JPH08260162A - Laser beam-applied powder compacting method - Google Patents

Laser beam-applied powder compacting method

Info

Publication number
JPH08260162A
JPH08260162A JP7091838A JP9183895A JPH08260162A JP H08260162 A JPH08260162 A JP H08260162A JP 7091838 A JP7091838 A JP 7091838A JP 9183895 A JP9183895 A JP 9183895A JP H08260162 A JPH08260162 A JP H08260162A
Authority
JP
Japan
Prior art keywords
layer
powder
laser
irradiated
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7091838A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakazawa
弘 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7091838A priority Critical patent/JPH08260162A/en
Publication of JPH08260162A publication Critical patent/JPH08260162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE: To compact a powder into an optional shape with high dimensional precision without any die by laminating a powder material in layers, irradiating the region corresponding to the contour of the compact with a laser beam for each layer, heating and sintering the obtained intermediate compact. CONSTITUTION: A compact to be worked is separated into plural parallel layers. A powder material such as metal powder not contg. binder and solvent is layered into unit layer of 0.1-1mm. At least the region corresponding to the contour of the compact is irradiated with a laser beam for each layer of the layered powder material, and the region other than the contour is not irradiated with the beam. The maximum output of the laser beam is controlled to 10-1000 W, and the irradiated region is locally heated and solidified. The succeeding layer of the powder material is laminated on the laser beam-irradiated layer and irradiated with the laser beam. The process is repeated, and the powder outside the contour of the compact is removed after the final layer is irradiated with the laser beam. The intermediate compact thus obtained is entirely heated and sintered to join the layers, and the compact is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明はレーザを利用した粉体の
成形加工に関し、特に金型等の型を用いずに、粉体を所
定の形状に成形加工する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder forming process using a laser, and more particularly to a method for forming a powder into a predetermined shape without using a mold such as a metal mold.

【0002】[0002]

【従来技術】発明者は既にシリンダから押し出した直後
の粉体にレーザ光を照射して焼結する粉体成形加工法を
提案した(特開昭61−52,373号公報)。この方
法では粉体材料に水等の溶媒を加えて粘結性を与え、レ
オロジー状にして押し出した時点での形状を保たせる。
そしてレーザ光を照射して加熱固化させ、成形する。こ
のような加工方法の特徴は金型や特殊形状工具などを用
いずに粉体成形でき、しかも再利用し難い切屑などを生
成せずに製品や素形状を実現できる点に有り、多品種少
量生産やプロトタイプの成形に適している。
2. Description of the Related Art The inventor has proposed a powder molding method in which a powder immediately after being extruded from a cylinder is irradiated with a laser beam to be sintered (Japanese Patent Laid-Open No. 61-52,373). In this method, a solvent such as water is added to the powder material so as to give it a caking property, and the shape at the time of being extruded into a rheological shape is maintained.
Then, it is irradiated with laser light to be heated and solidified to be molded. The feature of such a processing method is that powder molding can be performed without using dies and special shape tools, and that products and raw shapes can be realized without generating chips that are difficult to reuse, making it possible to produce a wide variety of products in small quantities. Suitable for production and molding of prototypes.

【0003】しかしながらこの方法には限界がある。成
形体の形状はシリンダから押し出す際のレオロジーで定
まり、精密成形に適していない。特に段差を設けること
や穴開け加工が難しく、オーバーハングを設けることは
不可能である。そして多くの機構部品には途中で断面積
が増加するオーバーハングが有り、単純なものしか成形
できない。さらに成形体の内部と表面とを均一に加熱す
ることができない。これはレーザ光が表面から数十nm
程度の深さにしか達せず、表面付近でエネルギーが吸収
されてしまうためである。そして表面から内部への熱伝
導は通常の熱伝導で行われ、表面と内部とでは加熱の程
度が異なる。このため成形体の表面のみが溶融され内部
が未焼結のままとなるか、あるいは表面が必要以上に過
熱されて粉体材料の飛散や流動に伴う形状精度の低下が
生じることになる。
However, this method has limitations. The shape of the molded product is determined by the rheology when it is extruded from the cylinder and is not suitable for precision molding. In particular, it is difficult to form a step or make a hole, and it is impossible to form an overhang. Many mechanical parts have overhangs that increase the cross-sectional area on the way, and only simple parts can be molded. Furthermore, the inside of the molded body and the surface cannot be heated uniformly. This is because the laser light is several tens nm from the surface.
This is because it reaches only a certain depth and energy is absorbed near the surface. The heat conduction from the surface to the inside is performed by ordinary heat conduction, and the degree of heating differs between the surface and the inside. For this reason, only the surface of the molded body is melted and the inside remains unsintered, or the surface is overheated more than necessary and the precision of the shape is lowered due to the scattering and flow of the powder material.

【0004】[0004]

【発明の課題】この発明の課題は、 1) 形状精度が高く、 2) 層間の接着性が高く、 3) 各層での反りや熱変形が小さい、レーザ応用粉体成
形加工法を提供することにある(請求項1〜3)。請求
項2での追加の課題は、 4) オーバーハングを含む任意の形状を成形できるよう
にし、 5) 中間成形体の搬送時等に形崩れが生じないようにし
て、形状精度をさらに向上させることにある。請求項3
での追加の課題は、 6) ポリビニルアルコール等のバインダーや、水やテレ
ピン油等の溶媒無しで金属粉体を成形し、バインダー残
渣や溶媒の残渣による汚染を防止することにある。
An object of the present invention is to provide a laser-applied powder molding method which has 1) high shape accuracy, 2) high adhesion between layers, and 3) little warpage or thermal deformation in each layer. (Claims 1 to 3). An additional problem in claim 2 is that 4) an arbitrary shape including an overhang can be molded, and 5) a shape collapse does not occur when the intermediate molded body is conveyed, etc., and the shape accuracy is further improved. Especially. Claim 3
6) is to prevent metal contamination by binder residue or solvent residue by molding metal powder without binder such as polyvinyl alcohol or solvent such as water or turpentine oil.

【0005】[0005]

【発明の構成】この発明のレーザ応用粉体成形加工法
は、粉体材料にレーザ光を照射して成形加工する方法に
おいて、加工すべき成形体を複数の平行な層に分割し、
前記粉体材料を1層ずつ層状にし、各層毎に少なくとも
成形体の輪郭に対応する領域にレーザ光を照射し、かつ
成形体の輪郭の外側に対応する領域にはレーザ光を照射
しないようにし、レーザ光を照射した層上に次の層の粉
体材料を積層して前記のレーザ照射を行うようにして、
粉体材料の積層とレーザ光の照射とを繰り返し、最終層
へのレーザ光の照射後に、成形体の輪郭の外側に対応す
る粉体を除去して、内部が未焼結の粉体のままの中間成
形体を得、得られた中間成形体を全体的加熱により焼結
して各層を結合し、成形体とすることを特徴とする(請
求項1)。
The laser-applied powder molding method of the present invention is a method of irradiating a powder material with a laser beam to perform molding, by dividing a molded body to be processed into a plurality of parallel layers,
The powder material is layered one layer at a time, and for each layer, at least an area corresponding to the contour of the molded body is irradiated with laser light, and an area corresponding to the outside of the contour of the molded body is not irradiated with laser light. , The powder material of the next layer is laminated on the layer irradiated with the laser beam so that the laser irradiation is performed,
Repeatedly stacking powder materials and irradiating with laser light, and after irradiating the final layer with laser light, remove the powder corresponding to the outside of the contour of the molded body, leaving the inside unsintered powder. The intermediate molded body of 1 is obtained, and the obtained intermediate molded body is sintered by overall heating to combine the layers to form a molded body (Claim 1).

【0006】またこの発明は、前記第1層と前記最終層
では、成形体の輪郭に対応する領域とその内側の面とに
レーザ光を照射し、第1層と最終層以外の層では、成形
体の輪郭に対応する領域及び、該層とその上下の層との
間の段差部とにレーザ光を照射することを特徴とする
(請求項2)。この発明はさらに、前記粉体材料とし
て、バインダー及び溶媒を含まない金属粉を用いること
を特徴とする(請求項3)。
Further, in the present invention, in the first layer and the final layer, a region corresponding to the contour of the molded body and the inner surface thereof are irradiated with laser light, and in the layers other than the first layer and the final layer, A region corresponding to the contour of the molded product and a step portion between the layer and the layers above and below the layer are irradiated with laser light (claim 2). The present invention is further characterized in that a metal powder containing no binder and no solvent is used as the powder material (claim 3).

【0007】ここで粉体材料としては、実施例で示す金
属粉体の他に、アルミナやマグネシア等のセラミック粉
体,あるいはプラスチック粉体等の、加熱により固化す
る任意の粉体を用いることができるが、特に重要なのは
Fe,Ni,Cr,Co,Zr,W等の金属粉体であ
る。金属粉体を用いる場合、材料中にポリビニルアルコ
ールや酢酸セルロース等のバインダーや、水やテレピン
油等の溶媒が有ると、レーザ光の照射時やその後の焼結
時に分解して、残渣が成形体を汚染する。例えば水は加
熱により分解して金属を酸化し、層間の結合を妨げる。
またポリビニルアルコール等の有機バインダーやテレピ
ン油等の有機溶媒は、レーザ光の照射時や焼結時に分解
して炭素残渣となり、金属中の炭素含量を変化させる。
そして周知のように、金属の性質は含有炭素量に鋭敏で
ある。このため金属粉体を用いる場合、バインダーや溶
媒無しの乾燥金属粉体として用いることが好ましい。
Here, as the powder material, in addition to the metal powder shown in the examples, any powder that is solidified by heating, such as ceramic powder such as alumina or magnesia, or plastic powder, may be used. It is possible, but particularly important is metal powder such as Fe, Ni, Cr, Co, Zr, W. When using metal powder, if there is a binder such as polyvinyl alcohol or cellulose acetate, or a solvent such as water or turpentine oil in the material, it decomposes during laser light irradiation and subsequent sintering, and the residue remains in the molded body. Pollute. For example, water decomposes by heating and oxidizes the metal, preventing the bonding between layers.
Further, an organic binder such as polyvinyl alcohol or an organic solvent such as turpentine oil is decomposed into a carbon residue upon irradiation with laser light or during sintering, thereby changing the carbon content in the metal.
And, as is well known, the properties of metals are sensitive to the carbon content. Therefore, when the metal powder is used, it is preferably used as a dry metal powder without a binder or a solvent.

【0008】成層時の粉体材料は、金属の場合、前記の
ように乾燥金属粉体とすることが好ましく、セラミック
の場合、例えばバインダーや溶媒を加えてグリーンシー
トに加工したものを用いても良い。各層の厚さは例えば
0.1〜1mm程度とし、層が薄い程精密な加工ができ
るが工程数が増加するので、この範囲で層の厚さを定め
ることが好ましい。また粉体材料は各層毎に成分を変え
ても良く、例えば第1層と第3層を耐食性のNiやCr
を含有する合金とし、中間の第2層を純鉄とすれば、純
鉄の層を耐食性合金でクラッドすることができる。
In the case of metal, the powder material for layering is preferably dry metal powder as described above. In the case of ceramic, for example, a green sheet prepared by adding a binder or a solvent may be used. good. The thickness of each layer is, for example, about 0.1 to 1 mm, and the thinner the layer, the more precise processing can be performed, but the number of steps increases, so it is preferable to determine the layer thickness within this range. Further, the powder material may have different components for each layer. For example, the first layer and the third layer may be made of corrosion-resistant Ni or Cr.
If the alloy containing Al and the second layer in the middle is pure iron, the pure iron layer can be clad with the corrosion resistant alloy.

【0009】レーザにはパルス発振あるいは連続発振の
いずれをも用いることができ、波長や発振モードは任意
である。その最大出力は例えば10〜1000W程度と
し、実施例では10〜100W出力のCO2レーザを用
いた。
Either pulsed oscillation or continuous oscillation can be used for the laser, and the wavelength and oscillation mode are arbitrary. The maximum output is, for example, about 10 to 1000 W, and a CO2 laser having an output of 10 to 100 W is used in the embodiment.

【0010】用語法について説明すると、焼結後の成形
体はレーザ光の照射時の形状から一般に収縮するので、
「成形体の輪郭にレーザ光を照射」とはせずに、収縮分
を考慮して、「成形体の輪郭に対応する領域にレーザ光
を照射」とした。なお以下では、成形体の輪郭に対応す
る領域を単に輪郭部と呼ぶ。また上下の層との段差と
は、ある層についてその下部の層との段差と、その上部
の層との段差の双方を意味する。レーザ光の照射は局所
的な加熱であり、粉体はこれに伴って固化する。これは
一種の焼結であり、これと区別するため、炉や赤外線等
による通常の焼結を、この明細書では全体的加熱による
焼結とした。
To explain the terminology, since the molded body after sintering generally shrinks from the shape when irradiated with laser light,
Instead of “irradiating the contour of the molded body with laser light”, considering the shrinkage amount, “irradiate the region corresponding to the contour of the molded body with laser light” is set. In the following, the area corresponding to the contour of the molded body will be simply referred to as the contour portion. The step difference between the upper and lower layers means both the step difference between the lower layer and the upper layer and the step difference between the upper layer and the upper layer. Irradiation with laser light is local heating, and the powder is solidified accordingly. This is a kind of sintering, and in order to distinguish from this, ordinary sintering using a furnace, infrared rays, etc. is referred to as sintering by overall heating in this specification.

【0011】[0011]

【発明の作用】請求項1の発明についてその作用を説明
すると、加工すべき成形体を3層〜20層程度の層に分
割し、各層毎に成層し、輪郭部にレーザ光を照射する。
レーザ光を照射するのは基本的には輪郭部で、輪郭部の
外側には照射しない。そして1層毎にレーザ光の照射と
次の層の積層とを繰り返し、最終層に到るまでこのステ
ップを繰り返す。輪郭部へのレーザ光の照射では粉体材
料を完全に焼結する必要はなく、中間成形体を取り出し
搬送できる程度の強度が有れば良い。
The operation of the invention of claim 1 will be described. The molded body to be processed is divided into layers of about 3 to 20 layers, each layer is laminated, and the contour portion is irradiated with laser light.
The laser light is basically applied to the contour portion, and the outside of the contour portion is not irradiated. Then, the irradiation of the laser beam and the stacking of the next layer are repeated for each layer, and this step is repeated until the final layer is reached. It is not necessary to completely sinter the powder material by irradiating the contour portion with the laser beam, and it is sufficient if the powder material has such strength that the intermediate compact can be taken out and conveyed.

【0012】最終層へのレーザ光の照射が終ると、輪郭
部がレーザ加熱で固化しているので、内部の粉体は未焼
結のまま輪郭部の中に閉じ込められる。また最終的な焼
結はレーザ光の照射とは別途に行うので、照射エネルギ
ーを小さくし、各層の熱変形を小さくできる。このため
各層は反らず、また表面で粉体が飛散あるいは流動する
ことに伴う熱変形や穴の発生が無い。さらにレーザ照射
の過程での各層の酸化を防止し、かつ粉体の焼結性を高
く保つことができる。層表面の酸化の防止は金属粉体の
場合に特に重要で、焼結工程で層間の酸化膜が焼結を阻
害することを防止できる。レーザ光の照射エネルギーを
小さくできるので、特定の層のみをレーザ加熱でき、各
層毎に輪郭部の形状を変え複雑な形状を成形することが
できる。
After the irradiation of the laser beam to the final layer is finished, the contour portion is solidified by laser heating, so that the powder inside is confined in the contour portion in an unsintered state. Further, since the final sintering is performed separately from the laser light irradiation, the irradiation energy can be reduced and the thermal deformation of each layer can be reduced. Therefore, each layer does not warp, and there is no thermal deformation or generation of holes due to the scattering or flowing of the powder on the surface. Further, it is possible to prevent the oxidation of each layer during the laser irradiation process and to keep the sinterability of the powder high. The prevention of oxidation of the layer surface is particularly important in the case of metal powder, and it is possible to prevent the oxide film between layers from interfering with the sintering in the sintering process. Since the irradiation energy of the laser light can be reduced, only a specific layer can be laser-heated, and the contour of each layer can be changed to form a complicated shape.

【0013】中間成形体の取り出しでは、輪郭部の外側
の粉体が未焼結で強度がないため、不要な粉体をエアブ
ラシや実験室的には刷毛等で簡単に除去することができ
る。このため粉体材料中から中間成形体を容易に取り出
すことができる。取り出した中間成形体を電気炉やガス
炉,赤外線炉等で焼結すると、輪郭部の内部の粉体も焼
結し、成形体を得ることができる。中間成形体の内部は
基本的に未焼結なため焼結工程での焼結活性が高く、各
層は輪郭部を除いて焼結工程で相互に結合される。
When the intermediate compact is taken out, the powder outside the contour portion is unsintered and has no strength, so that unnecessary powder can be easily removed with an air brush or a brush in the laboratory. Therefore, the intermediate compact can be easily taken out of the powder material. When the taken out intermediate compact is sintered in an electric furnace, a gas furnace, an infrared furnace or the like, the powder inside the contour portion is also sintered to obtain a compact. Since the inside of the intermediate molded body is basically unsintered, the sintering activity is high in the sintering process, and the layers are bonded to each other in the sintering process except the contour portion.

【0014】粉体材料をグリーンシートとして成層する
場合、第1層の底面や最終層の上面には搬送に耐えるだ
けの強度が最初からあり、中間成形体の底面や上面(頂
面)にレーザ光を照射する必要はない。なおグリーンシ
ートを用いた場合でも、輪郭部とその外側ではシートの
強度に大差があり、容易に外側のシートを剥ぎ取ること
ができる。ここで請求項2のように、第1層の輪郭部の
内側と中間層の段差部、並びに最終層の輪郭部の内側に
もレーザ光を照射すれば、全く強度の無い乾燥粉体で
も、中間成形体の底面と上面並びに段差部を固化させ、
搬送と焼結に耐える強度を与えることができる。そして
ここで粉体材料をバインダー及び溶媒を含まない金属粉
体とすれば、これらの残渣による汚染や組成変動無しに
成形体を得ることができる。
When the powder material is laminated as a green sheet, the bottom surface of the first layer and the top surface of the final layer have strength enough to withstand conveyance from the beginning, and the bottom surface and the top surface (top surface) of the intermediate compact are laser-coated. There is no need to illuminate. Even when the green sheet is used, there is a large difference in the strength of the sheet between the contour portion and the outside thereof, and the outside sheet can be easily peeled off. Here, as in claim 2, by irradiating the inside of the contour portion of the first layer and the step portion of the intermediate layer and the inside of the contour portion of the final layer with laser light, even dry powder having no strength, Solidify the bottom and top surfaces of the intermediate molded body and the step,
It can provide strength that can withstand transportation and sintering. If the powder material is a metal powder that does not contain a binder and a solvent, a molded product can be obtained without contamination by these residues or fluctuation in composition.

【0015】[0015]

【実施例】図1〜図6に実施例を示し、図1に実施例の
加工原理と用いた加工装置の構造を示し、図2に実施例
の加工アルゴリズムを示す。図1において、2は適宜の
CAD装置で、成形体の目標形状4を入力すると、これ
を複数の平行な層に分割し、各層毎にレーザ光の照射パ
ターンを決定する。各層の厚さは例えば0.1〜1mm
程度とし、形状への要求精度が高いほど層の厚さを小さ
くする。図1には、最下部の第1層6に対するレーザ光
の照射パターン8を示した。照射パターンは層の厚さと
粉体材料の種類を考慮して決定する。層の厚さとレーザ
光の照射パターンとをCAD装置2で決定すると、これ
をNC装置10に入力し、粉体成形加工を行う。
1 to 6 show an embodiment, FIG. 1 shows the processing principle of the embodiment and the structure of a processing apparatus used, and FIG. 2 shows the processing algorithm of the embodiment. In FIG. 1, reference numeral 2 denotes an appropriate CAD device, which inputs a target shape 4 of a molded body, divides it into a plurality of parallel layers, and determines a laser beam irradiation pattern for each layer. The thickness of each layer is, for example, 0.1 to 1 mm
The layer thickness is reduced as the accuracy required for the shape is higher. FIG. 1 shows a laser beam irradiation pattern 8 for the lowermost first layer 6. The irradiation pattern is determined in consideration of the layer thickness and the type of powder material. When the layer thickness and the irradiation pattern of the laser beam are determined by the CAD device 2, this is input to the NC device 10 to perform powder molding processing.

【0016】12はレーザで、ここではCO2レーザを
用いたが、ガラスレーザやルビーレーザあるいはYAG
レーザ等でもよく、例えば最大出力10〜1000W程
度のレーザとする。レーザ光は熱源として利用し、波長
や発振モード等は任意である。14は下部ダイ、16は
上部ダイ、18は下部ピン、20は上部ピンで、上部ダ
イ16や上部ピン20で粉体を各層毎にレーザ光の照射
前に圧縮し、焼結時の収縮を小さくすると共に、焼結後
の成形体(以下、焼結体と呼ぶ)の気孔率を小さくする
ことが好ましい。22は下部ダイ14中に粉体材料を供
給するためのホッパである。下部ダイ14は図示しない
XYテーブルにセットして移動できるようにしてNC装
置10の制御で移動させ、粉体の投入と、上部ダイ16
や上部ピン20による粉体の圧縮、並びにレーザ12に
よるレーザ光の照射を行えるようにする。
Reference numeral 12 is a laser, and a CO2 laser is used here, but a glass laser, a ruby laser, or a YAG laser is used.
A laser or the like may be used, and for example, a laser having a maximum output of about 10 to 1000 W is used. Laser light is used as a heat source, and the wavelength, oscillation mode, etc. are arbitrary. 14 is a lower die, 16 is an upper die, 18 is a lower pin, and 20 is an upper pin. The upper die 16 and the upper pin 20 compress the powder for each layer before irradiating the laser light to reduce shrinkage during sintering. It is preferable to reduce the porosity of the compact after sintering (hereinafter referred to as a sintered compact) as well as to reduce the porosity. 22 is a hopper for supplying the powder material into the lower die 14. The lower die 14 is set on an XY table (not shown) so that the lower die 14 can be moved under the control of the NC device 10.
The powder can be compressed by the upper pin 20 and the laser beam can be emitted by the laser 12.

【0017】粉体材料には金属粉の他にセラミック粉
や、プラスチック粉等を用い、溶媒やバインダーを含ま
ない乾燥粉体の他に、溶媒やバインダーを加えたグリー
ンシート状でも良い。しかし有機溶媒やバインダーは炭
素残渣となって焼結体を汚染し、また溶媒に水を用いる
と金属粉体を酸化して焼結性を低下させるので、粉体材
料には溶媒やバインダーを含まない乾燥粉体が好まし
い。実施例では、粉体材料に鉄カルボニルを分解した、
溶媒やバインダーを含まない純鉄の乾燥粉体を用いた。
As the powder material, in addition to metal powder, ceramic powder, plastic powder, or the like may be used. In addition to dry powder containing no solvent or binder, it may be in the form of a green sheet to which a solvent or binder is added. However, the organic solvent and binder become carbon residue and contaminate the sintered body, and when water is used as the solvent, the metal powder is oxidized and the sinterability is lowered, so the powder material contains the solvent and the binder. No dry powder is preferred. In the example, iron carbonyl was decomposed into powder material,
A dry powder of pure iron containing no solvent or binder was used.

【0018】24はArボンベで、粉体の積層とレーザ
光の照射はAr気流中で行い、レーザ光の照射雰囲気は
中性ないしは還元性とする。これは雰囲気中の酸素によ
り金属粉体がレーザ光の照射時に酸化されるのを防止す
るためである。雰囲気はArに限らず、N2やCO2,あ
るいはCO2−H2等の非酸化性雰囲気を用いる。なおセ
ラミック粉体を成形する場合、雰囲気は酸化性でも良
い。26は気密室で、ボンベ24からのAr気流により
Ar雰囲気に保つためのものである。レーザ光の照射後
の中間成形体28は、電気炉30やガス炉等で焼結す
る。
Reference numeral 24 is an Ar cylinder, and the powder lamination and laser light irradiation are carried out in an Ar stream, and the laser light irradiation atmosphere is neutral or reducing. This is to prevent the metal powder from being oxidized by the oxygen in the atmosphere during the irradiation of the laser beam. The atmosphere is not limited to Ar, but a non-oxidizing atmosphere such as N2, CO2, or CO2-H2 is used. When molding the ceramic powder, the atmosphere may be oxidizing. Reference numeral 26 is an airtight chamber for keeping an Ar atmosphere by the Ar air flow from the cylinder 24. The intermediate compact 28 after the laser light irradiation is sintered in an electric furnace 30, a gas furnace or the like.

【0019】図2に、実施例での粉体の成形加工のアル
ゴリズムを示す。CAD装置2に成形体の3次元形状を
入力すると、必要な形状精度に合わせてこの形状を多数
の平行な層に分割する。そして各層の厚さは例えば0.
1〜1mm程度とする。次に各層の厚さと材料に応じて
各層へのレーザ光の照射パターンを決定する。レーザ光
の照射パターンは、第1層に対しては成形体の輪郭部と
その内部の上面とし、第2層以降については輪郭部と上
下の層に対する段差部とする。また最終層に対しては輪
郭部とその内部の上面とする。
FIG. 2 shows an algorithm of powder forming processing in the embodiment. When the three-dimensional shape of the molded body is input to the CAD device 2, this shape is divided into a large number of parallel layers according to the required shape accuracy. And the thickness of each layer is, for example, 0.1.
It is about 1 to 1 mm. Next, the irradiation pattern of the laser light to each layer is determined according to the thickness and material of each layer. The irradiation pattern of the laser light is the contour portion of the molded body and the upper surface inside thereof for the first layer, and the contour portion and the step portion between the upper and lower layers for the second and subsequent layers. For the final layer, the contour portion and the upper surface inside thereof are used.

【0020】レーザ光の照射エネルギーは、輪郭部と上
下の層に対する段差部に対して最大とし、最終層の内部
上面を中間とし、第1層の内部上面を最小とすることが
好ましい。これは輪郭部の強度を優先し、最終層の上面
に対して粉体がこぼれ落ちない程度の強度をレーザ光で
与え、第1層に対して中間成形体28の底面としての最
低限の強度を与えながら、粉体の酸化を押さえて第2層
との密着性を高めるためである。これらがCADでのス
テップである。
It is preferable that the irradiation energy of the laser beam is maximum with respect to the contour portion and the step portion with respect to the upper and lower layers, the inner upper surface of the final layer is intermediate, and the inner upper surface of the first layer is minimum. This gives priority to the strength of the contour portion, gives the strength of the laser light to the upper surface of the final layer to the extent that powder does not spill, and provides the first layer with the minimum strength as the bottom surface of the intermediate compact 28. This is to suppress the oxidation of the powder while giving it and to improve the adhesion with the second layer. These are the steps in CAD.

【0021】これらの処理が終了すると、処理をレーザ
加工機のNC装置10に引き渡し、レーザ12を用いて
粉体を成形する。ホッパ22から下部ダイ14中に1層
目の粉体を充填し、上部ピン20で圧縮した後、第1層
の粉体の輪郭部と輪郭部の内側の上面とにレーザ光を照
射する。第1層へのレーザ光の照射が終了すると、第2
層以降の層を積層し、各層毎に上部ピン20で圧縮し、
輪郭部と上下の層に対する段差部とにレーザ光を照射す
る。そして最終層に対して、輪郭部とその内部の上面に
レーザ光を照射する。
Upon completion of these processes, the processes are handed over to the NC device 10 of the laser processing machine, and the laser 12 is used to mold the powder. After the powder of the first layer is filled in the lower die 14 from the hopper 22 and compressed by the upper pin 20, the laser light is irradiated to the contour portion of the powder of the first layer and the upper surface inside the contour portion. When the irradiation of the laser beam on the first layer is completed, the second
Layers after the layer are laminated and compressed by the upper pin 20 for each layer,
Laser light is irradiated to the contour portion and the step portion with respect to the upper and lower layers. Then, with respect to the final layer, the contour part and the upper surface inside thereof are irradiated with laser light.

【0022】最終層へのレーザ光の照射後の中間成形体
28では、輪郭部と底面と上面とが半融ないしは僅かに
焼結した状態にあり、内部の粉体は未焼結のままであ
る。輪郭部の外側では粉体は強度の無い乾燥粉体のまま
で、下部ピン18を押し上げて下部ダイ14から取り出
し、刷毛やエアブラシ等で輪郭部の外側の粉体を取り除
き、中間成形体28を得る。取り出した中間成形体28
を電気炉30に送り、例えば1000℃程度で焼結す
る。
In the intermediate compact 28 after the irradiation of the laser beam to the final layer, the contour portion, the bottom surface and the upper surface are in a semi-melted or slightly sintered state, and the internal powder remains unsintered. is there. The powder remains dry powder having no strength outside the contour portion, and the lower pin 18 is pushed up to take it out from the lower die 14, and the powder outside the contour portion is removed with a brush or an airbrush to remove the intermediate molded body 28. obtain. Intermediate molded body 28 taken out
Is sent to an electric furnace 30 and sintered at, for example, about 1000 ° C.

【0023】レーザ光の照射は基本的に輪郭部に対して
行い、輪郭部の内部への照射を抑えるので、残留酸素に
よる金属粉体の酸化が少ない。このため電気炉30での
焼結では層間の酸化層が焼結を阻害せず、層間の密着性
が高い。輪郭部を除いて、各層は電気炉30での焼結で
結合される。レーザ光の照射を輪郭部等に抑えたので、
過熱による層の変形や反り、層間の剥離、あるいは層の
表面からの粉体材料の飛散がなく、成形精度が高い。ま
た各層の内部は未焼結の粉体のままなので焼結活性が高
く、電気炉30で均一に焼結できる。輪郭部も完全には
溶融させず、中間成形体28の取り出しや搬送ができる
程度にレーザ光を照射するので、輪郭部の形崩れや酸化
も少ない。このように照射するレーザエネルギーを小さ
くできるので、特定の層のみを加熱できる。このためレ
ーザ光の照射時に、レーザ照射した層が下部の層と一体
に付着することを防止できる。そしてこの結果、各層毎
に輪郭部の形状を変え、任意の複雑な形状に成形でき
る。なお必要な場合、焼結後に仕上げ加工を施す。
Since the irradiation of the laser beam is basically performed on the contour portion and the irradiation to the inside of the contour portion is suppressed, oxidation of the metal powder due to residual oxygen is small. Therefore, in the sintering in the electric furnace 30, the oxide layer between the layers does not hinder the sintering, and the adhesion between the layers is high. Except for the contours, the layers are joined by sintering in an electric furnace 30. Since the irradiation of laser light is suppressed to the contour part etc.,
There is no deformation or warpage of the layer due to overheating, peeling between layers, or scattering of the powder material from the surface of the layer. Further, since the inside of each layer remains unsintered powder, it has high sintering activity and can be uniformly sintered in the electric furnace 30. Since the contour portion is not completely melted and the laser light is irradiated to such an extent that the intermediate compact 28 can be taken out and transported, the contour portion is not deformed or oxidized. Since the laser energy for irradiation can be reduced in this way, only a specific layer can be heated. Therefore, it is possible to prevent the laser-irradiated layer from adhering integrally with the lower layer when the laser beam is irradiated. As a result, it is possible to change the shape of the contour portion for each layer and mold it into an arbitrarily complicated shape. If necessary, finish processing is performed after sintering.

【0024】図3に、下部ダイ14への粉体の充填状態
とレーザ12の照射パターンとを示す。図は第3層まで
のレーザ光の照射を終えた状態を示し、32が輪郭部
で、34が第1層の輪郭部の内部で、36が段差部であ
る。図では、第3層と次の第4層との間には段差が無い
ものとし、第3層の輪郭部の内部にはレーザ光を照射し
ていない。
FIG. 3 shows the filling state of the powder in the lower die 14 and the irradiation pattern of the laser 12. The figure shows a state in which the irradiation of the laser beam up to the third layer has been completed, where 32 is the contour portion, 34 is the inside of the contour portion of the first layer, and 36 is the step portion. In the figure, it is assumed that there is no step between the third layer and the next fourth layer, and the inside of the contour of the third layer is not irradiated with laser light.

【0025】図4に、段差のある中間成形体40に対す
るレーザ12の照射パターンを示す。42が第1層で、
44が段差のある中間層、46が最終層である。これ以
外の層は図示を省略した。実施例では、輪郭部32に対
してレーザ12を例えばパルス発振させながら走査して
ドット状にレーザ光を照射し、第1層の内部34や段差
部36,最終層の内部48にはレーザ12を連続発振さ
せながら走査して照射した。なお輪郭部32にレーザ1
2を連続発振させて照射しても良い。レーザ光の照射に
より、輪郭部32は半融ないしは部分的に焼結されて固
化し、第1層42の内部34や段差部36,最終層の内
部48は僅かに焼結されて固化する。これらのため、中
間成形体40はその外表面のみが固化した状態で下部ダ
イ14から取り出される。中間成形体40の内部では粉
体は未焼結のままで、電気炉30で均一に焼結できる。
そしてレーザ12による加熱が僅かなので、金属粉体の
酸化を防止して層間の密着性を高め、かつまた加熱によ
る各層の反り等の変形や材料の飛散による穴や亀裂の発
生を防止できる。下部ダイ14から取り出した際の粉体
50の状態を図4の下部に示す。
FIG. 4 shows an irradiation pattern of the laser 12 on the intermediate compact 40 having steps. 42 is the first layer,
Reference numeral 44 is an intermediate layer having a step, and 46 is a final layer. Illustration of the other layers is omitted. In the embodiment, the contour portion 32 is scanned with the laser 12 while being pulse-oscillated, and the laser light is emitted in a dot shape. Was continuously oscillated for scanning and irradiation. In addition, the laser 1
2 may be continuously oscillated and irradiated. By the laser irradiation, the contour portion 32 is semi-melted or partially sintered and solidified, and the inside 34 of the first layer 42, the step portion 36, and the inside 48 of the final layer are slightly sintered and solidified. Therefore, the intermediate compact 40 is taken out from the lower die 14 in a state where only the outer surface of the intermediate compact 40 is solidified. Inside the intermediate compact 40, the powder remains unsintered and can be uniformly sintered in the electric furnace 30.
Further, since the heating by the laser 12 is slight, it is possible to prevent the oxidation of the metal powder to improve the adhesion between the layers, and also to prevent the deformation such as the warp of each layer due to the heating and the generation of the holes and cracks due to the scattering of the material. The state of the powder 50 when taken out from the lower die 14 is shown in the lower portion of FIG.

【0026】図5,図6に、傘歯車52を実施例に従っ
て成形加工した例を示す。用いた材料は鉄カルボニルを
分解した純鉄粉で、バインダーや溶媒を含まない乾燥粉
体である。粉体材料は図6の下から上へと順に積層し、
各層の厚さは0.3mmである。図5のラインはレーザ
12の照射パターンを示し、図5は図6の下側から見た
状態を示し、中央の4つの同心円が第1層の内部へのレ
ーザ光の照射パターンを示し、周囲の密な線が輪郭部3
2への照射パターンを示す。レーザ光の照射条件は、輪
郭部32で出力65W,デューテイ比13%のパルス発
振で、発振周波数は300Hz,レーザ光のパワー密度
は1.38×105W/cm2,レーザ12からの照射距
離は95mm,ビームの送り速度は400mm/分とし
た。第1層の内部34では、レーザ12は出力27Wの
連続発振で、パワー密度は5.48×103W/cm2
照射距離は110mm,ビームの送り速度は400mm
/分で、最終層の内部48ではレーザ12は出力15W
の連続発振で、パワー密度は7.28×104W/c
2,照射距離は100mm,ビームの送り速度は40
0mm/分とした。また気密室26での残留酸素濃度は
約0.5%であった。中間成形体の表面積当たりのレー
ザエネルギーでは、輪郭部32としてレーザ光のビーム
直径の幅の帯状の部分を考えると、輪郭部32が最大
で、最終層の内部48がこれに次ぎ、第1層の内部34
が最低となる。レーザ照射後の中間成形体を電気炉30
で1000℃で5分間焼結し、図6の傘歯車を得た。
5 and 6 show an example in which the bevel gear 52 is molded according to the embodiment. The material used is pure iron powder obtained by decomposing iron carbonyl, which is a dry powder containing no binder or solvent. Powder materials are stacked in order from bottom to top in FIG.
The thickness of each layer is 0.3 mm. The line of FIG. 5 shows the irradiation pattern of the laser 12, FIG. 5 shows the state seen from the lower side of FIG. 6, and the four concentric circles in the center show the irradiation pattern of the laser light to the inside of the first layer and the surroundings. The dense line of contour 3
The irradiation pattern to 2 is shown. The irradiation conditions of the laser light are: pulsed output with an output of 65 W at the contour portion 32 and a duty ratio of 13%, an oscillation frequency of 300 Hz, a laser beam power density of 1.38 × 10 5 W / cm 2 , and an irradiation from the laser 12. The distance was 95 mm, and the beam feed rate was 400 mm / min. In the inside 34 of the first layer, the laser 12 continuously oscillates with an output of 27 W and the power density is 5.48 × 10 3 W / cm 2 ,
Irradiation distance is 110mm, beam speed is 400mm
/ Min., Laser 12 outputs 15 W inside the last layer 48
Continuous oscillation, the power density is 7.28 × 10 4 W / c
m 2 , irradiation distance is 100 mm, beam feed rate is 40
It was set to 0 mm / min. The residual oxygen concentration in the airtight chamber 26 was about 0.5%. With regard to the laser energy per surface area of the intermediate compact, considering the strip-shaped portion having the width of the beam diameter of the laser light as the contour portion 32, the contour portion 32 is the largest, the inside 48 of the final layer is next to this, and the first layer is the second layer. Inside 34
Is the lowest. The intermediate compact after laser irradiation is converted into an electric furnace 30.
And sintered at 1000 ° C. for 5 minutes to obtain a bevel gear shown in FIG.

【0027】図6から明らかなように加工精度は高く、
歯車形状に加工できた。また層間に空孔や亀裂等は見ら
れず、表面は滑らかで荒れや穴は無く、最後に積層した
図6での上部の面にも反りは見られなかった。このこと
は多数の層を積層しても反りが生じず、またオーバーハ
ングの有る複雑な形状を成形できることを示している。
As is clear from FIG. 6, the machining accuracy is high,
It could be processed into a gear shape. Further, no voids or cracks were observed between the layers, the surface was smooth and free of roughness or holes, and no warpage was observed on the upper surface of the last laminated layer in FIG. This indicates that even if a large number of layers are laminated, no warpage occurs and a complicated shape with overhang can be formed.

【0028】[0028]

【発明の効果】この発明では以下の効果が得られる(請
求項1〜3)。 1) 輪郭部等の限られた部分にレーザ光を照射し、成形
体の内部はレーザ光で焼結しないので、作業性が良い。 2) これに伴ってレーザ過熱による熱変形や反り、粉体
の飛散等が無く、形状精度が高い。 3) 多数の層を積層することができ、また各層毎の輪郭
部の形状を変えることで複雑な形状でも成形できる。特
に層の厚さを小さくすれば、精密な成形ができる。 4) 最終的な焼結はレーザ照射とは別に行うので、全体
を均一に焼結でき、形状精度が高く、強度も高い。また
これに伴って層間での密着性が高い。 5) 特定の層のみをレーザ加熱でき、下部の層はレーザ
光を照射した層に不必要に付着しない。 6) 輪郭部でもレーザ光の照射では搬送に耐えるだけの
強度が有ればよく、完全に焼結する必要が無い。このた
め、輪郭部での形崩れも少ない。 7) 切削油が不要でこれに伴う環境汚染がなく、また切
削屑が生じない。 8) 金型が不要で、多品種少量生産やプロトタイプの製
造に適する。 9) 層毎に組成を変えた複合部材を生産できる。
According to the present invention, the following effects can be obtained (claims 1 to 3). 1) Workability is good because the limited part such as the contour part is irradiated with the laser light and the inside of the molded body is not sintered by the laser light. 2) As a result, there is no thermal deformation or warpage due to laser overheating, no scattering of powder, etc., and the shape accuracy is high. 3) A large number of layers can be laminated, and a complicated shape can be formed by changing the shape of the contour of each layer. In particular, if the layer thickness is reduced, precise molding can be performed. 4) Since the final sintering is performed separately from laser irradiation, the whole can be sintered uniformly, the shape accuracy is high, and the strength is high. Along with this, the adhesion between layers is high. 5) Only a specific layer can be laser-heated, and the lower layer does not unnecessarily adhere to the layer irradiated with laser light. 6) Even in the contour portion, it is sufficient that it has strength to withstand conveyance by laser light irradiation, and it is not necessary to completely sinter. For this reason, the shape of the contour portion is less likely to be deformed. 7) No need for cutting oil, no environmental pollution associated with this, and no cutting chips. 8) No mold required, suitable for high-mix low-volume production and prototype production. 9) It is possible to produce composite members with different compositions for each layer.

【0029】請求項2の発明では、以下の追加の効果が
得られる。 10) グリーンシートを用いないでも、オーバーハング
を含む任意の形状を成形できる。 11) グリーンシートを用いないでも、中間成形体の搬
送時の形崩れが生じない。請求項3の発明では、以下の
追加の効果が得られる。 12) バインダーや溶媒を必要としないので、これらの
残渣による汚染が生じない。 13) 2),6)に伴って、各層の酸化を抑え、層間の密着性
が高い。
According to the invention of claim 2, the following additional effects can be obtained. 10) Any shape including overhang can be formed without using a green sheet. 11) Even if the green sheet is not used, the intermediate molded body does not lose its shape during transportation. According to the invention of claim 3, the following additional effects can be obtained. 12) No binder or solvent is required, so contamination by these residues does not occur. 13) Due to 2) and 6), oxidation of each layer is suppressed and the adhesion between layers is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のレーザ応用粉体成形加工法の基本原
理を示す図
FIG. 1 is a diagram showing a basic principle of a laser-applied powder molding method in an embodiment.

【図2】 実施例の工程図FIG. 2 is a process chart of an example

【図3】 実施例でのダイへの粉体の充填状態とレーザ
光の照射パターンを示す図
FIG. 3 is a diagram showing a filling state of powder in a die and an irradiation pattern of laser light in an example.

【図4】 実施例でのレーザ光の照射パターンを示す図FIG. 4 is a diagram showing an irradiation pattern of laser light in an example.

【図5】 実施例のレーザ応用粉体成形加工法で製造し
た傘歯車へのレーザ光の照射パターンを示す図
FIG. 5 is a diagram showing an irradiation pattern of laser light on a bevel gear manufactured by a laser-applied powder molding method according to an embodiment.

【図6】 実施例で製造した傘歯車の金属組織を示す写
FIG. 6 is a photograph showing the metallographic structure of the bevel gears manufactured in the examples.

【符号の説明】[Explanation of symbols]

2 CAD装置 32 輪郭部 4 成形体の目標形状 34 第1層
内部 6 層 36 段差部 8 照射パターン 40 中間成
形体 10 NC装置 42 第1
層 12 レーザ 44 中間
層 14 下部ダイ 46 最終
層 16 上部ダイ 48 最終
層内部 18 下部ピン 50 粉体 20 上部ピン 52 傘歯
車 22 ホッパ 24 Arボンベ 26 気密室 28 中間成形体 30 電気炉
2 CAD device 32 Contour part 4 Target shape of molded body 34 First layer inside 6 Layer 36 Stepped portion 8 Irradiation pattern 40 Intermediate molded body 10 NC device 42 First
Layer 12 Laser 44 Intermediate layer 14 Lower die 46 Final layer 16 Upper die 48 Final layer Internal 18 Lower pin 50 Powder 20 Upper pin 52 Bevel gear 22 Hopper 24 Ar cylinder 26 Airtight chamber 28 Intermediate compact 30 Electric furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉体材料にレーザ光を照射して成形加工
する方法において、 加工すべき成形体を複数の平行な層に分割し、 前記粉体材料を1層ずつ層状にし、各層毎に少なくとも
成形体の輪郭に対応する領域にレーザ光を照射し、かつ
成形体の輪郭の外側に対応する領域にはレーザ光を照射
しないようにし、レーザ光を照射した層上に次の層の粉
体材料を積層して前記のレーザ照射を行うようにして、
粉体材料の積層とレーザ光の照射とを繰り返し、 最終層へのレーザ光の照射後に、成形体の輪郭の外側に
対応する粉体を除去して、内部が未焼結の粉体のままの
中間成形体を得、 得られた中間成形体を全体的加熱により焼結して各層を
結合し、成形体とすることを特徴とする、レーザ応用粉
体成形加工法。
1. A method for forming a powder material by irradiating it with a laser beam, wherein a molded body to be processed is divided into a plurality of parallel layers, and the powder material is layered one by one, and each layer is formed in layers. At least the area corresponding to the contour of the molded body is irradiated with laser light, and the area corresponding to the outside of the contour of the molded body is not irradiated with laser light, and the powder of the next layer is formed on the layer irradiated with laser light. By stacking the body material and performing the laser irradiation described above,
Repeatedly stacking powder materials and irradiating with laser light, and after irradiating the final layer with laser light, remove the powder corresponding to the outside of the contour of the molded body, leaving the inside unsintered powder. The laser-applied powder molding method, characterized in that the intermediate molded body of (1) is obtained, and the obtained intermediate molded body is sintered by overall heating to bond each layer to form a molded body.
【請求項2】 前記第1層と前記最終層では、成形体の
輪郭に対応する領域とその内側の面とにレーザ光を照射
し、第1層と最終層以外の層では、成形体の輪郭に対応
する領域及び、該層とその上下の層との間の段差部とに
レーザ光を照射することを特徴とする、請求項1のレー
ザ応用粉体成形加工法。
2. In the first layer and the final layer, a region corresponding to the contour of the molded product and the inner surface thereof are irradiated with laser light, and the layers other than the first layer and the final layer are covered with the molded product. The laser-applied powder molding method according to claim 1, wherein the region corresponding to the contour and the step between the layer and the layers above and below the layer are irradiated with laser light.
【請求項3】 前記粉体材料として、バインダー及び溶
媒を含まない金属粉を用いることを特徴とする、請求項
1または2のレーザ応用粉体成形加工法。
3. The laser-applied powder molding method according to claim 1, wherein a metal powder containing no binder and no solvent is used as the powder material.
JP7091838A 1995-03-23 1995-03-23 Laser beam-applied powder compacting method Pending JPH08260162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7091838A JPH08260162A (en) 1995-03-23 1995-03-23 Laser beam-applied powder compacting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7091838A JPH08260162A (en) 1995-03-23 1995-03-23 Laser beam-applied powder compacting method

Publications (1)

Publication Number Publication Date
JPH08260162A true JPH08260162A (en) 1996-10-08

Family

ID=14037739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7091838A Pending JPH08260162A (en) 1995-03-23 1995-03-23 Laser beam-applied powder compacting method

Country Status (1)

Country Link
JP (1) JPH08260162A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301619A (en) * 1999-04-21 2000-10-31 Hitachi Zosen Corp Method for shaping laminate
US8007373B2 (en) * 2009-05-19 2011-08-30 Cobra Golf, Inc. Method of making golf clubs
US9330406B2 (en) 2009-05-19 2016-05-03 Cobra Golf Incorporated Method and system for sales of golf equipment
JP2018145526A (en) * 2018-05-08 2018-09-20 三菱重工業株式会社 Three-dimensional lamination device
US10369627B2 (en) 2014-03-31 2019-08-06 Mitsubishi Heavy Industries, Ltd. Three-dimensional deposition device
TWI670125B (en) * 2015-01-14 2019-09-01 瑞典商數位金屬公司 Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured object
JP2019209558A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Additive manufactured article and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301619A (en) * 1999-04-21 2000-10-31 Hitachi Zosen Corp Method for shaping laminate
US8007373B2 (en) * 2009-05-19 2011-08-30 Cobra Golf, Inc. Method of making golf clubs
US8323122B2 (en) * 2009-05-19 2012-12-04 Cobra Golf Incorporated Method of making golf clubs
US9330406B2 (en) 2009-05-19 2016-05-03 Cobra Golf Incorporated Method and system for sales of golf equipment
US10369627B2 (en) 2014-03-31 2019-08-06 Mitsubishi Heavy Industries, Ltd. Three-dimensional deposition device
US10744561B2 (en) 2014-03-31 2020-08-18 Mitsubishi Heavy Industries, Ltd. Three-dimensional deposition device
TWI670125B (en) * 2015-01-14 2019-09-01 瑞典商數位金屬公司 Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured object
JP2018145526A (en) * 2018-05-08 2018-09-20 三菱重工業株式会社 Three-dimensional lamination device
JP2019209558A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Additive manufactured article and manufacturing method thereof
WO2019234974A1 (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Powder laminate molded article and production method therefor

Similar Documents

Publication Publication Date Title
Kumar et al. Selective laser sintering
CN100406169C (en) Metallic parts fabrication using selective inhibition of sintering (SIS)
US5354414A (en) Apparatus and method for forming an integral object from laminations
US8575513B2 (en) Rapid prototyping of ceramic articles
US20160303798A1 (en) Method and device for manufacturing of three dimensional objects utilizing direct plasma arc
KR101648442B1 (en) Method of manufacturing three-dimensional sculpture
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
KR100574268B1 (en) Method of manufacturing a three dimensional object
JP2002115004A (en) Method and equipment for manufacturing article with three-dimensional shape
JPH1088201A (en) Method for compacting powder applying laser beam
EP3427870B1 (en) Three-dimensional molded object production method
JP2022501509A (en) A method of manufacturing parts with complex shapes from preforms by pressure sintering
CN112789130B (en) Method for producing a counterform and method for producing a component with a complex shape using such a counterform
CN113211593B (en) Additive manufacturing method for powder printing, sintering and laser composite processing
JP2010132961A (en) Lamination forming device and lamination forming method
JP2008291315A (en) Method for producing three-dimensionally shaped object
JPH08260162A (en) Laser beam-applied powder compacting method
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
CN113500205B (en) 3D printing method of bimetallic material
CN109047759B (en) Laser scanning method for improving interlayer strength and reducing warping deformation
JP3687667B2 (en) Metal powder for metal stereolithography
JP4318764B2 (en) Laser micro layered manufacturing method and apparatus using fine powder tape
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
CN113732309A (en) Additive manufacturing method capable of simultaneously improving forming precision and forming efficiency
JP2004284025A (en) Laminate shaping method and laminate shaping apparatus