JPH08233971A - Nuclear reactor core shroud and method for manufacturing and repairing it - Google Patents

Nuclear reactor core shroud and method for manufacturing and repairing it

Info

Publication number
JPH08233971A
JPH08233971A JP7036473A JP3647395A JPH08233971A JP H08233971 A JPH08233971 A JP H08233971A JP 7036473 A JP7036473 A JP 7036473A JP 3647395 A JP3647395 A JP 3647395A JP H08233971 A JPH08233971 A JP H08233971A
Authority
JP
Japan
Prior art keywords
reactor core
core shroud
shroud
shield
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7036473A
Other languages
Japanese (ja)
Inventor
Yusuke Isobe
裕介 磯辺
Haruo Fujimori
治男 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7036473A priority Critical patent/JPH08233971A/en
Publication of JPH08233971A publication Critical patent/JPH08233971A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To provide a nuclear reactor core of stress corrosion cracking resis tance and a method for manufacturing and repairing it. CONSTITUTION: A shield plate 6 is set at a position for covering a weld heat affect part 8 of a nuclear reactor core shroud and the circumferential edge part of the shield plate 6 is connected to the shroud 1 at a connection part 9 so that a gap between the shield plate 6 and the shroud 6 may be water-tight structure. Since the connection part 9 is the circumferential edge part of the shield plate 6, little heat penetrates by accompanying connection and stress corrosion cracking resistance can be improved without new heat affect which is given to the shroud even in the case where connection is performed by welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉圧力容器内に設
置された原子炉炉心シュラウド(以下、シュラウドと呼
ぶ)と、その製造方法およびその補修方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor core shroud (hereinafter referred to as shroud) installed in a reactor pressure vessel, a manufacturing method thereof, and a repairing method thereof.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼などの金
属材料では、高温水環境下で溶接部近傍の溶接熱影響部
に応力腐食割れ(以下、SCCと呼ぶ)が発生すること
が知られており、高温の原子炉冷却水に接して使用され
るステンレス鋼製のシュラウドにおいてもSCCの発生
が懸念されている。
2. Description of the Related Art It is known that, in a metal material such as austenitic stainless steel, stress corrosion cracking (hereinafter referred to as SCC) occurs in a heat-affected zone near a weld in a high temperature water environment. The occurrence of SCC is also a concern in the stainless steel shroud used in contact with the reactor cooling water.

【0003】SCCは材料,環境,応力の3因子の重畳
により発生することが知られている。即ち、材料因子と
は溶接熱影響部の結晶粒界でのクロム炭化物の析出に伴
う結晶粒界近傍でのクロム欠乏(鋭敏化)、環境因子と
は腐食性のある水環境との接触,応力因子とは溶接残留
応力や外部応力などの引張り応力の存在のことであり、
これら3因子の何れか1つでも取り除くことにより、S
CCの発生を防止することが可能となる。
It is known that SCC is generated by superposition of three factors of material, environment and stress. That is, the material factor is chromium deficiency (sensitization) in the vicinity of the grain boundary due to the precipitation of chromium carbide in the grain boundary of the heat-affected zone of welding, and the environmental factors are contact with the corrosive water environment and stress. The factor is the existence of tensile stress such as welding residual stress and external stress.
By removing any one of these three factors, S
It becomes possible to prevent the occurrence of CC.

【0004】このため、シュラウド等の原子炉炉内機器
のSCC予防保全法として、特開平5−80186号に記載が
あるような、鋭敏化部の加熱,冷却により脱鋭敏化や表
面引張り応力の緩和をおこなう方法がある。また、鋭敏
化した母材と冷却水の接触を防止する方法として、特開
平5−77082号に記載があるような、母材の鋭敏化部表面
に耐食性の高い薄板部材を取り付け、溶融処理を施すこ
とにより耐食性の高い表面層を得る技術が知られてい
る。
Therefore, as a SCC preventive maintenance method for reactor internal equipment such as shrouds, desensitization and surface tensile stress caused by heating and cooling of the sensitized portion, as described in JP-A-5-80186. There are ways to mitigate. Further, as a method for preventing contact between the sensitized base material and cooling water, as described in JP-A-5-77082, a thin plate member having high corrosion resistance is attached to the surface of the sensitized portion of the base material, and the melt treatment is performed. A technique for obtaining a surface layer having high corrosion resistance by applying is known.

【0005】[0005]

【発明が解決しようとする課題】上述のようなSCC予
防保全法をシュラウドに適用する場合、いくつかの問題
が生じる。まず、一般的な問題として、シュラウド鋭敏
化部の熱処理や溶融処理のために大きな入熱をおこなう
と、その熱影響部で新たな鋭敏化や引張り応力が発生す
る恐れがある、ということがある。
When the SCC preventive maintenance method as described above is applied to the shroud, some problems occur. First, as a general problem, if a large amount of heat is applied to the shroud sensitized part for heat treatment or melting, new sensitization or tensile stress may occur in the heat affected part. .

【0006】次に、特に中性子照射量の高いシュラウド
内面への施工時には別の問題がある。シュラウドの材質
であるステンレス鋼では、中性子照射を受けると核変換
により内部にヘリウムが生成するが、このヘリウムが熱
処理や溶融処理のための大入熱によって結晶粒界に析出
し脆化を引き起こす可能性がある。
Next, there is another problem during the construction on the inner surface of the shroud having a particularly high neutron irradiation amount. In stainless steel, which is the material of the shroud, helium is generated inside by transmutation when it is exposed to neutron irradiation, but this helium may precipitate at grain boundaries due to large heat input for heat treatment and melting process and cause embrittlement. There is a nature.

【0007】更に、中性子照射の影響により、熱による
鋭敏化とは異なる機構で結晶粒界部にクロム欠乏が生じ
ることが知られており、施工時には良好な耐食性であっ
た表面処理部が、その後の使用により鋭敏化する恐れが
ある。この場合、従来法では母材鋭敏化部と表面処理部
は全面的に密着しているため、母材に残る引張り歪は表
面処理部にも及んでおり、表面処理部の鋭敏化によっ
て、施工部には再びSCC発生の可能性が出てくること
になる。また表面処理部は母材と一体であるため、表面
処理部が鋭敏化してもこの部分だけを取り替えることは
不可能である。
Further, it is known that due to the influence of neutron irradiation, chromium deficiency occurs in the grain boundary part by a mechanism different from heat sensitization. May cause sensitization. In this case, in the conventional method, since the base material sensitized part and the surface treated part are in close contact with each other, the tensile strain remaining in the base material extends to the surface treated part, and the sensitization of the surface treated part causes There is a possibility that SCC will occur again in the department. Further, since the surface-treated portion is integrated with the base material, even if the surface-treated portion becomes sensitive, it is impossible to replace only this portion.

【0008】以上のように、特に中性子照射量の高いシ
ュラウド内面では、従来の方法は施工困難であるか、施
工できてもその後の使用で効果が下がるという問題があ
る。本発明の目的は、新たな鋭敏化部や引張り応力部を
作ることなく耐SCC性を向上したシュラウド、その製
造法、および新たな鋭敏化部や引張り応力部を作ること
なく耐SCC性を向上するシュラウドの補修法を提供す
ることにある。
As described above, there is a problem that the conventional method is difficult to apply, or even if the shroud can be applied to the inner surface of the shroud where the neutron irradiation amount is high, the effect is lowered in the subsequent use. The object of the present invention is to improve the SCC resistance without making a new sensitized portion or tensile stress portion, its manufacturing method, and the SCC resistance without making a new sensitized portion or tensile stress portion. To provide a shroud repair method.

【0009】また本発明の他の目的は、中性子照射量の
高い部位においても有効な耐SCC策を施したシュラウ
ド、その製造法、および中性子照射量の高い部位におい
ても耐SCC性向上に有効なシュラウドの補修法を提供
することにある。
Another object of the present invention is to provide a shroud having an SCC-resistant measure which is effective even in a portion having a high neutron irradiation amount, a manufacturing method thereof, and an effective SCC resistance improvement in a portion having a high neutron irradiation amount. It is to provide a shroud repair method.

【0010】[0010]

【課題を解決するための手段】上記の目的は、シュラウ
ドの溶接熱影響部を覆い、シュラウド表面との間隙が水
密構造となるように周縁部をシュラウドに結合した遮蔽
体を備えたシュラウドにより達成される。
The above object is achieved by a shroud provided with a shield which covers the weld heat affected zone of the shroud and has a peripheral portion joined to the shroud so that a gap with the shroud surface is a watertight structure. To be done.

【0011】また上記の目的は、シュラウドを構成する
鋼板を溶接によって組み立てた後に、その溶接熱影響部
を覆う位置に遮蔽体を取り付け、遮蔽体とシュラウド表
面との間隙が水密構造となるように遮蔽体周縁部をシュ
ラウドに結合するシュラウドの製造法により達成され
る。
Further, the above object is to assemble a steel plate constituting a shroud by welding and then attach a shield to a position covering the heat affected zone of the weld so that a gap between the shield and the surface of the shroud has a watertight structure. This is accomplished by a shroud manufacturing method that joins the shield periphery to the shroud.

【0012】また上記の目的は、既設のシュラウドの溶
接熱影響部を含む補修対象部に遮蔽体を取り付け、遮蔽
体とシュラウド表面との間隙が水密構造となるように遮
蔽体周縁部をシュラウドに結合し、一定期間の使用の
後、場合によっては取り付けた遮蔽体を取り外し、新た
な遮蔽体と交換するシュラウドの補修方法により達成さ
れる。
Further, the above object is to attach a shield to the repair target portion including the welding heat affected zone of the existing shroud, and to make the peripheral edge of the shield a shroud so that the gap between the shield and the shroud surface becomes a watertight structure. This is accomplished by a shroud repair method in which the shields are combined and, after a period of use, the attached shields are removed and replaced with new shields.

【0013】ここで遮蔽体とは、シュラウド表面の鋭敏
化部などのSCC発生位置となり得る部位と原子炉冷却
水との接触を遮断するために設置する、耐食性のある合
金部材のことである。具体的には、ステンレス鋼製、あ
るいはインコネル製の板材が適している。また水密構造
とは、シュラウドの使用中に、シュラウドと遮蔽体の間
隙に原子炉冷却水が侵入しない構造のことを意味する。
さらに周縁部の結合とは、シュラウドと遮蔽体の間隙が
水密構造となるように、遮蔽体の概ね外周部をシュラウ
ドに結合することを意味する。つまり結合部は遮蔽体の
厳密な最外周部でなくても良く、また遮蔽体内側の一部
がシュラウドに結合されていても構わない。
Here, the shield is an alloy member having corrosion resistance, which is installed in order to block the contact between the SCC generation position such as the sensitized portion of the shroud surface and the reactor cooling water. Specifically, a plate material made of stainless steel or Inconel is suitable. The watertight structure means a structure in which the reactor cooling water does not enter the gap between the shroud and the shield during use of the shroud.
Further, the joining of the peripheral portions means joining the approximately outer peripheral portion of the shield to the shroud so that the gap between the shroud and the shield has a watertight structure. That is, the joint portion does not have to be a strict outermost peripheral portion of the shield, and a part of the inside of the shield may be joined to the shroud.

【0014】[0014]

【作用】遮蔽体はシュラウドの溶接熱影響部を覆い、シ
ュラウドと水密構造に結合されるため、シュラウドの溶
接熱影響部と冷却水との接触は遮断され、SCCは抑制
される。また、遮蔽体は周縁部をシュラウドと結合する
ため、結合方法が溶接の場合でも、溶接線の長さ、即ち
入熱量は最小限に抑えられ、遮蔽体取り付けによる新た
な鋭敏化部や引張り応力部は発生しない。また、前述し
たように、遮蔽体取り付け時の入熱量が低いため、中性
子照射量が高いシュラウド内面へも施工可能である。更
に、遮蔽体とシュラウドは全面的には密着していないた
め、シュラウド表面の引張り残留応力は遮蔽体には及ば
ない。このため、中性子照射により遮蔽体が鋭敏化して
も、ここにSCCが発生する可能性は低い。また、遮蔽
体とシュラウドは一体ではないため、鋭敏化した遮蔽体
は取り替えることが可能である。
Since the shield covers the welding heat affected zone of the shroud and is coupled to the shroud and the watertight structure, the contact between the welding heat affected zone of the shroud and the cooling water is blocked, and the SCC is suppressed. Also, since the shield joins the shroud at the peripheral edge, even if the joining method is welding, the length of the welding line, that is, the amount of heat input, is minimized, and a new sensitization portion and tensile stress due to the shield attachment are added. No part is generated. Further, as described above, since the heat input amount at the time of attaching the shield is low, it is possible to perform construction even on the inner surface of the shroud having a high neutron irradiation amount. Further, since the shield and the shroud are not entirely in close contact with each other, the tensile residual stress on the surface of the shroud does not reach the shield. Therefore, even if the shield is sensitized by neutron irradiation, SCC is unlikely to occur here. Also, since the shield and the shroud are not integral, the sensitized shield can be replaced.

【0015】[0015]

【実施例】以下、本発明の第1の実施例を図1〜図3を
用いて説明する。図1は本発明によるシュラウドの第1
の実施例の縦断面図、図2は図1のI−I矢視図、図3
は図1のシュラウドを備えた原子炉圧力容器の概略構成
図である。原子炉炉心シュラウド1は、上部格子板2,
炉心支持板3,燃料集合体4などと共に炉心(図示せ
ず)を形成し、シュラウド下部で原子炉圧力容器5に固
定されている。原子炉圧力容器5内の水位10は通常図
中に示す位置にあり、シュラウド1は全体を水中に置か
れた形で使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a first shroud according to the present invention.
2 is a vertical cross-sectional view of the embodiment of FIG.
2 is a schematic configuration diagram of a reactor pressure vessel including the shroud of FIG. 1. FIG. The reactor core shroud 1 has an upper grid plate 2,
A core (not shown) is formed with the core support plate 3, the fuel assembly 4, etc., and is fixed to the reactor pressure vessel 5 at the lower part of the shroud. The water level 10 in the reactor pressure vessel 5 is normally located at the position shown in the figure, and the shroud 1 is used while being wholly placed in water.

【0016】シュラウド1は、上部胴1a,中間胴1
b、及び下部胴1cと呼ばれる三つの円筒部より構成さ
れるが、本実施例では燃料集合体4に隣接し中性子照射
量が最も高い中間胴1bの内面に、筒状遮蔽体6aを設
置している。この部位に遮蔽体6aを設置したのは前述
の通り、本発明が特に中性子照射量の高い部位への適用
に適しているからである。
The shroud 1 includes an upper body 1a and an intermediate body 1
b, and three cylindrical portions called the lower body 1c. In this embodiment, the cylindrical shield 6a is installed on the inner surface of the intermediate body 1b adjacent to the fuel assembly 4 and having the highest neutron irradiation amount. ing. The reason why the shield 6a is provided at this portion is that the present invention is suitable for application to a portion having a particularly high neutron irradiation amount, as described above.

【0017】筒状遮蔽体6aはシュラウド中間胴1bの
内径より若干外形が小さな円筒形であり、中間胴1bに
ある溶接部7およびその周囲の溶接熱影響部8を含む中
間胴1bの内表面全面を覆うように取り付けられてい
る。筒状遮蔽体6aの材質は、シュラウド1と同じステ
ンレス鋼でも良いが、これより耐食性が更に高い、例え
ば炭素濃度を低減した鋼を用いるのが望ましい。
The cylindrical shield 6a has a cylindrical shape whose outer shape is slightly smaller than the inner diameter of the shroud intermediate body 1b, and the inner surface of the intermediate body 1b including the welded portion 7 on the intermediate body 1b and the welding heat affected zone 8 around it. It is attached to cover the entire surface. The material of the cylindrical shield 6a may be the same stainless steel as the shroud 1, but it is desirable to use steel having higher corrosion resistance, for example, a carbon concentration reduced.

【0018】筒状遮蔽体6aのシュラウド1への取り付
けは、筒状遮蔽体6aの上下端円周部を結合部9でシュ
ラウド1に水密構造で溶接することによりおこなう。こ
のように、筒状遮蔽体6aの取り付けに伴う溶接は、筒
状遮蔽体6aの上下端のみなので、シュラウド中間胴1
bには筒状遮蔽体6aの取り付けに伴う新たな入熱は殆
ど生じない。また、筒状遮蔽体6aの取り外しは、結合
部9のみを加熱、または機械加工することにより容易に
おこなえる。
The tubular shield 6a is attached to the shroud 1 by welding the upper and lower circumferential portions of the tubular shield 6a to the shroud 1 at a joint portion 9 in a watertight structure. As described above, the welding accompanying the attachment of the tubular shield 6a is only for the upper and lower ends of the tubular shield 6a, so that the shroud intermediate body 1
New heat input due to the attachment of the cylindrical shield 6a hardly occurs in b. Further, the removal of the cylindrical shield 6a can be easily performed by heating only the connecting portion 9 or by machining.

【0019】また、筒状遮蔽体6aはシュラウド本体と
は異なり炉心の荷重を支える必要はないので、結合部9
は筒状遮蔽体6aをシュラウド1に保持し、水密構造を
保つだけの強度があれば良い。このため、結合部9での
溶接はごく小さな入熱で施工可能であり、この部分の鋭
敏化や、既設のシュラウドに施工する場合のヘリウムに
よる脆化の恐れはない。結合部9での結合は、溶接では
なく、ろう付けのような部材の溶融を伴わない方法でも
達成できる。
Further, unlike the shroud body, the cylindrical shield 6a does not need to support the load of the core, so that the connecting portion 9
Is sufficient to hold the tubular shield 6a on the shroud 1 and maintain a watertight structure. For this reason, welding at the joint 9 can be performed with a very small heat input, and there is no fear of sensitization of this portion or embrittlement due to helium when applying to an existing shroud. The joining at the joining portion 9 can be achieved not by welding but by a method such as brazing that does not involve melting of members.

【0020】次に、図4を用いて本発明によるシュラウ
ドの第2の実施例を説明する。図4は第2の実施例の縦
断面図である。本実施例では、環状遮蔽体6bはシュラ
ウド表面全面を覆う大型のものではなく、溶接熱影響部
8の近傍のみを覆う小型のものである。このため、環状
遮蔽体6bの製造やシュラウド1への取り付けは、大型
の遮蔽体に比べて容易となる。また、本実施例ではシュ
ラウド外表面へも遮蔽体を取り付け、これらの部位の耐
SCC性の向上を図っている。
Next, a second embodiment of the shroud according to the present invention will be described with reference to FIG. FIG. 4 is a vertical sectional view of the second embodiment. In the present embodiment, the annular shield 6b is not a large one that covers the entire surface of the shroud but a small one that covers only the vicinity of the welding heat affected zone 8. Therefore, the manufacture of the annular shield 6b and the attachment to the shroud 1 are easier than the large shield. Further, in this embodiment, a shield is also attached to the outer surface of the shroud to improve the SCC resistance of these parts.

【0021】しかし、特に既設シュラウドの中間胴1b
の外表面に施工する時は、予め円筒形に成形した遮蔽体
を用いるのが困難となる。この場合は、図5に示すよう
に遮蔽体を周方向に分割し、それぞれの遮蔽片6cを、
周方向溶接線7aに沿った溶接熱影響部8aを覆う位置
に結合部9で取り付けることにより施工可能となる。図
5に示す遮蔽体の取り付け方法は、シュラウド中間胴1
b外表面以外の箇所についても適用可能であり、この場
合も遮蔽体の製造やシュラウド1への取り付けが容易と
なるという利点がある。また、例えば図5中の縦方向溶
接線7bに沿った溶接熱影響部8bを覆う位置にも遮蔽
片6cを取り付ければ、小さな遮蔽体面積で全ての溶接
熱影響部を保護できるため、遮蔽体製造に要する材料を
節減することができる。
However, especially the intermediate barrel 1b of the existing shroud
When it is applied to the outer surface of the, it is difficult to use a shield that is previously formed in a cylindrical shape. In this case, the shield is divided in the circumferential direction as shown in FIG. 5, and each shield piece 6c is
The welding can be performed by attaching the joint 9 at a position covering the welding heat affected zone 8a along the circumferential welding line 7a. The method of attaching the shield shown in FIG.
b It can be applied to a place other than the outer surface, and in this case also, there is an advantage that the shield can be easily manufactured and attached to the shroud 1. Further, for example, if the shield piece 6c is attached to a position that covers the welding heat-affected zone 8b along the vertical welding line 7b in FIG. 5 as well, all the welding heat-affected zones can be protected with a small shield body area. The material required for manufacturing can be saved.

【0022】図6〜図8はシュラウド上部胴1aと中間
胴1bの接合部付近を詳細に示した断面図であり、それ
ぞれ遮蔽体6のシュラウド1への結合方法が異なる例を
示す。これらの結合例では遮蔽体6は中間胴1bの内表
面に取り付けられている。図6はシュラウド側面に結合
部9を設け遮蔽体6を取り付けた例であり、構造が単純
でシュラウドに加工を施す必要がないため、既設のシュ
ラウドに施工する場合に適している。
6 to 8 are cross-sectional views showing in detail the vicinity of the joint between the shroud upper body 1a and the intermediate body 1b, and show examples in which the shield 6 is joined to the shroud 1 by different methods. In these coupling examples, the shield 6 is attached to the inner surface of the intermediate barrel 1b. FIG. 6 shows an example in which the connecting portion 9 is provided on the side surface of the shroud and the shield 6 is attached. Since the structure is simple and there is no need to process the shroud, it is suitable for construction on an existing shroud.

【0023】次に、図7はシュラウド内面上端部に切り
欠き加工を施し、端部を曲げた遮蔽体6とはめ合わせて
結合したもので、万一結合部9がはずれても遮蔽体6の
脱落の危険性が少なく、遮蔽体取り付けの信頼性が向上
する。
Next, FIG. 7 shows a structure in which the upper end of the inner surface of the shroud is cut out, and the shroud is fitted with the shield 6 whose end is bent. There is less risk of falling off, and the reliability of shield attachment is improved.

【0024】次に、図8は遮蔽体6とシュラウドの間隙
を水密構造に保つためのシール手段であるパッキン11
と、遮蔽板6をシュラウド1に固定するための固定手段
であるボルト12によって結合部9が構成されており、
遮蔽体6はシュラウド1に機械的に結合される。この実
施例では、遮蔽体6の取り付け時に新たな入熱を全く必
要としないという利点がある。また、遮蔽体6の取り外
しも、結合部9が溶接である場合に比べて一層容易であ
る。本実施例は、シュラウド1に溝加工,ボルト穴加工
などの加工を要するので、新設シュラウドに遮蔽体を取
り付ける際に好適である。
Next, FIG. 8 shows a packing 11 which is a sealing means for keeping the gap between the shield 6 and the shroud in a watertight structure.
And the connecting portion 9 is constituted by the bolt 12 which is a fixing means for fixing the shield plate 6 to the shroud 1,
The shield 6 is mechanically coupled to the shroud 1. This embodiment has the advantage that no new heat input is required when attaching the shield 6. Further, removal of the shield 6 is easier than when the joint 9 is welded. Since this embodiment requires processing such as groove processing and bolt hole processing in the shroud 1, it is suitable when the shield is attached to the new shroud.

【0025】図9は、本発明による新規のシュラウドを
製造する際の製造方法を示す流れ図である。まず、シュ
ラウド本体を作製する。これは、部材である鋼板の溶
接、ロールにより胴部を作製した後、胴部同士を周方向
溶接により接合するという、一般的工程によっておこな
う。これとは別に、遮蔽体を作製する。本実施例では予
め円筒形に成形した遮蔽体を作製する例を示す。遮蔽体
の作製は、継ぎ目の無い一体成形によっても、溶接によ
り円筒形に成形しても構わないが、溶接部がある場合
は、シュラウドへの取り付けに先立って、遮蔽体に溶体
化処理等の熱処理を施し、溶接部を脱鋭敏化しておくこ
とが望ましい。円筒形の遮蔽体ではなく、図5に示す分
割された遮蔽体を用いる場合は、遮蔽体取り付け位置の
曲面に合わせて遮蔽片を成形し、次の工程でシュラウド
に取り付けることになる。
FIG. 9 is a flowchart showing a manufacturing method for manufacturing the novel shroud according to the present invention. First, the shroud body is manufactured. This is carried out by a general process of welding steel plates which are members, producing a body by rolling, and then joining the bodies by circumferential welding. Separately from this, a shield is prepared. In this embodiment, an example of manufacturing a shield body which is formed in a cylindrical shape in advance will be described. The shield may be formed by seamless integral molding or by welding to form a cylindrical shape. However, if there is a welded portion, the shield may be subjected to solution treatment or the like before being attached to the shroud. It is desirable to perform heat treatment to desensitize the weld. When the divided shield shown in FIG. 5 is used instead of the cylindrical shield, the shield piece is formed according to the curved surface of the shield attachment position and attached to the shroud in the next step.

【0026】次に、作製した遮蔽体をシュラウドに取り
付ける。具体的にはまず、遮蔽体をシュラウド表面の溶
接熱影響部を覆う所定の位置に位置決めした後、スポッ
ト溶接等によりこの位置に仮止めする。この時、スポッ
ト溶接による入熱はごく小さく、熱影響の範囲も限られ
るので、スポット溶接の位置は厳密に遮蔽板の周縁部で
無くても良い。仮止めした遮蔽体は次に周縁部を溶接
し、シュラウドとの間隙が水密構造となるようにする。
シュラウドと遮蔽体の結合法が、図8に示すようなボル
ト締めの場合は、仮止めのためのスポット溶接は不要と
なり、順次ボルトを締めることによってシュラウドと遮
蔽体を水密構造に結合する。
Next, the produced shield is attached to the shroud. Specifically, first, the shield is positioned at a predetermined position that covers the weld heat affected zone of the shroud surface, and then temporarily fixed to this position by spot welding or the like. At this time, since the heat input by spot welding is very small and the range of heat influence is limited, the position of spot welding does not have to be strictly on the peripheral portion of the shield plate. The temporarily fixed shield is then welded at its peripheral edge so that the gap with the shroud has a watertight structure.
When the shroud and the shield are joined by bolting as shown in FIG. 8, spot welding for temporary fixing is not necessary, and the shroud and the shield are joined to the watertight structure by sequentially tightening the bolts.

【0027】図10は、本発明による既設のシュラウド
への遮蔽体の取付け・取外し方法の第1の実施例を示す
流れ図である。本方法は、原子力プラントの定期検査時
等のプラント停止中におこなう。遮蔽体を交換する場合
は、照射の影響を考慮した材料の鋭敏化挙動の理論評価
式や、腐食試験データに基づく材料の腐食挙動の経験的
予測式を用いて予測される、遮蔽体が鋭敏化する時期よ
り充分前の、適当な時期に実施する。
FIG. 10 is a flow chart showing a first embodiment of the method of attaching / removing the shield to / from the existing shroud according to the present invention. This method is performed during plant shutdown, such as during periodic inspections of nuclear plants. When exchanging the shield, the shield's sensitivity is predicted by using a theoretical evaluation formula for the sensitization behavior of the material considering the effect of irradiation and an empirical prediction formula for the corrosion behavior of the material based on corrosion test data. Implement at an appropriate time, well before the time of conversion.

【0028】まず初めに、上部格子板2,炉心支持板
3,燃料集合体4などのシュラウド1の内側の機器を取
り外し、シュラウド内側での作業性を向上する。次に、
シュラウド1に既に遮蔽体6が設置されている場合は、
これを取り外す作業をおこなう。即ち、遮蔽体6の周縁
部の結合部9が溶接による場合は、この部分の切削や加
熱により、またボルト締めによる場合はボルトを外すこ
とにより遮蔽体6をシュラウド1より取り外す。この作
業は作業機器や作業員の被爆を低減するために、原子炉
圧力容器5中に冷却水を満たしたまま、水中で実施する
のが良い。
First, the equipment inside the shroud 1, such as the upper lattice plate 2, the core support plate 3, and the fuel assembly 4, is removed to improve workability inside the shroud. next,
If the shield 6 is already installed on the shroud 1,
Work to remove this. That is, when the joint portion 9 at the peripheral portion of the shield 6 is welded, the shield 6 is removed from the shroud 1 by cutting or heating this portion, and when bolting, the bolt is removed. This work is preferably carried out in water while the reactor pressure vessel 5 is filled with cooling water in order to reduce exposure to work equipment and workers.

【0029】次に、シュラウド表面に新たな遮蔽体を取
り付ける。今回初めて遮蔽板を取り付ける場合は、上述
のシュラウド内側の機器を取り外す作業の後、本作業に
移る。新遮蔽体の取り付けでは、遮蔽体とシュラウドの
間隙に冷却水が侵入しないように施工しなければならな
いので、まずシュラウド表面の遮蔽板取り付け予定部位
から冷却水を排除しなければならない。この方法として
は、原子炉圧力容器5内の冷却水を排水する方法、ある
いはシュラウド表面の遮蔽体取り付け予定部位の周囲に
隔壁を設け、この隔壁内の冷却水を排水する方法などが
挙げられる。
Next, a new shield is attached to the shroud surface. When installing the shield plate for the first time, proceed to this work after removing the above-mentioned equipment inside the shroud. When installing the new shield, the cooling water must be installed so that the cooling water does not enter the gap between the shield and the shroud. Therefore, the cooling water must first be removed from the site where the shield plate is to be attached on the surface of the shroud. Examples of this method include a method of draining the cooling water in the reactor pressure vessel 5, or a method of providing a partition wall around the site where the shield is to be attached on the shroud surface and draining the cooling water in the partition wall.

【0030】上述の方法でシュラウド表面の遮蔽体取り
付け予定部位から冷却水を排除した後、新たな遮蔽体
を、その周縁部をシュラウドに溶接、あるいはボルト締
めすることにより水密構造に結合する。新たな遮蔽体を
取り付けた後は、排除した冷却水の状態を元に戻し、シ
ュラウド内側の機器を元の位置に設置して、作業終了と
なる。
After the cooling water is removed from the site where the shield is to be attached on the surface of the shroud by the method described above, a new shield is joined to the watertight structure by welding or bolting the peripheral edge of the shield to the shroud. After installing the new shield, the condition of the removed cooling water is restored, the device inside the shroud is installed in the original position, and the work is completed.

【0031】図11には、本発明による既設のシュラウ
ドへの遮蔽体の取付け・取外し方法の第2の実施例を示
す流れ図である。本実施例では、まずシュラウド1,上
部格子板2,炉心支持板3,燃料集合体4などの炉心機
器を原子炉圧力容器5から取り外す。その後、図10の
実施例と同様の既設遮蔽体の取り外し、および新たな遮
蔽体の取り付け作業をおこなう。その後、シュラウド1
を含む炉心機器を原子炉圧力容器5に再び設置し、作業
終了となる。
FIG. 11 is a flow chart showing a second embodiment of the method of attaching / removing the shield to / from the existing shroud according to the present invention. In the present embodiment, first, the core equipment such as the shroud 1, the upper lattice plate 2, the core support plate 3, and the fuel assembly 4 is removed from the reactor pressure vessel 5. After that, the existing shield is removed and a new shield is attached in the same manner as the embodiment of FIG. Then shroud 1
The core equipment including is installed again in the reactor pressure vessel 5, and the work is completed.

【0032】本実施例では、新たな遮蔽体の取り付け作
業を原子炉圧力容器外、即ち大気中でおこなうことが可
能なため、シュラウド表面の遮蔽体取り付け予定部位か
ら冷却水を排除するための手段は不要となる。また、本
実施例では、原子炉圧力容器外で作業するため、原子炉
圧力容器内では狭隘部となり作業性が悪いシュラウド外
面への遮蔽体の取り付け,取り外しが容易となる。
In this embodiment, since the work of installing a new shield can be performed outside the reactor pressure vessel, that is, in the atmosphere, means for removing the cooling water from the site where the shield is to be attached on the shroud surface. Is unnecessary. Further, in this embodiment, since the work is performed outside the reactor pressure vessel, a narrow portion is formed inside the reactor pressure vessel, and it is easy to attach and remove the shield to the outer surface of the shroud, which has poor workability.

【0033】[0033]

【発明の効果】以上のように本発明によれば、シュラウ
ドの溶接熱影響部と冷却水との接触が遮蔽板により遮断
され、かつ遮蔽板取り付けによる新たな鋭敏化部や引張
り応力部は発生しないので、シュラウドの耐SCC性を
向上することができる。
As described above, according to the present invention, the contact between the heat-affected zone of the shroud and the cooling water is blocked by the shielding plate, and a new sensitized portion or tensile stress portion is generated by attaching the shielding plate. Therefore, the SCC resistance of the shroud can be improved.

【0034】また、遮蔽板取り付け時の入熱量を低減で
きるか、或いは入熱不要にできるので、中性子照射量が
高いシュラウド内面へも施工可能なシュラウド補修法と
することができる。
Further, since the heat input amount at the time of attaching the shield plate can be reduced or the heat input can be eliminated, the shroud repairing method can be applied to the inner surface of the shroud having a high neutron irradiation amount.

【0035】また、遮蔽板とシュラウドは全面的には密
着していない構造であり、シュラウド表面の引張り残留
応力は遮蔽板には及ばないため、中性子照射環境下でも
シュラウドの耐SCC性を向上することができる。
Further, since the shield plate and the shroud are not entirely adhered to each other and the tensile residual stress on the surface of the shroud does not reach the shield plate, the SCC resistance of the shroud is improved even under the neutron irradiation environment. be able to.

【0036】また、遮蔽板とシュラウドは一体ではな
く、遮蔽板が使用中に鋭敏化した場合は遮蔽板のみを取
り替えることができるので、シュラウド全体を交換する
場合に比べて、大幅にコストを低減できると共に、発生
する廃棄物量も低減することができる。
Further, since the shield plate and the shroud are not integrated and only the shield plate can be replaced when the shield plate becomes sensitive during use, the cost is greatly reduced compared to the case where the entire shroud is replaced. In addition, the amount of waste generated can be reduced.

【0037】更に、以上のような効果を有するシュラウ
ド及びその補修方法を原子力プラントに適用することに
より、プラントの信頼性を向上することができる。
Further, by applying the shroud having the above effects and the repair method thereof to a nuclear power plant, the reliability of the plant can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるシュラウドの第1の実施例の縦断
面図。
FIG. 1 is a longitudinal sectional view of a first embodiment of a shroud according to the present invention.

【図2】図1のI−I矢視図。FIG. 2 is a view on arrow I-I of FIG.

【図3】図1のシュラウドを備えた原子炉圧力容器の概
略構成図。
FIG. 3 is a schematic configuration diagram of a reactor pressure vessel including the shroud of FIG.

【図4】本発明によるシュラウドの第2の実施例の縦断
面図。
FIG. 4 is a vertical sectional view of a second embodiment of the shroud according to the present invention.

【図5】シュラウド外面への遮蔽板の取付け方法を示す
図。
FIG. 5 is a diagram showing a method of attaching the shielding plate to the outer surface of the shroud.

【図6】シュラウドと遮蔽板の結合部の詳細断面図。FIG. 6 is a detailed cross-sectional view of a joint portion of a shroud and a shield plate.

【図7】シュラウドと遮蔽板の結合部の詳細断面図。FIG. 7 is a detailed cross-sectional view of a joint portion between the shroud and the shield plate.

【図8】シュラウドと遮蔽板の結合部の詳細断面図。FIG. 8 is a detailed cross-sectional view of a joint portion of the shroud and the shield plate.

【図9】本発明による新規のシュラウドを製造する際の
製造方法を示す図。
FIG. 9 is a view showing a manufacturing method when manufacturing a novel shroud according to the present invention.

【図10】本発明による既設のシュラウドへの遮蔽板の
取付け・取外し方法の第1の実施例を示す図。
FIG. 10 is a diagram showing a first embodiment of a method of attaching / removing a shielding plate to / from an existing shroud according to the present invention.

【図11】本発明による既設のシュラウドへの遮蔽板の
取付け・取外し方法の第2の実施例を示す図。
FIG. 11 is a diagram showing a second embodiment of a method of attaching / removing a shield plate to / from an existing shroud according to the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉炉心シュラウド、2…上部格子板、3…炉心
支持板、4…燃料集合体、5…原子炉圧力容器、6…遮
蔽板、7…溶接部、8…溶接熱影響部、9…結合部、1
1…パッキン、12…ボルト。
DESCRIPTION OF SYMBOLS 1 ... Reactor core shroud, 2 ... Upper lattice plate, 3 ... Core support plate, 4 ... Fuel assembly, 5 ... Reactor pressure vessel, 6 ... Shield plate, 7 ... Welding part, 8 ... Welding heat affected part, 9 … Coupling, 1
1 ... packing, 12 ... bolt.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】原子炉圧力容器内に設置される原子炉炉心
シュラウドにおいて、該原子炉炉心シュラウド表面の溶
接熱影響部を覆い、該原子炉炉心シュラウドとの間隙が
水密構造となるように、周縁部を該原子炉炉心シュラウ
ドに結合した遮蔽体を備えた原子炉炉心シュラウド。
1. A reactor core shroud installed in a reactor pressure vessel, wherein a welding heat affected zone of a surface of the reactor core shroud is covered, and a gap between the reactor core shroud and the reactor core shroud has a watertight structure. A reactor core shroud comprising a shield having a peripheral portion coupled to the reactor core shroud.
【請求項2】原子炉圧力容器内に設置される原子炉炉心
シュラウドにおいて、該原子炉炉心シュラウド表面の溶
接熱影響部を覆い、該原子炉炉心シュラウドとの間隙が
水密構造となるように、上下端を該原子炉炉心シュラウ
ドに結合した円筒状の遮蔽体を備えた原子炉炉心シュラ
ウド。
2. In a reactor core shroud installed in a reactor pressure vessel, a welding heat-affected zone of the surface of the reactor core shroud is covered, and a gap with the reactor core shroud has a watertight structure, A reactor core shroud comprising a cylindrical shield having upper and lower ends coupled to the reactor core shroud.
【請求項3】請求項2に記載の原子炉炉心シュラウドに
おいて、少なくとも該原子炉炉心シュラウドの内表面に
円筒状の遮蔽体を備えたことを特徴とする原子炉炉心シ
ュラウド。
3. The reactor core shroud according to claim 2, wherein at least an inner surface of the reactor core shroud is provided with a cylindrical shield.
【請求項4】原子炉圧力容器内に設置される原子炉炉心
シュラウドにおいて、該原子炉炉心シュラウド表面の溶
接熱影響部を覆い、該原子炉炉心シュラウドとの間隙が
水密構造となるように、周方向溶接線に沿って複数の遮
蔽片を設け、各遮蔽片の周縁部を該原子炉炉心シュラウ
ドに結合したことを特徴とする原子炉炉心シュラウド。
4. In a reactor core shroud installed in a reactor pressure vessel, a welding heat affected zone of the surface of the reactor core shroud is covered, and a gap with the reactor core shroud has a watertight structure, A reactor core shroud characterized in that a plurality of shield pieces are provided along a circumferential welding line, and a peripheral edge portion of each shield piece is coupled to the reactor core shroud.
【請求項5】原子炉圧力容器内に設置される原子炉炉心
シュラウドにおいて、該原子炉炉心シュラウド表面の溶
接熱影響部を覆い、該原子炉炉心シュラウドとの間隙を
水密構造とし、かつ該原子炉炉心シュラウドからの取り
外しが可能な遮蔽体を備えた原子炉炉心シュラウド。
5. In a reactor core shroud installed in a reactor pressure vessel, a welding heat affected zone of a surface of the reactor core shroud is covered, and a gap between the reactor core shroud and the reactor core shroud has a watertight structure, and A reactor core shroud having a shield removable from the reactor core shroud.
【請求項6】請求項1から5のいずれかに記載の原子炉
炉心シュラウドにおいて、原子炉炉心シュラウド表面
に、溶接によって取り付けた遮蔽体を備えたことを特徴
とする原子炉炉心シュラウド。
6. A reactor core shroud according to any one of claims 1 to 5, characterized in that a shield attached to the surface of the reactor core shroud by welding is provided.
【請求項7】請求項1から3のいずれかに記載の原子炉
炉心シュラウドにおいて、遮蔽体と原子炉炉心シュラウ
ドの間隙を水密構造に保持するためのシール手段と、遮
蔽体を原子炉炉心シュラウドに固定するための固定手段
を備えたことを特徴とする原子炉炉心シュラウド。
7. The reactor core shroud according to any one of claims 1 to 3, wherein the shield means holds the gap between the shield and the reactor core shroud in a watertight structure, and the shield is a reactor core shroud. A reactor core shroud characterized by comprising fixing means for fixing to a reactor core.
【請求項8】原子炉炉心シュラウドと、該原子炉炉心シ
ュラウドの内側に設置される上部格子板および炉心支持
板を具備する炉内構造物において、請求項1から5のい
ずれかに記載の原子炉炉心シュラウドを備えたことを特
徴とする炉内構造物。
8. A reactor core shroud, and an in-core structure comprising an upper lattice plate and a core support plate installed inside the reactor core shroud, wherein the atom according to any one of claims 1 to 5. A core internal structure characterized by having a core shroud.
【請求項9】以下のステップを有することを特徴とする
原子炉炉心シュラウドの補修方法。 (1)原子炉炉心シュラウドの内側の機器を取り外すス
テップ (2)該原子炉炉心シュラウドを原子炉圧力容器に設置
した状態で、該原子炉炉心シュラウド表面の溶接熱影響
部を含む補修対象部と原子炉冷却水との接触を遮断する
ステップ (3)該補修対象部を覆い、該原子炉炉心シュラウドと
の間隙が水密構造となるように、遮蔽体の周縁部を該原
子炉炉心シュラウドに結合するステップ
9. A method for repairing a nuclear reactor core shroud, which comprises the following steps. (1) Step of removing equipment inside the reactor core shroud (2) With the reactor core shroud installed in the reactor pressure vessel, a repair target portion including a welding heat affected zone on the surface of the reactor core shroud Step of shutting off contact with reactor cooling water (3) Coupling the peripheral portion of the shield to the reactor core shroud so as to cover the repair target part and form a watertight structure in the gap with the reactor core shroud. Steps to do
【請求項10】請求項9に記載の原子炉炉心シュラウド
の補修方法において、円筒状の遮蔽体を、少なくとも原
子炉炉心シュラウドの内表面の補修対象部に取り付ける
ことを特徴とする原子炉炉心シュラウドの補修方法。
10. The reactor core shroud repair method according to claim 9, wherein a cylindrical shield is attached to at least a repair target portion of an inner surface of the reactor core shroud. Repair method.
【請求項11】以下のステップを有することを特徴とす
る原子炉炉心シュラウドの補修方法。 (1)原子炉炉心シュラウドを含む原子炉炉心を原子炉
圧力容器から取り外すステップ (2)該原子炉炉心シュラウド表面の溶接熱影響部を含
む補修対象部を覆い、該原子炉炉心シュラウドとの間隙
が水密構造となるように、遮蔽体の周縁部を該原子炉炉
心シュラウドに結合するステップ (3)該原子炉炉心シュラウドを該原子炉圧力容器に再
び設置するステップ
11. A method for repairing a nuclear reactor core shroud, comprising the following steps. (1) Step of removing the reactor core including the reactor core shroud from the reactor pressure vessel (2) Covering the repair target part including the weld heat affected zone on the surface of the reactor core shroud, and the gap with the reactor core shroud So as to have a watertight structure, the step of connecting the peripheral portion of the shield to the reactor core shroud (3) the step of re-installing the reactor core shroud in the reactor pressure vessel
【請求項12】以下のステップを有することを特徴とす
る原子炉炉心シュラウドの補修方法。 (1)原子炉炉心シュラウドの内側の機器を取り外すス
テップ (2)該原子炉炉心シュラウドを原子炉圧力容器に設置
した状態で、該原子炉炉心シュラウド表面に取り付けた
遮蔽体を取り外すステップ (3)該原子炉炉心シュラウド表面の溶接熱影響部を含
む補修対象部と原子炉冷却水との接触を遮断するステッ
プ (4)該補修対象部を覆い、該原子炉炉心シュラウドと
の間隙が水密構造となるように、新たな遮蔽体の周縁部
を該原子炉炉心シュラウドに結合するステップ
12. A nuclear reactor core shroud repair method comprising the following steps. (1) Step of removing the equipment inside the reactor core shroud (2) Step of removing the shield attached to the surface of the reactor core shroud with the reactor core shroud installed in the reactor pressure vessel (3) Step of cutting off contact between the repair target part including the weld heat affected zone on the surface of the reactor core shroud and the reactor cooling water (4) Covering the repair target part, and the gap between the reactor core shroud and the reactor core shroud is a watertight structure And connecting a new shield periphery to the reactor core shroud.
【請求項13】請求項12に記載の原子炉炉心シュラウ
ドの補修方法において、該原子炉炉心シュラウド内表面
に取り付けた円筒状の遮蔽体を取り外し、該原子炉炉心
シュラウド内表面の溶接熱影響部を含む補修対象部と原
子炉冷却水との接触を遮断した後、該補修対象部を覆う
ように新たな円筒状の遮蔽体を該原子炉炉心シュラウド
内に挿入し、該原子炉炉心シュラウドとの間隙が水密構
造となるように、該新たな円筒状の遮蔽体の周縁部を該
原子炉炉心シュラウドに結合することを特徴とする原子
炉炉心シュラウドの補修方法。
13. The method for repairing a reactor core shroud according to claim 12, wherein a cylindrical shield attached to the inner surface of the reactor core shroud is removed, and a welding heat affected zone of the inner surface of the reactor core shroud is removed. After cutting off the contact between the repair target part including the cooling water and the reactor cooling water, a new cylindrical shield is inserted into the reactor core shroud so as to cover the repair target part, and the reactor core shroud and A method for repairing a nuclear reactor core shroud, characterized in that the peripheral edge portion of the new cylindrical shield is connected to the nuclear reactor core shroud so that the gap between the two becomes a watertight structure.
【請求項14】以下のステップを有することを特徴とす
る原子炉炉心シュラウドの補修方法。 (1)原子炉炉心シュラウドを含む原子炉炉心を原子炉
圧力容器から取り外すステップ (2)該原子炉炉心シュラウドに取り付けた遮蔽体を取
り外すステップ (3)該原子炉炉心シュラウド表面の溶接熱影響部を含
む補修対象部を覆い、該原子炉炉心シュラウドとの間隙
が水密構造となるように、新たな遮蔽体の周縁部を該原
子炉炉心シュラウドに結合するステップ (4)該原子炉炉心シュラウドを該原子炉圧力容器に再
び設置するステップ
14. A method for repairing a nuclear reactor core shroud, comprising the following steps. (1) Step of removing the reactor core including the reactor core shroud from the reactor pressure vessel (2) Step of removing the shield attached to the reactor core shroud (3) Weld heat affected zone of the surface of the reactor core shroud Covering the portion to be repaired, including the following, and joining the peripheral portion of the new shield to the reactor core shroud so that the gap between the reactor core shroud and the reactor core shroud has a watertight structure. (4) Attaching the reactor core shroud Reinstalling in the reactor pressure vessel
【請求項15】原子炉圧力容器内に設置する原子炉炉心
シュラウドの製造法であって、鋼板の縦方向溶接及び周
方向溶接により該原子炉炉心シュラウドを組み立てた
後、該縦方向溶接または該周方向溶接、或いは該縦方向
溶接と該周方向溶接の両方による溶接熱影響部を覆い、
かつ該原子炉炉心シュラウドとの間隙が水密構造となる
ように、遮蔽体の周縁部を該原子炉炉心シュラウドに結
合することを特徴とする原子炉炉心シュラウドの製造
法。
15. A method of manufacturing a reactor core shroud installed in a reactor pressure vessel, comprising: assembling the reactor core shroud by longitudinal welding and circumferential welding of steel plates; Circumferential welding, or covering the weld heat affected zone by both the longitudinal welding and the circumferential welding,
A method of manufacturing a nuclear reactor core shroud, characterized in that the peripheral portion of the shield is joined to the nuclear reactor core shroud so that the gap with the nuclear reactor core shroud has a watertight structure.
【請求項16】請求項15に記載の原子炉炉心シュラウ
ドの製造法において、鋼板の縦方向溶接,周方向溶接に
より該原子炉炉心シュラウドを組み立てた後、該周方向
溶接、或いは該縦方向溶接と該周方向溶接の両方による
溶接熱影響部を覆い、かつ該原子炉炉心シュラウドとの
間隙が水密構造となるように、円筒状の遮蔽体の周縁部
を該原子炉炉心シュラウドに結合することを特徴とする
原子炉炉心シュラウドの製造法。
16. The method of manufacturing a reactor core shroud according to claim 15, wherein after the reactor core shroud is assembled by longitudinal welding and circumferential welding of steel plates, the circumferential welding or the longitudinal welding. And the circumferential heat of the welded heat-affected zone are covered, and the peripheral portion of the cylindrical shield is coupled to the reactor core shroud so that the gap with the reactor core shroud is a watertight structure. A method for manufacturing a reactor core shroud characterized by:
JP7036473A 1995-02-24 1995-02-24 Nuclear reactor core shroud and method for manufacturing and repairing it Pending JPH08233971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7036473A JPH08233971A (en) 1995-02-24 1995-02-24 Nuclear reactor core shroud and method for manufacturing and repairing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7036473A JPH08233971A (en) 1995-02-24 1995-02-24 Nuclear reactor core shroud and method for manufacturing and repairing it

Publications (1)

Publication Number Publication Date
JPH08233971A true JPH08233971A (en) 1996-09-13

Family

ID=12470791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7036473A Pending JPH08233971A (en) 1995-02-24 1995-02-24 Nuclear reactor core shroud and method for manufacturing and repairing it

Country Status (1)

Country Link
JP (1) JPH08233971A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781603A (en) * 1995-07-21 1998-07-14 Combustion Engineering, Inc. Method and apparatus for repair of nuclear reactor shroud
US6389094B1 (en) * 1997-08-29 2002-05-14 General Electric Company Integral forged shroud flange for a boiling water reactor
US20100183112A1 (en) * 2008-12-26 2010-07-22 Hitachi, Ltd. Method of manufacturing core shroud for nuclear power plant and structure of nuclear power plant
CN106312357A (en) * 2016-10-31 2017-01-11 中国核动力研究设计院 Integral-type reactor core baffle structure fixed in layered welding mode
KR20230088111A (en) * 2021-12-10 2023-06-19 김홍범 Manufacuring method of small modular reactor insulation assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781603A (en) * 1995-07-21 1998-07-14 Combustion Engineering, Inc. Method and apparatus for repair of nuclear reactor shroud
US6389094B1 (en) * 1997-08-29 2002-05-14 General Electric Company Integral forged shroud flange for a boiling water reactor
US20100183112A1 (en) * 2008-12-26 2010-07-22 Hitachi, Ltd. Method of manufacturing core shroud for nuclear power plant and structure of nuclear power plant
US8681923B2 (en) * 2008-12-26 2014-03-25 Hitachi, Ltd. Method of manufacturing core shroud for nuclear power plant and structure of nuclear power plant
CN106312357A (en) * 2016-10-31 2017-01-11 中国核动力研究设计院 Integral-type reactor core baffle structure fixed in layered welding mode
KR20230088111A (en) * 2021-12-10 2023-06-19 김홍범 Manufacuring method of small modular reactor insulation assembly

Similar Documents

Publication Publication Date Title
US5436945A (en) Shadow shielding
US5793828A (en) Method and apparatus for repair of nuclear reactor shroud
Hanninen et al. Dissimilar metal weld joints and their performance in nuclear power plant and oil refinery conditions
JP2005326417A (en) Method for repairing leaking slender hollow member in boiling water reactor
JPH08233971A (en) Nuclear reactor core shroud and method for manufacturing and repairing it
JPH0580187A (en) Intra-reactor structure maintaining method
EP1383136B1 (en) Method of repairing leaking elongate hollow members in boiling water reactors
US9978467B2 (en) Excavation and weld repair methodology for pressurized water reactor piping and vessel nozzles
JPH0886896A (en) Shroud in nuclear reactor, and method for installing and replacing it
JP2006088226A (en) Welding of vessel internals with noble metal technology
JPH0929429A (en) Welding procedure
Bamford et al. Recent experience with weld overlay repair of indications in alloy 182 butt welds in two operating PWRs
JPH10128534A (en) Method for welding device of furnace
Khan et al. Role of in-service inspections in nuclear power plants (NPPs)
JP3425217B2 (en) Sealing device for repairing pressure vessel penetration housing
US20130294566A1 (en) Control rod drive (crd) tubes, method of manufacture, and installation thereof
JP2001124888A (en) Maintenance method for preventing stress corrosion cracking
Cattant BWRs Cracking
JPS6147587A (en) Leakage countermeasure repair device for housing section of nuclear reactor vessel
JPS6380972A (en) Piping joining method for pressure container
Chapman et al. A simulation model for estimating probabilities of defects in welds
Tujimura et al. Improvement technique of sensitized HAZ by GTAW cladding applied to a BWR power plant
Boellinghaus et al. Finite element analysis of hydrogen distribution in butt joints
Abdallah et al. PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS
Bonn et al. Role of welding procedure and geometry in cracking of weld vicinities in stainless steel piping of BWRs