JPH1027539A - Ferroelectric cold cathode and its driving method - Google Patents

Ferroelectric cold cathode and its driving method

Info

Publication number
JPH1027539A
JPH1027539A JP18037796A JP18037796A JPH1027539A JP H1027539 A JPH1027539 A JP H1027539A JP 18037796 A JP18037796 A JP 18037796A JP 18037796 A JP18037796 A JP 18037796A JP H1027539 A JPH1027539 A JP H1027539A
Authority
JP
Japan
Prior art keywords
ferroelectric
upper electrode
cold cathode
electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18037796A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18037796A priority Critical patent/JPH1027539A/en
Publication of JPH1027539A publication Critical patent/JPH1027539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To make controllable the emission area and amount of electrons emitted and the spread of the emitted electrons by providing a portion where an insulating film intervenes between a ferroelectric and an upper electrode and a portion where the ferroelectric makes contact with the upper electrode to form an electron emitting window. SOLUTION: This ferroelectric cold cathode has lower and upper electrodes 2, 3 placed respectively at the bottom and top of a ferroelectric 1, and has between the ferroelectric 1 and the electrode 3 a portion where an insulating film 4 is formed and a portion where the ferroelectric 1 makes contact with the electrode 3, with an electron emitting window formed in the portion where they make contact. Electron emission by the polarization reversal of the ferroelectric is known to start to occur from an applied pulse voltage that is about twice the resisting electric field of the ferroelectric or greater. Thus when a driving pulse voltage 6 is applied to the electrode 3, an effective voltage applied to the ferroelectric 1 during drive is lowered enough under wiring where the ferroelectric 1 and the film 4 form double layers, so that electron emission is not started, while electron emission can be effected only from the electron emitting window.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、印刷装置等の画像
形成装置や平面ディスプレイなどに応用される電子を放
出する強誘電体冷陰極及びその駆動方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric cold cathode for emitting electrons which is applied to an image forming apparatus such as a printing apparatus, a flat display, and the like, and a driving method thereof.

【0002】[0002]

【従来の技術】従来より、Pb(Zr,Ti)O3(以
下PZTと称す)や(Pb,La)(Zr,Ti)O3
(以下PLZTと称す)などの強誘電体は、自発分極を
有する材料であり、高速パルス印加による分極反転によ
って、数A/cm2以上の放出電流密度が得られること
が知られている。
2. Description of the Related Art Conventionally, Pb (Zr, Ti) O 3 (hereinafter referred to as PZT) and (Pb, La) (Zr, Ti) O 3
A ferroelectric such as (hereinafter, referred to as PLZT) is a material having spontaneous polarization, and it is known that an emission current density of several A / cm 2 or more can be obtained by polarization reversal by applying a high-speed pulse.

【0003】ここで、従来の電子ビームを放出する強誘
電体冷陰極として、H.Gundel等により報告されているも
のについて、その概略構成図である図5を用いて説明す
る(J.Appl.Phys.69(2),pp975,1991参照)。図5に示す
ように、この強誘電体冷陰極は、強誘電体101が下部
電極102と上部櫛形電極103とによって挟持された
構造である。下部電極102と上部櫛形電極103との
間に交番電界106を印加すると、強誘電体101内部
に印加された電界を打ち消すような向きに分極が生じ、
この分極が印加交番電界106の変化に伴って反転さ
れ、強電界が生じる。そして、強誘電体101に対して
107V/cm2以上の強電界を印加すると、強誘電体1
01の電子が上部櫛形電極103により引き出され外界
に放出される。
Here, a conventional ferroelectric cold cathode that emits an electron beam, which is reported by H. Gundel et al., Will be described with reference to FIG. 5 which is a schematic configuration diagram thereof (J. Appl. Phys. 69 (2), pp975, 1991). As shown in FIG. 5, the ferroelectric cold cathode has a structure in which a ferroelectric material 101 is sandwiched between a lower electrode 102 and an upper comb electrode 103. When an alternating electric field 106 is applied between the lower electrode 102 and the upper comb-shaped electrode 103, polarization occurs in such a direction as to cancel the electric field applied inside the ferroelectric material 101,
This polarization is reversed with a change in the applied alternating electric field 106, and a strong electric field is generated. When a strong electric field of 10 7 V / cm 2 or more is applied to the ferroelectric substance 101, the ferroelectric substance 1
The electrons 01 are extracted by the upper comb-shaped electrode 103 and emitted to the outside.

【0004】上記の強誘電体冷陰極は、素子構造が簡単
であり、比較的低真空(10-1mTorr以上)でも電
子放出が可能であることから、印刷装置等の画像形成装
置や平面ディスプレイへの応用が提案されている。
The above-mentioned ferroelectric cold cathode has a simple element structure and can emit electrons even in a relatively low vacuum (10 -1 mTorr or more). Therefore, an image forming apparatus such as a printing apparatus or a flat display is used. An application to it has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来の強誘電体冷陰極では、強誘電体上に直接金属配線
を形成して動作させると、配線下の強誘電体全体で反転
し電子放出が起こり、電子放出部を限定することができ
ないため、電子放出面積及び電子放出量を制御すること
ができなかった。さらに、例えばディスプレイへ応用し
たような場合には、配線電極下の強誘電体での分極反転
により発生した電子放出のために、配線部の電子放出に
よる蛍光体発光が生じ、表示品質の低下を招くという問
題があった。また、印刷装置等の画像形成装置に応用し
たものの場合でも、潜像形成において同様のような問題
が発生した。
However, in the above-mentioned conventional ferroelectric cold cathode, when a metal wiring is formed directly on the ferroelectric and operated, the entire ferroelectric under the wiring is inverted and the electron emission occurs. Then, since the electron emission portion cannot be limited, the electron emission area and the electron emission amount cannot be controlled. Further, for example, when applied to a display, electron emission generated by polarization reversal in the ferroelectric under the wiring electrode causes phosphor emission due to electron emission in the wiring portion, which reduces display quality. There was a problem of inviting. Further, even in a case where the present invention is applied to an image forming apparatus such as a printing apparatus, a similar problem occurs in forming a latent image.

【0006】このような問題は、強誘電体を加工して配
線すれば回避できる。しかしながら、PZT等の複合金
属酸化物は、RIE等のドライエッチングが困難である
こと、加工エッジ部分での漏れ電流の増大すること、プ
ロセスの複雑化等の別の問題が発生した。
[0006] Such a problem can be avoided by wiring a ferroelectric material. However, composite metal oxides such as PZT have other problems such as difficulty in dry etching such as RIE, an increase in leakage current at the processing edge, and a complicated process.

【0007】また、PZTセラミックスを利用した強誘
電体冷陰極の場合、電子放出を得るためのパルス電圧は
150〜300Vと高く、デバイス応用のためには駆動
電圧の低減が必要である。
[0007] In the case of a ferroelectric cold cathode using PZT ceramics, the pulse voltage for obtaining electron emission is as high as 150 to 300 V, and it is necessary to reduce the driving voltage for device application.

【0008】また、強誘電体冷陰極からの電子放出は、
強誘電体及び電極表面の散乱による広がり角があり、こ
の放出電子の広がりを抑制できないために、平面ディス
プレイ応用等での高画質を得ることができなかった。
[0008] The electron emission from the ferroelectric cold cathode is
There is a spread angle due to the scattering of the ferroelectric and the electrode surface, and the spread of the emitted electrons cannot be suppressed. Therefore, high image quality cannot be obtained in a flat display application or the like.

【0009】本発明は、上記のような課題を解決するた
めになされたものであって、放出電子の放出面積や放出
量等の制御や放出電子の広がりの抑制が可能で、低電圧
駆動の強誘電体冷陰極及びその駆動方法を提供すること
を目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can control the emission area and emission amount of emitted electrons, suppress the spread of emitted electrons, and perform low-voltage driving. It is an object of the present invention to provide a ferroelectric cold cathode and a driving method thereof.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、強誘電体が下部電極と上部電極とに挟
持されて構成される強誘電体冷陰極において、強誘電体
と上部電極との間に絶縁膜を介する部分と、強誘電体と
上部電極とが接して電子放出窓を成す部分とを備えて構
成している。
According to the present invention, there is provided a ferroelectric cold cathode comprising a ferroelectric material sandwiched between a lower electrode and an upper electrode. Between the ferroelectric material and the upper electrode to form an electron emission window.

【0011】また、本発明では、強誘電体が下部電極と
上部電極とに挟持されて構成される強誘電体冷陰極にお
いて、上部電極として第1の上部電極と第2の上部電極
を備え、強誘電体と第1の上部電極との間に第1の絶縁
膜を介する部分と、強誘電体と第1の上部電極とが接し
て電子放出窓を成す部分とを備え、強誘電体と第1の上
部電極との間に第1の絶縁膜を介する部分の第1の電極
上に第2の絶縁膜を介して第2の上部電極を設けて構成
している。
Further, according to the present invention, a ferroelectric cold cathode comprising a ferroelectric material sandwiched between a lower electrode and an upper electrode includes a first upper electrode and a second upper electrode as upper electrodes, A portion having a first insulating film interposed between the ferroelectric and the first upper electrode; and a portion forming an electron emission window when the ferroelectric and the first upper electrode are in contact with each other. A second upper electrode is provided on a portion of the first electrode between the first upper electrode and the first insulating film via a second insulating film.

【0012】また、本発明では、強誘電体が下部電極と
上部電極とに挟持されて構成される強誘電体冷陰極にお
いて、上部電極として第1の上部電極と第2の上部電極
と第3の上部電極とを備え、強誘電体と第1の上部電極
との間に第1の絶縁膜を介する部分と、強誘電体と第1
の上部電極とが接して電子放出窓を成す部分とを備え、
前記強誘電体と第1の上部電極との間に第1の絶縁膜を
介する部分の第1の電極上に第2の絶縁膜を介して第2
の上部電極を設け、更に該第2の上部電極上に第2の絶
縁膜を介して第3の上部電極を設けて構成している。
According to the present invention, in a ferroelectric cold cathode in which a ferroelectric material is sandwiched between a lower electrode and an upper electrode, the first upper electrode, the second upper electrode, and the third A first insulating film interposed between the ferroelectric and the first upper electrode;
And a portion that forms an electron emission window in contact with the upper electrode of
A second insulating film is interposed between the ferroelectric and the first upper electrode via a second insulating film on a portion of the first electrode where the first insulating film is interposed.
Is provided, and a third upper electrode is provided on the second upper electrode via a second insulating film.

【0013】さらに、本発明では、上記の強誘電体冷陰
極において、絶縁膜の誘電率を100以上としている。
Further, in the present invention, in the above-mentioned ferroelectric cold cathode, the dielectric constant of the insulating film is set to 100 or more.

【0014】また、本発明では、強誘電体が下部電極と
上部電極とに挟持されて構成される強誘電体冷陰極にお
いて、上部電極として第1の上部電極と第2の上部電極
を備え、強誘電体と第1の上部電極との間に第1の絶縁
膜を介する部分と、強誘電体と第1の上部電極とが接し
て電子放出窓を成す部分とを備え、強誘電体と第1の上
部電極との間に第1の絶縁膜を介する部分の第1の電極
上に第2の絶縁膜を介して第2の上部電極を設けて構成
した強誘電体冷陰極の駆動方法として、第2の上部電極
に正の電界を印加することとしている。
Further, according to the present invention, a ferroelectric cold cathode comprising a ferroelectric material sandwiched between a lower electrode and an upper electrode includes a first upper electrode and a second upper electrode as upper electrodes, A portion having a first insulating film interposed between the ferroelectric and the first upper electrode; and a portion forming an electron emission window when the ferroelectric and the first upper electrode are in contact with each other. Driving method of a ferroelectric cold cathode in which a second upper electrode is provided on a portion of the first electrode with a first insulating film interposed between the first upper electrode and a second upper electrode via a second insulating film In this case, a positive electric field is applied to the second upper electrode.

【0015】また、本発明では、強誘電体が下部電極と
上部電極とに挟持されて構成される強誘電体冷陰極にお
いて、上部電極として第1の上部電極と第2の上部電極
と第3の上部電極とを備え、強誘電体と第1の上部電極
との間に第1の絶縁膜を介する部分と、強誘電体と第1
の上部電極とが接して電子放出窓を成す部分とを備え、
前記強誘電体と第1の上部電極との間に第1の絶縁膜を
介する部分の第1の電極上に第2の絶縁膜を介して第2
の上部電極を設け、更に該第2の上部電極上に第2の絶
縁膜を介して第3の上部電極を設けて構成した強誘電体
冷陰極の駆動方法として、第2の上部電極に正の電界を
印加し、第3の上部電極に負の電界を印加することとし
ている。
Further, according to the present invention, in a ferroelectric cold cathode in which a ferroelectric material is sandwiched between a lower electrode and an upper electrode, the first upper electrode, the second upper electrode, and the third A first insulating film interposed between the ferroelectric and the first upper electrode;
And a portion that forms an electron emission window in contact with the upper electrode of
A second insulating film is interposed between the ferroelectric and the first upper electrode via a second insulating film on a portion of the first electrode where the first insulating film is interposed.
A method of driving a ferroelectric cold cathode in which an upper electrode is provided and a third upper electrode is further provided on the second upper electrode with a second insulating film interposed therebetween. Is applied, and a negative electric field is applied to the third upper electrode.

【0016】本発明によれば、強誘電体上に電子放出窓
を備えた構成としているので、電子放出を電子放出窓部
だけに限定することができ、強誘電体上に直接形成され
ていない配線金属下の強誘電体において分極反転が発生
せず、配線下からの電子放出は起こらない。これによ
り、電子放出面積及び電子放出量を制御することが可能
となる。従って、例えばディスプレイ応用の場合、発光
部以外の蛍光体への電子放出によって発光することを防
止でき、表示品質を向上させることができ、このことは
印刷装置等の画像形成装置においても同様の作用を奏す
る。
According to the present invention, since the electron emission window is provided on the ferroelectric, the electron emission can be limited to only the electron emission window, and the electron emission is not directly formed on the ferroelectric. No polarization inversion occurs in the ferroelectric under the wiring metal, and no electron emission from under the wiring occurs. This makes it possible to control the electron emission area and the electron emission amount. Therefore, for example, in the case of a display application, it is possible to prevent light emission due to electron emission to a phosphor other than the light emitting portion, and it is possible to improve display quality. To play.

【0017】また、第2の上部電極により電子引き出し
電界を印加することにより、強誘電体からの電子放出電
圧を低減することができ、素子の駆動電圧の低減が可能
となる。さらに、電子引き出し電界強度を変化させれ
ば、同一パルス電圧での電子放出量を制御することがで
きる。
Further, by applying an electron extraction electric field by the second upper electrode, the electron emission voltage from the ferroelectric can be reduced, and the driving voltage of the element can be reduced. Further, by changing the electron extraction electric field intensity, the amount of electron emission at the same pulse voltage can be controlled.

【0018】また、第3の上部電極に負の電界を印加す
ることにより、放出電子の広がりを抑制することがで
き、高画質の平面ディスプレイや、転写精度に優れた印
刷装置等の画像形成装置を実現することが可能となる。
Further, by applying a negative electric field to the third upper electrode, the spread of emitted electrons can be suppressed, and a high-quality flat display or an image forming apparatus such as a printing apparatus excellent in transfer accuracy can be provided. Can be realized.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。本発明の強誘電体冷陰極
は複数の冷陰極の集合体により構成されるものである
が、以下では単一の素子構造を示す図を用いる。
Embodiments of the present invention will be described below with reference to the drawings. The ferroelectric cold cathode of the present invention is constituted by an aggregate of a plurality of cold cathodes. Hereinafter, a diagram showing a single element structure will be used.

【0020】図1は、本発明の第1の実施形態の強誘電
体冷陰極の概略断面図である。図1に示すように、この
強誘電体冷陰極は、強誘電体1の下部、上部のそれぞれ
に下部電極2、上部電極3が配置され、そして強誘電体
1と上部電極3との間に絶縁膜4が形成されている部分
と、強誘電体1と上部電極3とが接する部分があり、強
誘電体1と上部電極3とが接する部分により電子放出窓
が構成されている。なお、図1は強誘電体冷陰極の断面
構造を示したものであるが、実際には、絶縁膜4及び上
部電極3が電子放出窓周囲を囲むように形成されている
ものである。
FIG. 1 is a schematic sectional view of a ferroelectric cold cathode according to a first embodiment of the present invention. As shown in FIG. 1, this ferroelectric cold cathode has a lower electrode 2 and an upper electrode 3 arranged at a lower portion and an upper portion of a ferroelectric 1 respectively, and between the ferroelectric 1 and the upper electrode 3. There is a portion where the insulating film 4 is formed, and a portion where the ferroelectric 1 and the upper electrode 3 are in contact, and an electron emission window is formed by a portion where the ferroelectric 1 and the upper electrode 3 are in contact. Although FIG. 1 shows a cross-sectional structure of the ferroelectric cold cathode, in practice, the insulating film 4 and the upper electrode 3 are formed so as to surround the electron emission window.

【0021】強誘電体の分極反転による電子放出は、強
誘電体の抗電界のほぼ2倍以上の印加パルス電圧から起
こり始めることが知られている。したがって、この第1
の実施形態の強誘電体冷陰極において、上部電極3に駆
動パルス電圧6を印加すると、強誘電体1と絶縁膜4と
の2重層となっている配線下、即ち強誘電体1と上部電
極3との間に絶縁膜4が形成されている部分では、駆動
時に強誘電体1にかかる実効電圧が低下し電子放出に至
らず、電子放出窓のみからの電子放出を行うことができ
る。
It is known that electron emission due to polarization reversal of a ferroelectric starts to occur at an applied pulse voltage that is at least approximately twice the coercive electric field of the ferroelectric. Therefore, this first
In the ferroelectric cold cathode of the embodiment, when a drive pulse voltage 6 is applied to the upper electrode 3, the ferroelectric 1 and the upper electrode are placed under the wiring which is a double layer of the ferroelectric 1 and the insulating film 4. In a portion where the insulating film 4 is formed between the ferroelectric layer 3 and the gate electrode 3, the effective voltage applied to the ferroelectric 1 is reduced during driving, so that electron emission does not occur, and electrons can be emitted only from the electron emission window.

【0022】次に、第2の実施形態として、図2に示す
ように、上記第1の強誘電体冷陰極の上部電極3上に第
2の絶縁膜14を介して第2の上部電極13を設けたも
のについて説明する。なお、図2も強誘電体冷陰極の断
面構造を示したものであるが、実際には、絶縁膜4、上
部電極3、第2の絶縁膜14、及び第2の上部電極13
が電子放出窓周囲を囲むように形成されているものであ
る。
Next, as a second embodiment, as shown in FIG. 2, a second upper electrode 13 is formed on the upper electrode 3 of the first ferroelectric cold cathode via a second insulating film 14. Will be described. Although FIG. 2 also shows the cross-sectional structure of the ferroelectric cold cathode, actually, the insulating film 4, the upper electrode 3, the second insulating film 14, and the second upper electrode 13 are shown.
Are formed so as to surround the periphery of the electron emission window.

【0023】この第2の実施形態の強誘電体冷陰極の第
2の上部電極13に、正のバイアス電界7を印加する
と、この第2の上部電極13が電子引き出し電極として
作用し、電子放出量を増大させることができる。また、
駆動パルス電圧6を低減しても、上記第1の実施形態の
ものとほぼ同じ電子放出量を得ることができ、駆動電圧
の低減を図ることもできる。さらに、駆動パルス電圧6
を一定とし、第2の上部電極13へ印加する正のバイア
ス電界7を制御することにより、電子放出量の制御を行
うことが可能となる。
When a positive bias electric field 7 is applied to the second upper electrode 13 of the ferroelectric cold cathode according to the second embodiment, the second upper electrode 13 functions as an electron extraction electrode and emits electrons. The amount can be increased. Also,
Even if the drive pulse voltage 6 is reduced, it is possible to obtain substantially the same electron emission amount as that of the first embodiment, and it is also possible to reduce the drive voltage. Further, the driving pulse voltage 6
Is constant, and the amount of electron emission can be controlled by controlling the positive bias electric field 7 applied to the second upper electrode 13.

【0024】次に、第3の実施形態として、図3に示す
ように、上記第2の強誘電体冷陰極の第2の上部電極1
3上に第3の絶縁膜24を介して第3の上部電極23を
設けたものについて説明する。なお、図3も強誘電体冷
陰極の断面構造を示したものであるが、実際には、絶縁
膜4、上部電極3、第2の絶縁膜14、第2の上部電極
13、第3の絶縁膜24、及び第3の上部電極23が電
子放出窓周囲を囲むように形成されているものである。
Next, as a third embodiment, as shown in FIG. 3, the second upper electrode 1 of the second ferroelectric cold cathode is used.
A structure in which a third upper electrode 23 is provided on the substrate 3 via a third insulating film 24 will be described. Although FIG. 3 also shows the cross-sectional structure of the ferroelectric cold cathode, in practice, the insulating film 4, the upper electrode 3, the second insulating film 14, the second upper electrode 13, and the third The insulating film 24 and the third upper electrode 23 are formed so as to surround the electron emission window.

【0025】この第3の実施形態の強誘電体冷陰極の第
3の上部電極23に、負のバイアス電界8を印加する
と、この第3の上部電極23が静電レンズとして作用
し、放出電子の広がりを制御することが可能となる。
When a negative bias electric field 8 is applied to the third upper electrode 23 of the ferroelectric cold cathode according to the third embodiment, the third upper electrode 23 acts as an electrostatic lens and emits electrons. Can be controlled.

【0026】なお、上記の第1〜3の実施形態におい
て、絶縁膜4としては、SiO2やSiN等の誘電体膜
を用いることができるが、これらの誘電体膜は誘電率が
比較的に低い(例えばSiO2が4程度)。これに対し
て、強誘電体1の誘電率は一般に高く(例えばPZTが
1000程度)、強誘電体1と絶縁膜4とが積層された
部分での強誘電体の実効電圧を1/2とするには、絶縁
膜厚として数nmの厚さが要求される。例えば、SiO
2とPZTとの組み合わせでは、1μm厚のPZT膜に
対しSiO2膜厚が4nmとなってしまうが、このよう
な極薄膜で強誘電体上に耐圧及び耐リーク性に優れたも
のを形成するのは困難である。したがって、絶縁膜4と
しては、誘電率が100以上の高誘電体膜が望ましく、
具体的な材料としてはSrTiO3やBaSrTiO3
が挙げられる。
In the first to third embodiments, a dielectric film such as SiO 2 or SiN can be used as the insulating film 4, but these dielectric films have relatively low dielectric constants. Low (for example, about 4 SiO 2 ). On the other hand, the dielectric constant of the ferroelectric 1 is generally high (for example, PZT is about 1000), and the effective voltage of the ferroelectric at the portion where the ferroelectric 1 and the insulating film 4 are stacked is と. To do so, a thickness of several nm is required as the insulating film thickness. For example, SiO
With the combination of 2 and PZT, the SiO 2 film thickness becomes 4 nm for a 1 μm thick PZT film, but such an ultra-thin film is formed on a ferroelectric material with excellent withstand voltage and leak resistance. It is difficult. Therefore, as the insulating film 4, a high dielectric film having a dielectric constant of 100 or more is desirable.
Specific materials include SrTiO 3 and BaSrTiO 3 .

【0027】また、上記第1〜3の実施形態の強誘電体
冷陰極の強誘電体1としては、PZT,PLZT,Sr
Bi2Ta29,BaTiO3などの複合金属酸化物によ
り構成することができる。また、上部電極3,13,2
3には、Pt,Au,Al等の金属材料を用いることが
できる。
Further, as the ferroelectric 1 of the ferroelectric cold cathode of the first to third embodiments, PZT, PLZT, Sr
It can be composed of a composite metal oxide such as Bi 2 Ta 2 O 9 and BaTiO 3 . Also, the upper electrodes 3, 13, 2
For 3, a metal material such as Pt, Au, or Al can be used.

【0028】[0028]

【実施例】以下、本発明のより具体的な実施例につい
て、図面を参照して説明する。まず、第1の実施例とし
て、上記第2の実施形態(図2参照)の強誘電体1とし
てPZT強誘電体膜を用いたものについて、その製造方
法から説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings. First, as a first example, a method using a PZT ferroelectric film as the ferroelectric 1 of the second embodiment (see FIG. 2) will be described from a manufacturing method thereof.

【0029】Si基板表面に熱酸化SiO2形成し、そ
の上にRFスパッタ法により膜厚10nmのTi薄膜と
下部電極2である膜厚200nmのPt電極膜とを順次
形成した。
A thermally oxidized SiO 2 was formed on the surface of the Si substrate, and a 10-nm-thick Ti thin film and a 200-nm-thick Pt electrode film as the lower electrode 2 were sequentially formed thereon by RF sputtering.

【0030】そして、この基板上に、ゾルゲル法によ
り、スピン塗布(3000rpm×20秒)、仮焼成
(400℃×30分)、本焼成(650℃×20秒)を
それぞれ順次繰り返し、約800nmの強誘電体1であ
るPZT強誘電体膜を形成した。
Then, spin coating (3000 rpm × 20 seconds), preliminary baking (400 ° C. × 30 minutes), and main baking (650 ° C. × 20 seconds) are sequentially repeated on the substrate by a sol-gel method to obtain a film of about 800 nm. A PZT ferroelectric film as the ferroelectric 1 was formed.

【0031】その後、絶縁膜4としてSrTiO3膜を
採用し、RFスパッタ法により基板温度400℃、RF
スパッタパワー200W、スパッタガスに酸素100%
を用い、ガス圧2mTorrという条件で、膜厚約50
nmのものを形成した。それから、電子放出窓5を形成
するために、SrTiO3膜のパターニングを行った。
このパターニングは、通常のフォトリソグラフィ、ウエ
ットエッチング(エッチング液:塩酸(HCl)とバッ
ファードフッ素(BHF)と水との混合液)により、2
mm×2mmの窓を形成したものである。
Thereafter, an SrTiO 3 film is adopted as the insulating film 4 and the substrate temperature is set to 400 ° C. by RF sputtering.
Sputtering power 200W, 100% oxygen in sputter gas
At a gas pressure of 2 mTorr and a film thickness of about 50
nm. Then, in order to form the electron emission window 5, the SrTiO 3 film was patterned.
This patterning is performed by ordinary photolithography and wet etching (etching solution: a mixed solution of hydrochloric acid (HCl), buffered fluorine (BHF) and water).
A window of mm × 2 mm was formed.

【0032】このようにして形成した絶縁膜4上に、上
部電極3として膜厚50nmのPt膜をEB蒸着法によ
り形成し、次いで、第2の絶縁膜14として膜厚300
nmのSiO2膜をRFスパッタ法により形成した。そ
して、電子放出窓5を形成するため、上記と同様に、フ
ォトリソグラフィ、ウエットエッチング(エッチング
液:BHF)により、SiO2膜のパターニングを行っ
た。
On the insulating film 4 thus formed, a 50 nm-thick Pt film is formed by EB evaporation as the upper electrode 3, and then a 300 μm-thick second insulating film 14 is formed.
A SiO 2 film having a thickness of 10 nm was formed by an RF sputtering method. Then, in order to form the electron emission window 5, the SiO 2 film was patterned by photolithography and wet etching (etching solution: BHF) in the same manner as described above.

【0033】さらに、この第2の絶縁膜14上に、フォ
トレジストをマスクとしたリフトオフ法により、膜厚2
00nmのPt膜をEB蒸着法を用いて成膜し、電子放
出窓5を有するように第2の上部電極13を形成し、本
実施例の強誘電体冷陰極の作製を完了した。
Further, a film thickness of 2 is formed on the second insulating film 14 by a lift-off method using a photoresist as a mask.
A Pt film having a thickness of 00 nm was formed by using the EB evaporation method, the second upper electrode 13 was formed so as to have the electron emission window 5, and the fabrication of the ferroelectric cold cathode of this example was completed.

【0034】次に、上記のようにして作製した強誘電体
冷陰極の電気特性の評価について、説明する。本実施例
の強誘電体冷陰極を真空槽中に配置し、10-5Torr
まで排気し、コレクターとしてPt板と蛍光板を用い
て、素子駆動を行った。その駆動は、図2に示すよう
に、上部電極3をグランドに接地し、下部電極2に0か
ら20Vの正のバイアス電圧(駆動パルス電圧6)を印
加した。このときに、蛍光板での蛍光体発光による発光
パターンの評価を行った結果、電子放出窓5以外に輝点
は見られず、配線下の電子放出が抑止されていることが
確認された。
Next, evaluation of the electric characteristics of the ferroelectric cold cathode manufactured as described above will be described. The ferroelectric cold cathode of this example was placed in a vacuum chamber, and 10 −5 Torr
The device was driven using a Pt plate and a fluorescent plate as collectors. As shown in FIG. 2, the upper electrode 3 was grounded, and a positive bias voltage (drive pulse voltage 6) of 0 to 20 V was applied to the lower electrode 2 as shown in FIG. At this time, as a result of evaluating the light emission pattern of the phosphor plate due to the phosphor emission, it was confirmed that no bright spot was observed except for the electron emission window 5, and that the electron emission under the wiring was suppressed.

【0035】次いで、電子放出特性及びバイアス電界
(正のバイアス電界7)による電子放出特性の依存性を
測定した結果を図4に示す。図4から、第2の上部電極
13への正のバイアス電界7の増加と伴い、電子放出開
始電圧が低下していることがわかる。また、以上の結果
から、駆動電圧を一定とすれば、第2の上部電極13へ
の正のバイアス電界7により電子放出量を制御可能であ
ることが判る。
Next, FIG. 4 shows the results of measuring the electron emission characteristics and the dependence of the electron emission characteristics on the bias electric field (positive bias electric field 7). FIG. 4 shows that the electron emission start voltage decreases as the positive bias electric field 7 to the second upper electrode 13 increases. From the above results, it is understood that the electron emission amount can be controlled by the positive bias electric field 7 to the second upper electrode 13 when the driving voltage is fixed.

【0036】なお、上記第1の実施例において、下部電
極2が素子全面に形成されているが、本発明はこれに限
定されるものではなく、駆動素子を選択するためのスト
ライプ状電極にするなど、実際の応用デバイスに応じて
適宜設計自由なものである。
In the first embodiment, the lower electrode 2 is formed on the entire surface of the element. However, the present invention is not limited to this. The lower electrode 2 is formed as a stripe-shaped electrode for selecting a driving element. For example, it can be freely designed according to an actual application device.

【0037】次に、上記第3の実施形態に対応する第2
の実施例として、上記第1の実施例の第2の上部電極1
3上に、上記第1の実施例と同様にして、SiO2膜か
ら成る第3の絶縁層24とPt膜から成る第3の上部電
極23とを順次形成した第2の実施例について説明す
る。
Next, the second embodiment corresponding to the third embodiment will be described.
As an example of the second embodiment, the second upper electrode 1 of the first embodiment described above is used.
A second embodiment will be described in which a third insulating layer 24 made of a SiO 2 film and a third upper electrode 23 made of a Pt film are sequentially formed on the substrate 3 in the same manner as in the first embodiment. .

【0038】この第2の実施例の強誘電体冷陰極につい
て、図3に示すように、第3の上部電極23に−20〜
0Vの負のバイアス電界8を印加し、その他は上記第1
の実施例と同様に電気的接続を行った同様の方法で、電
気特性の評価を行った。ただし、ここで、アノードには
蛍光板を用いた。その評価の結果、蛍光板での蛍光体発
光パターンは、第3の上部電極23への負のバイアス電
界8の印加電圧を、負方向に上げる(0Vから−20V
へと下げていく)ことにより、放出電子が収束する様子
が観察され、静電レンズとして作用するレンズ効果が確
認された。
With respect to the ferroelectric cold cathode of the second embodiment, as shown in FIG.
0V negative bias electric field 8 is applied.
The electrical characteristics were evaluated in the same manner as in the Examples, except that the electrical connection was made. Here, a fluorescent plate was used for the anode. As a result of the evaluation, the phosphor emission pattern on the phosphor plate increases the voltage of the negative bias electric field 8 applied to the third upper electrode 23 in the negative direction (from 0 V to −20 V).
, The emission electrons were observed to converge, confirming the lens effect of acting as an electrostatic lens.

【0039】[0039]

【発明の効果】以上のように、本発明によれば、強誘電
体冷陰極による電子放出領域は電子放出窓だけに限定さ
れ、強誘電体上に直接形成されていない配線金属下での
強誘電体の分極反転が発生していないので、配線下から
の電子放出は起こらない。これにより、放出電子量制御
性に優れた強誘電体冷陰極を実現することができる。
As described above, according to the present invention, the electron emission region by the ferroelectric cold cathode is limited to only the electron emission window, and the ferroelectric under the wiring metal which is not directly formed on the ferroelectric. Since the polarization inversion of the dielectric does not occur, the electron emission from under the wiring does not occur. As a result, a ferroelectric cold cathode having excellent control of the amount of emitted electrons can be realized.

【0040】また、強誘電体を加工することなく平面構
造の強誘電体エミッタを形成することができ、冷陰極作
製プロセスを簡略化することができる。
Further, a ferroelectric emitter having a planar structure can be formed without processing the ferroelectric, thereby simplifying a cold cathode manufacturing process.

【0041】したがって、本発明の強誘電体冷陰極を用
いれば、発光部分以外の蛍光体への電子放出によって発
生していた表示品質の低下がない高品質な平面ディスプ
レイや、転写精度に優れた印刷装置等の画像形成装置を
実現することが可能となる。
Therefore, when the ferroelectric cold cathode of the present invention is used, a high-quality flat display having no deterioration in display quality caused by electron emission to a phosphor other than the light emitting portion, and excellent transfer accuracy are obtained. An image forming apparatus such as a printing apparatus can be realized.

【0042】さらに、本発明によれば、電子引き出し電
界印加電極として、第2の上部電極を設けることによ
り、強誘電体からの電子放出のために印加するパルス電
圧を低減することができ、素子の駆動電圧の低減を図る
ことができる。また、電子引き出し電界強度、即ち第2
の上部電極への印加電界強度を変化させることにより、
同一パスル電圧での電子放出量を制御することが可能と
なる。
Further, according to the present invention, by providing the second upper electrode as the electrode for applying the electron extraction electric field, the pulse voltage applied for emitting electrons from the ferroelectric can be reduced. Can be reduced. In addition, the electric field strength of the electron extraction, that is, the second
By changing the electric field strength applied to the upper electrode of
It is possible to control the amount of electron emission at the same pulse voltage.

【0043】さらに、本発明によれば、第3の上部電極
を設けることにより、放出電子の広がりを抑制すること
ができ、高画質な平面ディスプレイや転写精度に優れた
印刷装置等の画像形成装置を実現することが可能とな
る。
Further, according to the present invention, by providing the third upper electrode, the spread of emitted electrons can be suppressed, and an image forming apparatus such as a high-quality flat display or a printing apparatus excellent in transfer accuracy can be provided. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施形態の概略構造を示す
要部断面図である。
FIG. 1 is a sectional view of a main part showing a schematic structure of a first embodiment according to the present invention.

【図2】本発明による第2の実施形態の概略構造を示す
要部断面図である。
FIG. 2 is a sectional view showing a main part of a schematic structure of a second embodiment according to the present invention.

【図3】本発明による第3の実施形態の概略構造を示す
要部断面図である。
FIG. 3 is a cross-sectional view of a main part showing a schematic structure of a third embodiment according to the present invention.

【図4】第2の実施形態に対応する第1の実施例の電子
放出特性及び第2の上部電極に印加するバイアス電界に
よる電子放出特性の依存性を測定した結果を示す図であ
る。
FIG. 4 is a view showing the results of measuring the electron emission characteristics of the first example corresponding to the second embodiment and the dependence of the electron emission characteristics on the bias electric field applied to the second upper electrode.

【図5】従来の強誘電体冷陰極の概略構造を示す要部断
面図である。
FIG. 5 is a sectional view of a main part showing a schematic structure of a conventional ferroelectric cold cathode.

【符号の説明】[Explanation of symbols]

1 強誘電体 2 下部電極 3,13,23 上部電極 4,14,24 絶縁層 5 電子放出窓 6 駆動パルス電圧 7 正のバイアス電界 8 負のバイアス電界 DESCRIPTION OF SYMBOLS 1 Ferroelectric 2 Lower electrode 3, 13, 23 Upper electrode 4, 14, 24 Insulating layer 5 Electron emission window 6 Drive pulse voltage 7 Positive bias electric field 8 Negative bias electric field

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体が下部電極と上部電極とに挟持
されて構成される強誘電体冷陰極において、 強誘電体と上部電極との間に絶縁膜を介する部分と、強
誘電体と上部電極とが接して電子放出窓を成す部分とを
備えたことを特徴とする強誘電体冷陰極。
1. A ferroelectric cold cathode comprising a ferroelectric material sandwiched between a lower electrode and an upper electrode, wherein a portion of the ferroelectric material having an insulating film interposed between the ferroelectric material and the upper electrode; A portion forming an electron emission window in contact with the upper electrode.
【請求項2】 強誘電体が下部電極と上部電極とに挟持
されて構成される強誘電体冷陰極において、 上部電極として第1の上部電極と第2の上部電極を備
え、強誘電体と第1の上部電極との間に第1の絶縁膜を
介する部分と、強誘電体と第1の上部電極とが接して電
子放出窓を成す部分とを備え、前記強誘電体と第1の上
部電極との間に第1の絶縁膜を介する部分の第1の電極
上に第2の絶縁膜を介して第2の上部電極を設けたこと
を特徴とする強誘電体冷陰極。
2. A ferroelectric cold cathode comprising a ferroelectric material sandwiched between a lower electrode and an upper electrode, comprising: a first upper electrode and a second upper electrode as upper electrodes; A portion having a first insulating film interposed between the first upper electrode and a portion forming an electron emission window when the ferroelectric and the first upper electrode are in contact with each other; A ferroelectric cold cathode characterized in that a second upper electrode is provided on a portion of the first electrode with a first insulating film interposed between the upper electrode and the second upper electrode with a second insulating film interposed therebetween.
【請求項3】 強誘電体が下部電極と上部電極とに挟持
されて構成される強誘電体冷陰極において、 上部電極として第1の上部電極と第2の上部電極と第3
の上部電極とを備え、強誘電体と第1の上部電極との間
に第1の絶縁膜を介する部分と、強誘電体と第1の上部
電極とが接して電子放出窓を成す部分とを備え、前記強
誘電体と第1の上部電極との間に第1の絶縁膜を介する
部分の第1の電極上に第2の絶縁膜を介して第2の上部
電極を設け、更に該第2の上部電極上に第2の絶縁膜を
介して第3の上部電極を設けたことを特徴とする強誘電
体冷陰極。
3. A ferroelectric cold cathode comprising a ferroelectric material sandwiched between a lower electrode and an upper electrode, wherein the first upper electrode, the second upper electrode, and the third
A portion where a first insulating film is interposed between the ferroelectric and the first upper electrode; and a portion where the ferroelectric and the first upper electrode are in contact with each other to form an electron emission window. And providing a second upper electrode via a second insulating film on a portion of the first electrode via a first insulating film between the ferroelectric and the first upper electrode, further comprising: A ferroelectric cold cathode comprising a third upper electrode provided on a second upper electrode via a second insulating film.
【請求項4】 請求項1から3のいずれか1項に記載の
強誘電体冷陰極において、前記絶縁膜の誘電率が100
以上であることを特徴とする強誘電体冷陰極。
4. The ferroelectric cold cathode according to claim 1, wherein said insulating film has a dielectric constant of 100.
A ferroelectric cold cathode characterized by the above.
【請求項5】 請求項2に記載の強誘電体冷陰極の駆動
方法であって、前記第2の上部電極に正の電界を印加す
ることを特徴とする強誘電体冷陰極の駆動方法。
5. The method for driving a ferroelectric cold cathode according to claim 2, wherein a positive electric field is applied to the second upper electrode.
【請求項6】 請求項3に記載の強誘電体冷陰極の駆動
方法であって、前記第2の上部電極に正の電界を印加
し、前記第3の上部電極に負の電界を印加することを特
徴とする強誘電体冷陰極の駆動方法。
6. The method of driving a ferroelectric cold cathode according to claim 3, wherein a positive electric field is applied to the second upper electrode, and a negative electric field is applied to the third upper electrode. A method of driving a ferroelectric cold cathode.
JP18037796A 1996-07-10 1996-07-10 Ferroelectric cold cathode and its driving method Pending JPH1027539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18037796A JPH1027539A (en) 1996-07-10 1996-07-10 Ferroelectric cold cathode and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18037796A JPH1027539A (en) 1996-07-10 1996-07-10 Ferroelectric cold cathode and its driving method

Publications (1)

Publication Number Publication Date
JPH1027539A true JPH1027539A (en) 1998-01-27

Family

ID=16082183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18037796A Pending JPH1027539A (en) 1996-07-10 1996-07-10 Ferroelectric cold cathode and its driving method

Country Status (1)

Country Link
JP (1) JPH1027539A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789221A1 (en) * 1999-01-29 2000-08-04 Univ Nantes Electron emissive ferroelectric cathode for an electron tube, flat display screen or particle accelerator has supplementary ferroelectric, anti-ferroelectric or dielectric layer covering electrode portion edges
FR2789223A1 (en) * 1999-01-29 2000-08-04 Univ Nantes Electron emissive ferroelectric cathode for an electron tube, flat display screen or particle accelerator has electrodes positioned to provide a main electric field line component parallel to the electron emissive surface
WO2003073458A1 (en) * 2002-02-26 2003-09-04 Ngk Insulators, Ltd. Electron emitting device, method for driving electron emitting device, display, and method for driving display
US6784621B2 (en) 2001-10-29 2004-08-31 Matsushita Electric Works, Ltd. Field emission-type electron source and method of biasing the same
US6897620B1 (en) 2002-06-24 2005-05-24 Ngk Insulators, Ltd. Electron emitter, drive circuit of electron emitter and method of driving electron emitter
US6936972B2 (en) 2000-12-22 2005-08-30 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US6975074B2 (en) 2002-11-29 2005-12-13 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7067970B2 (en) 2002-09-30 2006-06-27 Ngk Insulators, Ltd. Light emitting device
US7071628B2 (en) 2002-11-29 2006-07-04 Ngk Insulators, Ltd. Electronic pulse generation device
JP2006216386A (en) * 2005-02-03 2006-08-17 Sonac Kk Electron emission device and its driving method
US7129642B2 (en) 2002-11-29 2006-10-31 Ngk Insulators, Ltd. Electron emitting method of electron emitter
US7176609B2 (en) 2003-10-03 2007-02-13 Ngk Insulators, Ltd. High emission low voltage electron emitter
US7187114B2 (en) 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7288881B2 (en) 2002-11-29 2007-10-30 Ngk Insulators, Ltd. Electron emitter and light emission element
US7307383B2 (en) 2003-10-03 2007-12-11 Ngk Insulators, Ltd. Electron emitter and method of producing the same
US7336026B2 (en) 2003-10-03 2008-02-26 Ngk Insulators, Ltd. High efficiency dielectric electron emitter
US7379037B2 (en) 2003-03-26 2008-05-27 Ngk Insulators, Ltd. Display apparatus, method of driving display apparatus, electron emitter, method of driving electron emitter, apparatus for driving electron emitter, electron emission apparatus, and method of driving electron emission apparatus
US7474060B2 (en) 2003-08-22 2009-01-06 Ngk Insulators, Ltd. Light source
US7719201B2 (en) 2003-10-03 2010-05-18 Ngk Insulators, Ltd. Microdevice, microdevice array, amplifying circuit, memory device, analog switch, and current control unit
CN111443225A (en) * 2020-04-15 2020-07-24 西安科技大学 Ferroelectric cathode test system and method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789223A1 (en) * 1999-01-29 2000-08-04 Univ Nantes Electron emissive ferroelectric cathode for an electron tube, flat display screen or particle accelerator has electrodes positioned to provide a main electric field line component parallel to the electron emissive surface
FR2789221A1 (en) * 1999-01-29 2000-08-04 Univ Nantes Electron emissive ferroelectric cathode for an electron tube, flat display screen or particle accelerator has supplementary ferroelectric, anti-ferroelectric or dielectric layer covering electrode portion edges
US6936972B2 (en) 2000-12-22 2005-08-30 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US6784621B2 (en) 2001-10-29 2004-08-31 Matsushita Electric Works, Ltd. Field emission-type electron source and method of biasing the same
US6946800B2 (en) 2002-02-26 2005-09-20 Ngk Insulators, Ltd. Electron emitter, method of driving electron emitter, display and method of driving display
WO2003073458A1 (en) * 2002-02-26 2003-09-04 Ngk Insulators, Ltd. Electron emitting device, method for driving electron emitting device, display, and method for driving display
US6897620B1 (en) 2002-06-24 2005-05-24 Ngk Insulators, Ltd. Electron emitter, drive circuit of electron emitter and method of driving electron emitter
US7067970B2 (en) 2002-09-30 2006-06-27 Ngk Insulators, Ltd. Light emitting device
US6975074B2 (en) 2002-11-29 2005-12-13 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7071628B2 (en) 2002-11-29 2006-07-04 Ngk Insulators, Ltd. Electronic pulse generation device
US7129642B2 (en) 2002-11-29 2006-10-31 Ngk Insulators, Ltd. Electron emitting method of electron emitter
US7187114B2 (en) 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
US7288881B2 (en) 2002-11-29 2007-10-30 Ngk Insulators, Ltd. Electron emitter and light emission element
US7379037B2 (en) 2003-03-26 2008-05-27 Ngk Insulators, Ltd. Display apparatus, method of driving display apparatus, electron emitter, method of driving electron emitter, apparatus for driving electron emitter, electron emission apparatus, and method of driving electron emission apparatus
US7474060B2 (en) 2003-08-22 2009-01-06 Ngk Insulators, Ltd. Light source
US7307383B2 (en) 2003-10-03 2007-12-11 Ngk Insulators, Ltd. Electron emitter and method of producing the same
US7336026B2 (en) 2003-10-03 2008-02-26 Ngk Insulators, Ltd. High efficiency dielectric electron emitter
US7176609B2 (en) 2003-10-03 2007-02-13 Ngk Insulators, Ltd. High emission low voltage electron emitter
US7719201B2 (en) 2003-10-03 2010-05-18 Ngk Insulators, Ltd. Microdevice, microdevice array, amplifying circuit, memory device, analog switch, and current control unit
JP2006216386A (en) * 2005-02-03 2006-08-17 Sonac Kk Electron emission device and its driving method
CN111443225A (en) * 2020-04-15 2020-07-24 西安科技大学 Ferroelectric cathode test system and method

Similar Documents

Publication Publication Date Title
JPH1027539A (en) Ferroelectric cold cathode and its driving method
JP3633154B2 (en) Thin film type electron source and thin film type electron source application equipment
JPH08171877A (en) Anode plate for flat panel display with accumulated getter
US5869928A (en) Method of manufacturing a flat panel field emission display having auto gettering
JPH0917335A (en) Preparation of low-voltage driven type field emitter array
JP3066573B2 (en) Field emission display device
JPH10223129A (en) Ferroelectric cold cathode
JP3243471B2 (en) Method for manufacturing electron-emitting device
US7067970B2 (en) Light emitting device
JPH10153979A (en) Display device and aperture for application of electron beam
JPH0652788A (en) Field emission type electron source device and its manufacture
JP3230432B2 (en) Field emission device and method of manufacturing the same
JP2933855B2 (en) Electron emitting element, electron beam generator using the same, and method of manufacturing image forming apparatus
Sagawa et al. 14.2: Novel Device Structure of MIM Cathode Array for Field Emission Displays
KR19980034432A (en) Electron-emitting vacuum device using ferroelectric thin film
JP4422435B2 (en) EL element
KR100282261B1 (en) Field emission cathode array and its manufacturing method
JPH07106067A (en) Thin film electroluminescence element and manufacture thereof
JP3218648B2 (en) Method for manufacturing gas discharge display element
KR100511257B1 (en) Field emission device and manufacturing method thereof
KR100474272B1 (en) Flat type field emission display and manufacturing method thereof
JPH05291634A (en) Superconductive device and its manufacture
JPH0764490A (en) Light emitting display element
JPH08255556A (en) Field emission electron source device, manufacture thereof and image display using the device
JPH0218895A (en) Thin film type el element