JPH08261388A - Residual stress improving method - Google Patents

Residual stress improving method

Info

Publication number
JPH08261388A
JPH08261388A JP6222695A JP6222695A JPH08261388A JP H08261388 A JPH08261388 A JP H08261388A JP 6222695 A JP6222695 A JP 6222695A JP 6222695 A JP6222695 A JP 6222695A JP H08261388 A JPH08261388 A JP H08261388A
Authority
JP
Japan
Prior art keywords
residual stress
stress
pipe
thermal expansion
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6222695A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakashiro
憲行 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6222695A priority Critical patent/JPH08261388A/en
Publication of JPH08261388A publication Critical patent/JPH08261388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

PURPOSE: To provide a residual stress improving method wherein even during a use in a high temperature state, a residual stress on the tensile side in the vicinity of a weld part is relieved or removed or the factor of an inter granular stress corrosion crack is decreased or eliminated, in a structure formed of an austenite stainless steel and a nickel alloy having sensitivity to an inter granular stress corrosion crack. CONSTITUTION: When a piping 1 joined through welding is used under environment where temperature is changed, a sleeve 3 having the coefficient of thermal expansion higher than that of a material of the piping 1 is securely joined with the outer peripheral surface, containing a weld part 2, of the piping 1 and thermal elongation on the outer peripheral side during the high temperature use of the piping 1 is promoted by thermal elongation of the sleeve 3. This constitution generates a compression stress on the inner peripheral side of the piping 1, relieves or removes a residual stress on the tensile side during welding remaining on the inner surface side of the piping 1, or causes a residual stress on the tension side to form a residual stress on the compression side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶接により接合された構
造物を温度が変化する環境下で使用する場合に適用され
る残留応力改善方法に係り、特に原子力発電プラント等
の炉内機器や炉内構造物または各種配管等の溶接部近傍
を応力腐食割れから防止するために好適な残留応力改善
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual stress improving method applied when a structure joined by welding is used in an environment where the temperature changes, and in particular, in-core equipment and furnaces of nuclear power plants and the like. The present invention relates to a residual stress improving method suitable for preventing stress corrosion cracking in the vicinity of welded portions such as internal structures or various pipes.

【0002】[0002]

【従来の技術】例えば沸騰水型原子力発電プラントの配
管、炉内機器および炉内構造物等は、一般にオーステナ
イト系ステンレス鋼またはニッケル基合金等の特殊金属
が適用されている。
2. Description of the Related Art For example, pipes of boiling water nuclear power plants, in-core equipment and in-core structures are generally made of special metals such as austenitic stainless steel or nickel-base alloys.

【0003】このようなオーステナイト系ステンレス鋼
またはニッケル基合金等で構成される配管や炉内機器、
炉内構造物等は、運転時に高温純水中で使用したような
場合、粒界応力腐食割れ(IGSCC)を起こす可能性
がある。
[0003] Pipes and furnace equipment made of such austenitic stainless steel or nickel base alloy,
In-furnace structures may cause intergranular stress corrosion cracking (IGSCC) when used in high temperature pure water during operation.

【0004】この粒界応力腐食割れの主たる材料側の因
子は、溶接等の熱サイクルを受けたことによる溶接熱影
響部での粒界炭化物の形成と、それに伴う粒界近傍にお
けるCr欠乏層の形成、つまり溶接鋭敏化と考えられてい
る。
The main factor of the grain boundary stress corrosion cracking on the material side is the formation of grain boundary carbides in the heat affected zone of the weld due to the heat cycle such as welding and the accompanying formation of a Cr-deficient layer near the grain boundary. It is considered to be formation, that is, welding sensitization.

【0005】しかし、これに加えて前記材料側の因子の
他に、粒界応力腐食割れを引起こす必要条件として、高
温流体と接液する構造物の表面側に降伏応力を越える引
張り残留応力が存在することが挙げられる。
However, in addition to the above-mentioned factors on the material side, as a necessary condition for causing intergranular stress corrosion cracking, a tensile residual stress exceeding the yield stress is present on the surface side of the structure in contact with the high temperature fluid. Existence is mentioned.

【0006】特にオーステナイト系ステンレス鋼やニッ
ケル基合金等で構成され高温純水を流通する原子力発電
プラントの配管の場合、高温純水と接液する内周面側の
溶接部近傍部分に降伏応力を越える引張り残留応力が生
じ、これにより粒界応力腐食割れを起こす可能性があ
る。
Particularly in the case of piping of a nuclear power plant which is made of austenitic stainless steel, nickel-base alloy or the like and circulates high temperature pure water, a yield stress is applied to a portion in the vicinity of a weld on the inner peripheral surface which contacts the high temperature pure water. Excessive tensile residual stress is generated, which may cause intergranular stress corrosion cracking.

【0007】[0007]

【発明が解決しようとする課題】従来では、溶接により
接合された構造物を温度が変化する環境下で使用する場
合に、構造物の表面に残留している溶接時の引張り側の
残留応力が原因となって粒界応力腐食割れ(IGSC
C)を起こす可能性があった。
Conventionally, when a structure joined by welding is used in an environment where the temperature changes, the residual stress on the tensile side at the time of welding remaining on the surface of the structure is Intergranular stress corrosion cracking (IGSC
C) could occur.

【0008】本発明はこのような事情に鑑みてなされた
もので、その目的は、粒界応力腐食割れに対する感受性
を有するオーステナイト系ステンレス鋼やニッケル基合
金等で構成される構造物について、高温状態下で使用し
た場合においても溶接部近傍の引張り側の残留応力を軽
減,除去または圧縮応力側にして、粒界応力腐食割れの
要因を減少または削除できる残留応力改善方法を提供す
ること、また同時に腐食自体も有効的に防止できる残留
応力改善方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to obtain a structure composed of austenitic stainless steel, nickel base alloy or the like having a susceptibility to intergranular stress corrosion cracking at a high temperature. To provide a residual stress improvement method that can reduce or eliminate the factor of intergranular stress corrosion cracking by reducing, eliminating or compressing the residual stress on the tensile side near the welded part even when used below. It is to provide a residual stress improving method capable of effectively preventing corrosion itself.

【0009】[0009]

【課題を解決するための手段および作用】請求項1記載
の発明に係る残留応力改善方法は、溶接により接合され
た構造物を温度が変化する環境下で使用する場合に、前
記構造物の溶接部を含む一方の表面に、前記構造物の材
料よりも熱膨脹係数が大きい材料からなる補助部材を接
合固定して、前記構造物の高温使用時における一方の表
面側の熱伸びを前記補助部材の熱伸びによって助長し、
これにより前記構造物の他方の表面側に圧縮応力を生じ
させて前記構造材の他方の表面に残留している溶接時の
引張り側の残留応力を軽減または除去し、あるいはその
引張り側の残留応力を圧縮側の残留応力にすることを特
徴とする。
A method for improving residual stress according to the invention as defined in claim 1, wherein when the structures joined by welding are used in an environment where the temperature changes, the welding of the structures is performed. An auxiliary member made of a material having a coefficient of thermal expansion larger than that of the material of the structure is joined and fixed to one surface of the auxiliary member, and the thermal expansion of the one surface side of the structure when the structure is used at high temperature. Promoted by heat expansion,
Thereby, compressive stress is generated on the other surface side of the structure to reduce or eliminate the residual stress on the tensile side at the time of welding remaining on the other surface of the structural material, or the residual stress on the tensile side. Is a residual stress on the compression side.

【0010】本発明によれば、構造物の高温使用時にお
ける一方の表面側の熱伸びが補助部材熱伸びによって助
長され、構造物の同表面側には大きい引張り応力が作用
する状態となる。これに反し、構造物の接液側である内
周面側には、応力のバランスにより圧縮応力が生じ、溶
接時に構造物の内面側に発生していた引張り側の残留応
力が軽減または除去される。あるいは、圧縮作用が大き
いは場合には引張り側の残留応力が圧縮側の残留応力に
変化する。
According to the present invention, the thermal expansion of one surface side of the structure when used at high temperature is promoted by the thermal expansion of the auxiliary member, and a large tensile stress acts on the same surface side of the structure. On the contrary, compressive stress is generated on the inner peripheral surface side, which is the liquid contact side of the structure, due to the stress balance, and the residual stress on the tensile side generated on the inner surface side of the structure during welding is reduced or eliminated. It Alternatively, when the compression action is large, the residual stress on the tensile side changes to the residual stress on the compression side.

【0011】したがって、本発明によれば、粒界応力腐
食割れに対する感受性を有するオーステナイト系ステン
レス鋼やニッケル基合金等で構成された構造物につい
て、高温状態下で使用した場合においても溶接部近傍の
引張り側の残留応力を軽減,除去または圧縮応力側にす
ることで、粒界応力腐食割れの要因を減少または削除す
ることができる。
Therefore, according to the present invention, a structure composed of austenitic stainless steel, nickel-base alloy or the like which is susceptible to intergranular stress corrosion cracking can be used in the vicinity of the weld even when used under high temperature conditions. The factor of intergranular stress corrosion cracking can be reduced or eliminated by reducing or eliminating the residual stress on the tensile side or by setting it on the compressive stress side.

【0012】請求項2記載の残留応力改善方法は、溶接
により接合された配管を温度が変化する環境下で使用す
る場合に、前記配管の溶接部を含む外周面に、前記配管
の材料よりも熱膨脹係数が大きいスリーブを接合固定し
て、前記配管の高温使用時における外周面側の熱伸びを
前記スリーブの熱伸びによって助長し、これにより前記
配管の内周面側に圧縮応力を生じさせて前記配管の内面
側に残留している溶接時の引張り側の残留応力を軽減ま
たは除去し、あるいはその引張り側の残留応力を圧縮側
の残留応力にすることを特徴とする。
According to a second aspect of the present invention, in the residual stress improving method, when the pipes joined by welding are used in an environment where the temperature changes, the outer peripheral surface including the welded portion of the pipes is better than the pipe material. By joining and fixing the sleeve having a large coefficient of thermal expansion, the thermal expansion of the outer peripheral surface side of the pipe when used at high temperature is promoted by the thermal expansion of the sleeve, thereby generating compressive stress on the inner peripheral surface side of the pipe. The residual stress on the tensile side at the time of welding remaining on the inner surface side of the pipe is reduced or removed, or the residual stress on the tensile side is made the residual stress on the compression side.

【0013】本発明によれば、特に原子力発電プラント
等の炉内配管等、各種配管についての溶接部近傍を応力
腐食割れから有効的に防止することができる。請求項3
記載の残留応力改善方法は、請求項2記載の方法におい
て、スリーブを複数の分割体からなるものとして配管の
外周面に溶接部の全面を被覆する状態で締結固定するこ
とを特徴とする。
According to the present invention, it is possible to effectively prevent stress corrosion cracking in the vicinity of welded portions of various pipes such as in-core pipes of nuclear power plants. Claim 3
The described residual stress improving method is characterized in that, in the method according to claim 2, the sleeve is composed of a plurality of divided bodies and is fastened and fixed to the outer peripheral surface of the pipe while covering the entire surface of the welded portion.

【0014】本発明によれば、スリーブを既存の配管等
に容易に装着することができ、実プラントなどへの応力
腐食割れの防止技術の適用が図れるようになる。請求項
4記載の残留応力改善方法は、請求項1から3までに記
載の方法において、補助部材またはスリーブに耐食性材
料を適用し、溶接部を耐食状態に保持することを特徴と
する。
According to the present invention, the sleeve can be easily attached to an existing pipe or the like, and the technique of preventing stress corrosion cracking can be applied to an actual plant or the like. A method for improving residual stress according to a fourth aspect is characterized in that, in the method according to the first to third aspects, a corrosion resistant material is applied to the auxiliary member or the sleeve to keep the welded portion in a corrosion resistant state.

【0015】本発明によれば、補助部材やスリーブの材
料として耐食性金属を適用することで、各種構造物や配
管の溶接部全体を覆うことで溶接部近傍の部分を腐食自
体から有効的に防止できる。
According to the present invention, by applying a corrosion-resistant metal as the material of the auxiliary member or the sleeve, the entire welded portion of various structures or pipes is covered, and the portion near the welded portion is effectively prevented from corrosion itself. it can.

【0016】[0016]

【実施例】以下、本発明に係る残留応力改善方法の一実
施例を図面を参照して説明する。本実施例は沸騰水型原
子力プランプラントの残留応力改善に適用したもので、
図1は本実施例による方法を実施した配管の常温時にお
ける状態を示す断面図、図2は同配管の高温時における
状態を示す断面図、図3は作用を示す特性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the residual stress improving method according to the present invention will be described below with reference to the drawings. This example is applied to improve the residual stress of a boiling water nuclear power plant,
FIG. 1 is a cross-sectional view showing a state of a pipe subjected to the method according to the present embodiment at room temperature, FIG. 2 is a cross-sectional view showing a state of the same pipe at high temperature, and FIG. 3 is a characteristic diagram showing the action.

【0017】図1に示すように、本実施例の配管1は溶
接部2によって接合されており、この配管1の材料には
オーステナイト系ステンレス鋼またはニッケル基合金が
適用されている。この配管1には、例えば運転時に28
0℃近傍の流体が流通する。そして、運転停止時には常
温または50℃まで温度低下する。
As shown in FIG. 1, the pipe 1 of this embodiment is joined by a welded portion 2, and the material of the pipe 1 is austenitic stainless steel or nickel-base alloy. This pipe 1 has, for example, 28
A fluid near 0 ° C circulates. Then, when the operation is stopped, the temperature drops to room temperature or 50 ° C.

【0018】このように温度が変化する環境下で使用す
る配管1の溶接部2を含む外周面に、配管1の材料であ
るオーステナイト系ステンレス鋼またはニッケル基合金
よりも熱膨脹係数が大きい材料、例えばAl合金、13
%Mn鋼、フェライト系ステンレス鋼等からなるスリー
ブ3を接合固定する。
A material having a larger coefficient of thermal expansion than the austenitic stainless steel or nickel-based alloy, which is the material of the pipe 1, is formed on the outer peripheral surface including the welded portion 2 of the pipe 1 used in such an environment where the temperature changes. Al alloy, 13
The sleeve 3 made of% Mn steel, ferritic stainless steel or the like is joined and fixed.

【0019】このスリーブ3は、例えばフランジ4付き
単割り円筒状の一対のべエレメント3aからなるもの
で、これを室温または50℃以下の温度状態の下で、配
管1に被着してボルト5により締結固定する。
The sleeve 3 is composed of, for example, a pair of monolithic cylindrical element 3a with a flange 4, which is attached to the pipe 1 at room temperature or at a temperature of 50 ° C. or less and the bolt 5 is attached thereto. Fasten with.

【0020】しかして、プラント運転に入って配管1が
280℃近傍の高温に昇温すると、配管1の外周部に接
合固定したスリーブ3は、配管1に比べて大きく膨脹す
るため、図1に示す常温時の軸方向長さL1から図2に
示すように、軸方向長さL2まで伸びる。
When the pipe 1 is heated to a high temperature of about 280 ° C. during the plant operation, the sleeve 3 bonded and fixed to the outer peripheral portion of the pipe 1 expands more than the pipe 1, so that FIG. As shown in FIG. 2, it extends from the axial length L1 at normal temperature to the axial length L2.

【0021】これにより、配管1の高温使用時における
外周面側の熱伸びがスリーブ3の熱伸びによって助長さ
れ、配管1の外周面側には大きい引張り応力が作用する
状態となる。
As a result, the thermal expansion of the outer peripheral surface side of the pipe 1 when used at high temperature is promoted by the thermal expansion of the sleeve 3, and a large tensile stress acts on the outer peripheral surface side of the pipe 1.

【0022】それに反し、配管1の接液側である内周面
側には、応力のバランスにより圧縮応力が生じ、溶接時
に配管1の内面側に発生していた引張り側の残留応力が
軽減または除去される。あるいは、圧縮作用が大きいは
場合には引張り側の残留応力が圧縮側の残留応力に変化
する。
On the contrary, compressive stress is generated on the inner peripheral surface side of the pipe 1 which is the liquid contact side due to the balance of stress, and the residual stress on the tensile side generated on the inner surface side of the pipe 1 during welding is reduced or To be removed. Alternatively, when the compression action is large, the residual stress on the tensile side changes to the residual stress on the compression side.

【0023】図3は、図1および図2における配管1の
溶接部近傍位置の外周側の一点Bの残留応力と、内周側
の一点Aとの残留応力を、低温(室温)時および高温
(運転時の加熱温)時について観察したものである。同
図に示すように、室温状態では配管1の外周面近傍のB
点および内周面近傍のA点の双方とも、降伏応力程度の
大きい引張り側の応力が残留している。
FIG. 3 shows residual stress at a point B on the outer peripheral side near the welded portion of the pipe 1 in FIGS. 1 and 2 and residual stress at a point A on the inner peripheral side at low temperature (room temperature) and high temperature. This is an observation of (heating temperature during operation). As shown in the figure, at room temperature, B near the outer peripheral surface of the pipe 1
At both the point and the point A near the inner peripheral surface, the tensile stress having a large yield stress remains.

【0024】これに対し、運転時の高温状態下では、配
管1の外周面に接合固定したスリーブ3が大きい熱膨張
によって配管1に比べて大きく軸方向に伸びるため、配
管1の外周面側は図2に矢印aで示すように引張り応力
が助長され、配管1の外周面近傍のB点では降伏応力よ
りも大きく上昇するが、配管1の内周側のA点では外周
面側の応力とのバランスによって図2に矢印bで示すよ
うに圧縮応力が作用する結果、溶接時に発生していた引
張り側の残留応力は大きく減少する。
On the other hand, under a high temperature condition during operation, the sleeve 3 joined and fixed to the outer peripheral surface of the pipe 1 expands more in the axial direction than the pipe 1 due to large thermal expansion. As shown by the arrow a in FIG. 2, the tensile stress is promoted and increases more than the yield stress at the point B near the outer peripheral surface of the pipe 1, but at the point A on the inner peripheral side of the pipe 1, the stress on the outer peripheral surface side is As a result of the compressive stress acting as indicated by the arrow b in FIG. 2 due to the balance, the residual stress on the tensile side generated during welding is greatly reduced.

【0025】したがって、本実施例によれば、粒界応力
腐食割れに対する感受性を有するオーステナイト系ステ
ンレス鋼やニッケル基合金等で構成された配管1につい
て、高温状態下で使用した場合においても溶接部2近傍
の引張り側の残留応力を軽減,除去または圧縮応力側に
することで、粒界応力腐食割れの要因を減少または削除
することができる。
Therefore, according to the present embodiment, the welded portion 2 is formed even when the pipe 1 made of austenitic stainless steel, nickel base alloy or the like having a susceptibility to intergranular stress corrosion cracking is used under a high temperature condition. By reducing or eliminating the residual stress on the tensile side in the vicinity, or by making it on the compressive stress side, the factor of intergranular stress corrosion cracking can be reduced or eliminated.

【0026】また同時に、スリーブ3の材料であるAl
合金、13%Mn鋼、フェライト系ステンレス鋼等は耐
食性金属であるから、これによって配管1の溶接部2全
体を覆うことで、溶接部2近傍の部分が腐食自体から有
効的に防止される。
At the same time, the material of the sleeve 3 is Al
Since alloys, 13% Mn steel, ferritic stainless steel and the like are corrosion resistant metals, by covering the entire welded portion 2 of the pipe 1 with this, the portion near the welded portion 2 is effectively prevented from corrosion itself.

【0027】なお、以上の実施例では沸騰水型原子力プ
ラントの配管について適用したが、各種の炉内機器また
は炉内構造物等にも適宜実施することが可能であり、そ
の場合にも前記同様の効果が奏されるものである。
Although the above embodiments have been applied to the piping of a boiling water nuclear power plant, they can be appropriately applied to various in-core equipments or in-reactor structures, and in that case, the same as the above. The effect of is demonstrated.

【0028】[0028]

【発明の効果】以上の実施例で詳述したように、請求項
1記載の発明によれば、構造物の高温使用時における一
方の表面側の熱伸びが補助部材熱伸びによって助長さ
れ、構造物の同表面側には大きい引張り応力が作用する
状態となる。これに反し、構造物の接液側である内周面
側には、応力のバランスにより圧縮応力が生じ、溶接時
に構造物の内面側に発生していた引張り側の残留応力が
軽減または除去される。あるいは、圧縮作用が大きいは
場合には引張り側の残留応力が圧縮側の残留応力に変化
する。したがって、粒界応力腐食割れに対する感受性を
有するオーステナイト系ステンレス鋼やニッケル基合金
等で構成された構造物について、高温状態下で使用した
場合においても溶接部近傍の引張り側の残留応力を軽
減,除去または圧縮応力側にすることで、粒界応力腐食
割れの要因を減少または削除することができる。
As described in detail in the above embodiments, according to the invention as set forth in claim 1, the thermal expansion of one surface side of the structure during high temperature use is promoted by the auxiliary member thermal expansion, and the structure is improved. A large tensile stress acts on the same surface side of the object. On the contrary, compressive stress is generated on the inner peripheral surface side, which is the liquid contact side of the structure, due to the stress balance, and the residual stress on the tensile side generated on the inner surface side of the structure during welding is reduced or eliminated. It Alternatively, when the compression action is large, the residual stress on the tensile side changes to the residual stress on the compression side. Therefore, for structures composed of austenitic stainless steel and nickel-based alloys that are susceptible to intergranular stress corrosion cracking, the residual stress on the tensile side near the weld is reduced and removed even when used under high temperature conditions. Alternatively, by making the compressive stress side, the factor of intergranular stress corrosion cracking can be reduced or eliminated.

【0029】請求項2記載の発明によれば、溶接により
接合された配管を温度が変化する環境下で使用する場合
に、前記配管の溶接部を含む外周面に、前記配管の材料
よりも熱膨脹係数が大きいスリーブを接合固定して、前
記配管の高温使用時における外周面側の熱伸びを前記ス
リーブの熱伸びによって助長し、これにより前記配管の
内周面側に圧縮応力を生じさせて前記配管の内面側に残
留している溶接時の引張り側の残留応力を軽減または除
去し、あるいはその引張り側の残留応力を圧縮側の残留
応力にすることで、特に原子力発電プラント等の炉内配
管等、各種配管についての溶接部近傍を応力腐食割れか
ら有効的に防止することができる。
According to the second aspect of the present invention, when the pipes joined by welding are used in an environment where the temperature changes, the outer peripheral surface including the welded portion of the pipes is expanded by heat more than the material of the pipes. The sleeve having a large coefficient is joined and fixed, and the thermal expansion of the outer peripheral surface side of the pipe at the time of high temperature use is promoted by the thermal expansion of the sleeve, thereby generating compressive stress on the inner peripheral surface side of the pipe, and Reducing or eliminating the residual stress on the tensile side during welding that remains on the inner surface of the pipe, or by making the residual stress on the tensile side the residual stress on the compression side, especially in-core piping for nuclear power plants, etc. For example, it is possible to effectively prevent the vicinity of the welded portion of various pipes from stress corrosion cracking.

【0030】請求項3記載の発明によれば、スリーブを
複数の分割体からなるものとして配管の外周面に溶接部
の全面を被覆する状態で締結固定することで、スリーブ
を既存の配管等に容易に装着することができ、実プラン
トなどへの応力腐食割れの防止技術の適用が図れるよう
になる。
According to the third aspect of the present invention, the sleeve is made up of a plurality of divided bodies and is fastened and fixed to the outer peripheral surface of the pipe so as to cover the entire surface of the welded portion. It can be easily installed, and the technology for preventing stress corrosion cracking can be applied to actual plants.

【0031】請求項4記載の発明によれば、補助部材ま
たはスリーブに耐食性材料を適用し、溶接部を耐食状態
に保持することで、補助部材やスリーブの材料として耐
食性金属を適用し、各種構造物や配管の溶接部全体を覆
うことにより溶接部近傍の部分を腐食自体から有効的に
防止できる。
According to the fourth aspect of the present invention, a corrosion-resistant material is applied to the auxiliary member or the sleeve, and the welded portion is kept in a corrosion-resistant state. By covering the entire welded portion of the object or the pipe, the portion near the welded portion can be effectively prevented from corrosion itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る残留応力改善方法の一実施例を説
明するための図で、同方法を実施した配管の常温時にお
ける状態を示す断面図。
FIG. 1 is a view for explaining an embodiment of a method for improving residual stress according to the present invention, which is a cross-sectional view showing a state of a pipe subjected to the method at room temperature.

【図2】前記実施例を説明するための図で、図1に示す
配管の高温時における状態を示す断面図。
FIG. 2 is a cross-sectional view showing a state of the pipe shown in FIG. 1 at a high temperature, which is a view for explaining the embodiment.

【図3】前記実施例における作用を示す特性図である。FIG. 3 is a characteristic diagram showing an operation in the embodiment.

【符号の説明】[Explanation of symbols]

1 配管 2 溶接部 3 スリーブ 4 鍔 5 ボルト 1 Piping 2 Weld 3 Sleeve 4 Collar 5 Bolt

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶接により接合された構造物を温度が変
化する環境下で使用する場合に、前記構造物の溶接部を
含む一方の表面に、前記構造物の材料よりも熱膨脹係数
が大きい材料からなる補助部材を接合固定して、前記構
造物の高温使用時における一方の表面側の熱伸びを前記
補助部材の熱伸びによって助長し、これにより前記構造
物の他方の表面側に圧縮応力を生じさせて前記構造材の
他方の表面に残留している溶接時の引張り側の残留応力
を軽減または除去し、あるいはその引張り側の残留応力
を圧縮側の残留応力にすることを特徴とする残留応力改
善方法。
1. When a structure joined by welding is used in an environment where the temperature changes, a material having a thermal expansion coefficient larger than that of the material of the structure on one surface including a welded portion of the structure. By joining and fixing the auxiliary member consisting of, the thermal expansion of one surface side of the structure during high temperature use is promoted by the thermal expansion of the auxiliary member, whereby compressive stress is applied to the other surface side of the structure. Remaining characterized in that the residual stress on the tensile side at the time of welding remaining on the other surface of the structural material is reduced or eliminated, or the residual stress on the tensile side is made the residual stress on the compression side. Stress improvement method.
【請求項2】 溶接により接合された配管を温度が変化
する環境下で使用する場合に、前記配管の溶接部を含む
外周面に、前記配管の材料よりも熱膨脹係数が大きいス
リーブを接合固定して、前記配管の高温使用時における
外周面側の熱伸びを前記スリーブの熱伸びによって助長
し、これにより前記配管の内周面側に圧縮応力を生じさ
せて前記配管の内面側に残留している溶接時の引張り側
の残留応力を軽減または除去し、あるいはその引張り側
の残留応力を圧縮側の残留応力にすることを特徴とする
残留応力改善方法。
2. When a pipe joined by welding is used in an environment where the temperature changes, a sleeve having a thermal expansion coefficient larger than that of the material of the pipe is joined and fixed to the outer peripheral surface including the welded portion of the pipe. The thermal expansion of the outer peripheral surface side at the time of high temperature use of the pipe is promoted by the thermal expansion of the sleeve, thereby generating compressive stress on the inner peripheral surface side of the pipe and remaining on the inner surface side of the pipe. A method for improving residual stress, characterized in that the residual stress on the tensile side during welding is reduced or eliminated, or the residual stress on the tensile side is made the residual stress on the compression side.
【請求項3】 請求項2記載の残留応力改善方法におい
て、スリーブは複数の分割体からなるものとして配管の
外周面に溶接部の全面を被覆する状態で締結固定するこ
とを特徴とする残留応力改善方法。
3. The residual stress improving method according to claim 2, wherein the sleeve is composed of a plurality of divided bodies and is fastened and fixed to the outer peripheral surface of the pipe while covering the entire surface of the welded portion. How to improve.
【請求項4】 請求項1から3までに記載の残留応力改
善方法において、補助部材またはスリーブに耐食性材料
を適用し、溶接部を耐食状態に保持することを特徴とす
る残留応力改善方法。
4. The residual stress improving method according to claim 1, wherein a corrosion resistant material is applied to the auxiliary member or the sleeve, and the welded portion is kept in a corrosion resistant state.
JP6222695A 1995-03-22 1995-03-22 Residual stress improving method Pending JPH08261388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222695A JPH08261388A (en) 1995-03-22 1995-03-22 Residual stress improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222695A JPH08261388A (en) 1995-03-22 1995-03-22 Residual stress improving method

Publications (1)

Publication Number Publication Date
JPH08261388A true JPH08261388A (en) 1996-10-11

Family

ID=13194040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222695A Pending JPH08261388A (en) 1995-03-22 1995-03-22 Residual stress improving method

Country Status (1)

Country Link
JP (1) JPH08261388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121223A3 (en) * 2006-04-17 2008-01-03 3M Innovative Properties Co Protective girth-weld cover with air release

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121223A3 (en) * 2006-04-17 2008-01-03 3M Innovative Properties Co Protective girth-weld cover with air release

Similar Documents

Publication Publication Date Title
US4348041A (en) Butt welded tubular structure of austenite stainless steel
Sireesha et al. Thermal cycling of transition joints between modified 9Cr–1Mo steel and alloy 800 for steam generator application
US4683014A (en) Mechanical stress improvement process
Kim et al. Effects of heat treatment on mechanical properties and sensitization behavior of materials in dissimilar metal weld
JPH08261388A (en) Residual stress improving method
US4608101A (en) Method for heat treating pipe with double-pipe section
Bloch et al. Proper PWHT can stop stress-induced corrosion
US4772336A (en) Method of improving residual stress in circumferential weld zone
JPH0929429A (en) Welding procedure
CN110587069A (en) Welding method for circumferential weld of bimetal metallurgy composite pipe
US4726856A (en) Method for heat treating metal pipes
JPH08233971A (en) Nuclear reactor core shroud and method for manufacturing and repairing it
JPS6045033B2 (en) Method for preventing stress corrosion cracking in weld sensitized areas
JPH09216055A (en) Heat transfer tube heat exchanger and its production
JPS5928576A (en) Prevention of stress corrosion cracking
JP3309573B2 (en) Shape memory alloy pipe fittings and underwater pipes
JPS61197892A (en) Method of locking pipe
JPH0979776A (en) Heat exchanger and its assembling method
JP2637518B2 (en) Piping reinforcement welding method
JPH1161275A (en) Weld zone of austenitic stainless steel
JPS5617199A (en) Method of improving stress corrosion cracking resistance of weld zone of austenite stainless steel pipe
JPS60135526A (en) Heat treatment of weld zone of double pipe
JPS6057087A (en) Method of welding piping
JPS61245090A (en) Method of thermally treating piping system
JPS5447839A (en) Prepartion of welded joint