more preferably 500 mm or less. This is because when the thickness of the electrode is greater than 5000 mm, electron emission is hindered due to the thickness. Although this value varies slightly depending on the electrode material used, for example, when Pt is used as the electrode material, about 100 to 500 mm is most preferable.
[0013]
The operating electric field applied in the present invention may be either positive or negative, and in either case, the absolute value is preferably in the range of about 300 kV / cm or less. This is because, when an electric field exceeding about 300 kV / cm is applied, the high electric field causes a problem that the electrode and the ferroelectric material are destroyed. The pulse time of the operating electric field is preferably 0.01 to 1000 μsec, more preferably 5 to 200 μsec, both positive and negative. If the pulse time is less than 0.01 μs, a sufficient amount of electron emission cannot be obtained because the pulse time is short, and even if an electric field is applied over 1000 μs, the amount of electron emission emitted in a pulse time of 1000 μs or less is almost the same. It is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 3, a ferroelectric electron emission cold cathode 11 according to an embodiment of the present invention mainly includes a thin plate-shaped ferroelectric 12, a bottom electrode 13 formed on the entire back surface of the ferroelectric 12, and The upper surface electrode 14 formed in a stripe pattern on the surface of the ferroelectric 12 and a protective film 15 formed on the entire surface including the upper surface electrode 14. FIG. 3 shows only the cross-sectional shape of the cold cathode 11, but the upper surface electrode 14 and the protective film 15 are formed so as to extend in the depth direction.
[0015]
Specifically, a bulk PZT thin plate of 10 × 15 mm square and 50 μm thickness is used as the ferroelectric body 12. Further, an Ir electrode having a thickness of 500 nm is formed on the lower surface electrode 13 and an Ir electrode having a thickness of 100 nm is formed on the upper surface electrode 14 by a sputtering method. The striped top electrode 14 is formed with a line / space of 500 μm / 300 μm. The protective film 15 is made of an MgO film and is formed to a thickness of 100 nm by EB vapor deposition.
[0016]
Here, the cold cathode 11 of the present invention having the above-described configuration and a conventional cold cathode (not shown) in which an MgO protective film is not formed (other configurations are the same as those of the cold cathode 11 of the present invention). The lifetime of the sample and the stability of the amount of emitted electrons are measured using the measuring apparatus shown in FIG. The ferroelectrics constituting these two types of cold cathodes are electrically polarized in advance. In the measurement, only one stripe of the upper surface electrode is used.
[0017]
Hereinafter, the measurement method will be specifically described. First, as shown in FIG. 4, the sample 20 is fixed to the holder 22 in the vacuum chamber 21, and the upper electrode of the sample 20 is grounded. Next, positive and negative pulse voltages generated by the pulse applying means 23 are applied to the lower surface electrode 13. At this time, the applied pulse is ± 200 V and the pulse width is 10 μsec. Electrons emitted by the application of the pulse voltage are collected by a collector 24 disposed 10 mm above the sample 20. Here, a change in potential due to the current passing through the resistor R is observed using an oscilloscope 25 to measure the peak value of the emission current, and time integration is performed using the integration calculation function of the oscilloscope based on this peak value. As a result, the amount of emitted electrons is calculated.
[0018]
Here, with respect to the cold cathode 11 of the present invention and the conventional cold cathode, the measurement results obtained according to the above-described measurement method are shown in FIG. As can be seen from FIG. 5, in the conventional cold cathode, the amount of emitted electrons is almost zero by applying the pulse voltage about 10 times. This is presumably because the ferroelectric and / or the upper surface electrode deteriorated due to repeated repeated polarization inversion as described in the prior art section. On the other hand, in the cold cathode 11 of the present invention in which the protective film 15 is formed, even when the number of pulse voltage applications exceeds 1000, electrons are emitted as in the beginning of voltage application, and the emission amount is sufficiently stable. have. Further, it can be confirmed that by forming the protective film 15, the emission amount itself is increased by about 30% compared to the conventional cold cathode.
[0019]
In this example, MgO was used as the material of the protective film 15, but similarly measured for each material of ZnO, CeO 2 , Y 2 O 3 , BaO, CaO, SrO having a high secondary electron emission ability, It was confirmed that the same effect as that obtained when the MgO film was formed was obtained. In this embodiment, the protective film 15 is formed on the entire surface of the ferroelectric 12. However, as shown in FIG. 6, for example, a protective film is formed near the three boundary portions of the ferroelectric 12, the upper surface electrode 13, and air. The same kind of effect can be obtained by forming. In addition, in this embodiment, a bulk PZT thin plate is used as the ferroelectric, but a thin PZT thin film formed by, for example, a plasma CVD method may be used as the ferroelectric of the present invention.
[0020]
【The invention's effect】
In this way, by forming a protective film made of a material having a high electron emission capacity on the main surface from which electrons are emitted, the action that has been concentrated inside the ferroelectric substance by abruptly reversing the polarization can be obtained. Since electrons are emitted from the protective film while being dispersed and relaxed on the protective film side, ferroelectric electron emission is far superior to conventional cold cathodes in both aspects of life and stability of the amount of emitted electrons. A cold cathode can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a conventional ferroelectric electron emission cold cathode.
FIG. 2 is a cross-sectional view showing another conventional ferroelectric electron emission cold cathode.
FIG. 3 is a sectional view showing a ferroelectric electron emission cold cathode according to the present invention.
FIG. 4 is a schematic sectional view showing a characteristic measuring apparatus of a ferroelectric electron emission cold cathode.
FIG. 5 is a comparative diagram comparing electron emission characteristics of a cold cathode of the present invention and a conventional cold cathode.
FIG. 6 is a cross-sectional view showing a cold cathode according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Ferroelectric electron emission cold cathode 12 ... Ferroelectric 13 ... Lower surface electrode 14 ... Upper surface electrode 15 ... Protective film

Claims (2)

自発分極を有する強誘電体と、強誘電体の一方主面に形成される裏面電極と、強誘電体の他方主面に形成される上面電極とを有してなる強誘電体電子放出冷陰極であって、
前記上面電極の形成された強誘電体の他方主面上に、MgO、ZnO、CeO 2 、Y 2 3 、BaO、CaO、SrOの中から選ばれる少なくとも1種の材料からなる保護膜を形成したことを特徴とする強誘電体電子放出冷陰極。
A ferroelectric electron emission cold cathode comprising a ferroelectric having spontaneous polarization, a back electrode formed on one main surface of the ferroelectric, and a top electrode formed on the other main surface of the ferroelectric Because
A protective film made of at least one material selected from MgO, ZnO, CeO 2 , Y 2 O 3 , BaO, CaO, and SrO is formed on the other main surface of the ferroelectric on which the upper surface electrode is formed. A ferroelectric electron emission cold cathode.
前記上面電極が、ストライプ状、メッシュ状またはアレイ状に形成されていることを特徴とする請求項1に記載の強誘電体電子放出冷陰極。 2. The ferroelectric electron emission cold cathode according to claim 1, wherein the upper surface electrode is formed in a stripe shape, a mesh shape, or an array shape.
JP07034899A 1999-03-16 1999-03-16 Ferroelectric electron emission cold cathode Expired - Lifetime JP4114264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07034899A JP4114264B2 (en) 1999-03-16 1999-03-16 Ferroelectric electron emission cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07034899A JP4114264B2 (en) 1999-03-16 1999-03-16 Ferroelectric electron emission cold cathode

Publications (2)

Publication Number Publication Date
JP2000268709A JP2000268709A (en) 2000-09-29
JP4114264B2 true JP4114264B2 (en) 2008-07-09

Family

ID=13428847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07034899A Expired - Lifetime JP4114264B2 (en) 1999-03-16 1999-03-16 Ferroelectric electron emission cold cathode

Country Status (1)

Country Link
JP (1) JP4114264B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228065A (en) 2002-11-29 2004-08-12 Ngk Insulators Ltd Electronic pulse emission device
US7187114B2 (en) 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7129642B2 (en) 2002-11-29 2006-10-31 Ngk Insulators, Ltd. Electron emitting method of electron emitter
JP3867065B2 (en) 2002-11-29 2007-01-10 日本碍子株式会社 Electron emitting device and light emitting device
JP2006066336A (en) * 2004-08-30 2006-03-09 Toshiba Corp Display device
JP4730774B2 (en) * 2004-11-30 2011-07-20 日本碍子株式会社 Electron emission device
JP2007017610A (en) * 2005-07-06 2007-01-25 Shimadzu Corp Hydrofluoric acid resistant protective film and optical element
CN111755593A (en) * 2020-06-16 2020-10-09 欧菲微电子技术有限公司 Piezoelectric composite material, piezoelectric composite film, preparation method of piezoelectric composite film and piezoelectric device

Also Published As

Publication number Publication date
JP2000268709A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP4678832B2 (en) light source
KR20020049630A (en) field emitter
WO1997011476A1 (en) Light emitting display element and a flat display
JPH03128680A (en) Piezoelectric/electrostrictive actuator
JP4114264B2 (en) Ferroelectric electron emission cold cathode
JPH05325777A (en) Ferroelectric cold cathode
JP3867065B2 (en) Electron emitting device and light emitting device
Angadi et al. The role of electrode material and polarization fatigue on electron emission from ferroelectric Pb (Zr x Ti 1− x) O 3 cathodes
US7187114B2 (en) Electron emitter comprising emitter section made of dielectric material
US20060214557A1 (en) Light source
KR0141573B1 (en) Field emission device
US4340840A (en) DC Gas discharge display panel with internal memory
EP1403897A2 (en) Light emitting device
US7511409B2 (en) Dielectric film element and composition
JP2002203499A (en) Electron emission element flat panel display device
JP2005183361A (en) Electron emitter, electron-emitting device, display, and light source
US7276462B2 (en) Dielectric composition and dielectric film element
JPH08264105A (en) Ferroelectrics electron emitting cold cathode
JP3869819B2 (en) Electron emitter
US7474060B2 (en) Light source
KR100803207B1 (en) Surface electron emission device and display unit having the same
JP3839792B2 (en) Electron emission method of electron-emitting device
US20080048569A1 (en) Dielectric element and electron emitter
JP3221623B2 (en) Cold cathode electron pulse emission device
EP1637508A2 (en) Dielectric composition and dielectric film element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

EXPY Cancellation because of completion of term