JP2008291315A - Method for producing three-dimensionally shaped object - Google Patents

Method for producing three-dimensionally shaped object Download PDF

Info

Publication number
JP2008291315A
JP2008291315A JP2007138031A JP2007138031A JP2008291315A JP 2008291315 A JP2008291315 A JP 2008291315A JP 2007138031 A JP2007138031 A JP 2007138031A JP 2007138031 A JP2007138031 A JP 2007138031A JP 2008291315 A JP2008291315 A JP 2008291315A
Authority
JP
Japan
Prior art keywords
powder
layer
light beam
sintered layer
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007138031A
Other languages
Japanese (ja)
Other versions
JP4655063B2 (en
Inventor
Isao Fuwa
勲 不破
Tokuo Yoshida
徳雄 吉田
Yoshikazu Azuma
喜万 東
Satoshi Abe
諭 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007138031A priority Critical patent/JP4655063B2/en
Publication of JP2008291315A publication Critical patent/JP2008291315A/en
Application granted granted Critical
Publication of JP4655063B2 publication Critical patent/JP4655063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a three-dimensionally shaped object where after the formation of a sintered layer, when cutting removal for either a surface part or an unrequired part in a molding produced heretofore is performed, highly efficient cutting can be performed even if a fine cutting tool is used. <P>SOLUTION: In accordance with the size of a cutting tool 41 used for cutting removal, the coating thickness of a powder material fed for forming a sintering layer 11, the energy amount and condensing diameter of the light beam L to be applied, and the particle diameter of the powder to be applied are set. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粉末材料の層に光ビームを照射して焼結層を形成する工程を繰り返すことにより、複数の焼結層が積層一体化された三次元形状造形物を製造する方法に関する。   The present invention relates to a method of manufacturing a three-dimensional shaped object in which a plurality of sintered layers are laminated and integrated by repeating a step of forming a sintered layer by irradiating a layer of powder material with a light beam.

光造形法として知られている三次元形状造形物の製造方法がある。例えば、特許文献1に示された該製造方法は、粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成するということを繰り返すことで、複数の焼結層が積層一体化された粉末焼結部品(三次元形状造形物)を製造するものであり、三次元形状造形物の設計データ(CADデータ)であるモデルを所望の層厚みにスライスして生成する各層の断面形状データをもとに光ビームを照射することから、任意形状の三次元形状造形物を製造することができるほか、切削加工などによる製造方法に比して、迅速に所望の形状の造形物を得ることができる。   There is a method for manufacturing a three-dimensional shaped object known as an optical modeling method. For example, the manufacturing method disclosed in Patent Document 1 forms a sintered layer by irradiating a predetermined portion of a powder material layer with a light beam to sinter the powder at the corresponding portion, and A new sintered layer that is integrated with a lower sintered layer by coating a new layer of powder material on the top and irradiating a predetermined portion of the powder layer with a light beam to sinter the powder at that location. By repeating the process of forming a powder sintered part (three-dimensional shaped article) in which a plurality of sintered layers are laminated and integrated, design data (CAD data) of the three-dimensional shaped article ) Is slicing the model to the desired layer thickness, and the light beam is irradiated based on the cross-sectional shape data of each layer. Compared with the manufacturing method by the Rukoto can.

ところで、光ビームを照射して、焼結硬化させた部分の周囲には、伝達された熱が原因となって、不要な粉末が付着し、密度の低い表面層が造形物に形成されてしまう。この密度の低い表面層を除去して滑らかな表面の三次元形状造形物を得るために、例えば、特許文献2には、焼結層の形成後に、それまでに製造した造形物における表面部または不要部分の少なくとも一方の除去を行う工程を複数回の焼結層の製造工程中に挿入する方法が記載されている。この方法を採用することにより、焼結層の製造とそれまでに製造した造形物における表面部または不要部分の少なくとも一方の除去とを繰り返し行うことで、ドリル長などの制約を受けることなく表面を仕上げることができる。
特許2620353号公報 特許3446733号公報
By the way, unnecessary powder adheres to the periphery of the portion that is irradiated with the light beam and sintered and hardened, and the surface layer having a low density is formed on the molded article due to the transferred heat. . In order to remove the low-density surface layer and obtain a three-dimensional shaped article having a smooth surface, for example, Patent Document 2 discloses a surface portion or a part of a shaped article produced so far after formation of a sintered layer. A method is described in which a step of removing at least one of unnecessary portions is inserted into a plurality of times of manufacturing a sintered layer. By adopting this method, it is possible to repeat the production of the sintered layer and the removal of at least one of the surface part or the unnecessary part in the molded article produced so far, so that the surface can be obtained without any restrictions such as the drill length. Can be finished.
Japanese Patent No. 2620353 Japanese Patent No. 3446733

上記特許文献2に記載の方法を採用する場合、各焼結層はその大きさ(水平断面積)を本来の値より大きくしておき、それまでに製造した造形物における表面部または不要部分の少なくとも一方を除去する際に本来の寸法となるようにすることで、滑らかで且つ硬度の高い表面を確実に得ることができるものとなるが、次のような問題が新たに生ずる。   When the method described in Patent Document 2 is adopted, each sintered layer has a size (horizontal cross-sectional area) larger than the original value, and the surface portion or unnecessary portion of the molded article manufactured so far. By making at least one of the original dimensions when removing at least one of them, a smooth and highly hard surface can be obtained with certainty, but the following new problems arise.

すなわち、それまでに製造した造形物の表面部に付着している不要粉末量が多かったり、その不要粉末のサイズが大きかったりした場合、細い切削工具で切削除去を行うと、少しずつしか切削除去できないため非常に効率が悪い。しかし、三次元形状造形物の形状によっては、細い切削工具でしか形状加工できないような細い溝形状や複雑形状は存在する。   In other words, if the amount of unnecessary powder adhering to the surface of the molded object manufactured so far is large or the size of the unnecessary powder is large, cutting and removing with a thin cutting tool will only remove little by little. It is very inefficient because it cannot be done. However, depending on the shape of the three-dimensional shaped object, there are thin groove shapes and complex shapes that can only be processed with a thin cutting tool.

本発明は上記の点に鑑みなされたものであって、除去工程において、細い切削工具を用いても、効率の良い切削を行うことができる三次元形状造形物の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a three-dimensional shaped object that can perform efficient cutting even if a thin cutting tool is used in the removal step. And

上記課題を解決するために、請求項1に記載の三次元形状造形物の製造方法は、粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで焼結層を形成し、当該焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して、複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、焼結層の形成後にそれまでに製造した造形物における表面部または不要部分の少なくとも一方の除去を行う除去工程を含み、当該除去工程が切削工程である三次元形状造形物の製造方法において、除去工程で、使用する切削工具の工具径に応じて、焼結層を形成するために供給する粉末材料の被覆厚さおよび照射する光ビームのエネルギー量を設定することを特徴とする。   In order to solve the above-mentioned problem, the manufacturing method of the three-dimensional shaped object according to claim 1 sinters by irradiating a predetermined part of the layer of the powder material with a light beam and sintering the powder at the corresponding part. A layer is formed, and a new layer of powder material is coated on the sintered layer, and a predetermined portion is irradiated with a light beam to sinter the powder at the corresponding location, thereby integrating with the lower sintered layer. When forming a three-dimensional shaped object in which a plurality of sintered layers are laminated and integrated by repeating the formation of a new sintered layer, the surface of the shaped object manufactured so far after the formation of the sintered layer In the method for manufacturing a three-dimensional shaped article, in which the removal process is a cutting process, the removal process is performed according to the tool diameter of the cutting tool used. The coating thickness of the powder material supplied to form the bond layer And sets the amount of energy of the light beam to finely irradiation.

請求項2に記載の発明は、上記請求項1に記載の三次元形状造形物の製造方法において、除去工程で、使用する切削工具の工具径に応じて、さらに光ビームの集光径も設定することを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing a three-dimensionally shaped object according to the first aspect, in the removing step, a condensing diameter of the light beam is further set according to the tool diameter of the cutting tool to be used. It is characterized by doing.

請求項3に記載の発明は、上記請求項1または2に記載の三次元形状造形物の製造方法において、除去工程で、使用する切削工具の工具径に応じて、さらに被覆する粉末の粒径も設定することを特徴とする。   According to a third aspect of the present invention, in the three-dimensional shaped article manufacturing method according to the first or second aspect, the particle size of the powder to be further coated in the removing step according to the tool diameter of the cutting tool to be used. Is also set.

請求項4に記載の三次元形状造形物の製造方法は、粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで焼結層を形成し、当該焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して、複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、焼結層の形成後にそれまでに製造した造形物における表面部または不要部分の少なくとも一方の除去を行う除去工程を含み、当該除去工程が切削工程である三次元形状造形物の製造方法において、除去工程で、使用する切削工具の工具径が小さい場合には、被覆する粉末材料の粒径を細かくし、被覆する粉末厚さを薄くし、焼結層を形成する時の光ビームの照射エネルギー量を小さくし、その集光径も小さくすることを特徴とする。   The method for producing a three-dimensional shaped object according to claim 4, wherein a predetermined layer of the powder material layer is irradiated with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and the sintering A new layer of powder material is coated on the layer, and a light beam is irradiated to a predetermined location to sinter the powder at that location to form a new sintered layer that is integrated with the underlying sintered layer. To produce a three-dimensional shaped object in which a plurality of sintered layers are laminated and integrated, after forming the sintered layer, at least one of the surface part or the unnecessary part in the shaped object produced so far In the method for producing a three-dimensional shaped object, which includes a removing step for removing, and the removing step is a cutting step, if the tool diameter of the cutting tool to be used is small in the removing step, the particle size of the powder material to be coated The powder to be coated is made thinner and the sintered layer is made thinner. The irradiation energy amount of the light beam when forming small, characterized by smaller the focused diameter.

請求項5に記載の発明は、上記請求項1〜4のいずれか1項に記載の三次元形状造形物の製造方法において、粉末材料が金属粉末を含むことを特徴とする。   Invention of Claim 5 is a manufacturing method of the three-dimensional shape molded article of any one of the said Claims 1-4. WHEREIN: Powder material contains metal powder.

本発明によれば、細い切削工具を用いても、効率の良い切削を行うことができる三次元形状造形物の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses a thin cutting tool, the manufacturing method of the three-dimensional shaped molded object which can perform efficient cutting can be provided.

以下、図面を参照しながら本発明の実施形態について説明する。以下の説明では具体例を挙げて本発明を説明する場合があるが、本発明は以下の具体例に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the present invention may be described with specific examples, but the present invention is not limited to the following specific examples.

図1に実施形態に係る三次元形状造形物の製造装置(以下、単に「製造装置」と呼ぶ)を示す。   FIG. 1 shows a three-dimensional shaped article manufacturing apparatus (hereinafter simply referred to as “manufacturing apparatus”) according to an embodiment.

製造装置は、シリンダーで外周が囲まれた空間内を上下に昇降する昇降テーブル20上に供給した粉末材料をスキージング用ブレード21でならすことで所定厚みΔt1(図2参照)の粉末材料の層(粉末層)10を形成する粉末層形成手段2と、粉末層形成手段2の上方に設けられレーザー発振器30から出力された光ビーム(レーザー)Lをガルバノミラー31等のスキャン光学系を介して上記粉末層10の所定箇所に照射することで当該箇所を焼結して焼結層11を形成する焼結層形成手段3と、ボールエンドミルを備え上記粉末層形成手段2のベース部にXY駆動機構(高速化の点で直動リニアモータ駆動のものが好ましい)40を介して設けられた切削工具41によりそれまでに製造された造形物における表面部または不要部分の少なくとも一方を除去する除去手段4と、を基本構成とする。   The manufacturing apparatus uses a squeezing blade 21 to smooth the powder material supplied onto a lifting table 20 that moves up and down in a space surrounded by a cylinder, so that the powder material layer has a predetermined thickness Δt1 (see FIG. 2). The powder layer forming means 2 for forming the (powder layer) 10 and the light beam (laser) L output from the laser oscillator 30 provided above the powder layer forming means 2 through a scanning optical system such as a galvanometer mirror 31 By irradiating a predetermined portion of the powder layer 10 to sinter the portion to form the sintered layer 11, a sintered layer forming means 3, and a ball end mill are provided to the base portion of the powder layer forming means 2 in an XY drive. A surface part or an unnecessary part of a shaped article manufactured so far by a cutting tool 41 provided through a mechanism (preferably one driven by a linear motion linear motor in terms of speeding up) And removal means 4 for removing one even without the the basic structure.

このものにおける三次元形状造形物の製造は、図2に示すように、焼結層形成手段3と焼結層11との相対距離を調整する調整手段であるところの昇降テーブル20上面の造形用ベース22表面に粉末材料を供給してブレード21でならすことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビームLを照射して粉末を焼結させてベース22と一体化した焼結層11を形成する。   As shown in FIG. 2, the manufacture of the three-dimensional shaped article in this product is for modeling the upper surface of the lifting table 20 which is an adjusting means for adjusting the relative distance between the sintered layer forming means 3 and the sintered layer 11. A powder material is supplied to the surface of the base 22 and is smoothed by the blade 21 to form the first powder layer 10, and a portion of the powder layer 10 to be cured is irradiated with the light beam L to sinter the powder. Thus, the sintered layer 11 integrated with the base 22 is formed.

この後、昇降テーブル20を少し下げて再度粉末材料を供給してブレード21でならすことで第2層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビームLを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   Thereafter, the lifting table 20 is slightly lowered, the powder material is supplied again, and the blade 21 is used to form the second powder layer 10, and the portion of the powder layer 10 to be cured is irradiated with the light beam L. Then, the powder is sintered to form the sintered layer 11 integrated with the lower sintered layer 11.

上記工程を繰り返すことにより、目的とする三次元形状造形物が製造される。   By repeating the above steps, a target three-dimensional shaped object is manufactured.

ここで、粉末材料は、粒径が1〜100μmの細かい金属粉末を含む。具体的には、粉末材料は、クロムモリブデン鋼(SCM440)、ニッケル(Ni)、銅マンガン合金(CuMnNi)および黒鉛(C)の混合粉末であり、その配合割合は、(70重量%SCM440−20重量%Ni−9重量%CuMnNi)+0.3重量%Cである。   Here, the powder material includes a fine metal powder having a particle size of 1 to 100 μm. Specifically, the powder material is a mixed powder of chromium molybdenum steel (SCM440), nickel (Ni), copper manganese alloy (CuMnNi), and graphite (C), and the blending ratio is (70 wt% SCM440-20). Wt% Ni-9 wt% CuMnNi) +0.3 wt% C.

また、光ビームLとしては炭酸ガスレーザーが用いられる。光ビームLの照射経路は、予め三次元CADデータから作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチでスライスした各断面の輪郭形状データを用いる。このとき、三次元形状造形物の少なくとも最表面が高密度(気孔率5%以下)となるように焼結させることができるように光ビームLの照射を行うのが好ましい。除去手段4によって後述する表面除去を行っても、露出した部分がポーラスであれば、除去加工後の表面もポーラスな状態となるためである。このために予め形状モデルデータを図3に示すように、表層部Sと内部Nとに分割しておき、内部Nについてはポーラスとなるような焼結条件、表層部Sはほぼ粉末が溶融して高密度となる条件で光ビームLを照射する。図4に、高密度部12と前述の付着粉末によるところの低密度表面層16を示す。   As the light beam L, a carbon dioxide laser is used. The irradiation path of the light beam L is created in advance from three-dimensional CAD data. That is, contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch is used. At this time, it is preferable to irradiate the light beam L so that at least the outermost surface of the three-dimensional shaped object can be sintered so as to have a high density (porosity of 5% or less). This is because even if the surface removal described later is performed by the removing means 4, if the exposed portion is porous, the surface after the removal processing is also in a porous state. For this purpose, as shown in FIG. 3, the shape model data is divided in advance into a surface layer portion S and an inner portion N, and the inner N portion is sintered under a porous condition. Then, the light beam L is irradiated under the condition of high density. FIG. 4 shows the low-density surface layer 16 made of the high-density portion 12 and the above-mentioned adhered powder.

ここで、粉末層10の厚さおよび照射する光ビームLのエネルギー量は、切削工具41の工具径に応じて設定される。具体的には、工具径が1.0mmの切削工具41を用いる場合には、粉末層10の厚みΔt1として0.05mm、光ビームLのエネルギー量として10.0J/mm2が好適である。一方、工具径が0.5mmの切削工具41を用いる場合には、粉末層10の厚みΔt1として0.025mm、光ビームLのエネルギー量として5.0J/mm2が好適である。 Here, the thickness of the powder layer 10 and the energy amount of the irradiated light beam L are set according to the tool diameter of the cutting tool 41. Specifically, when a cutting tool 41 having a tool diameter of 1.0 mm is used, it is preferable that the thickness Δt1 of the powder layer 10 is 0.05 mm and the energy amount of the light beam L is 10.0 J / mm 2 . On the other hand, when the cutting tool 41 having a tool diameter of 0.5 mm is used, it is preferable that the thickness Δt1 of the powder layer 10 is 0.025 mm and the energy amount of the light beam L is 5.0 J / mm 2 .

また、光ビームLの集光径についても、切削工具41の工具径に応じて設定することが好ましい。具体的には、工具径が1.0mmの切削工具41を用いる場合には、光ビームLの集光径として0.6mmが好適である。一方、工具径が0.5mmの切削工具41を用いる場合には、光ビームLの集光径として0.4mmが好適である。   Moreover, it is preferable to set also about the condensing diameter of the light beam L according to the tool diameter of the cutting tool 41. FIG. Specifically, when the cutting tool 41 having a tool diameter of 1.0 mm is used, the condensing diameter of the light beam L is preferably 0.6 mm. On the other hand, when the cutting tool 41 having a tool diameter of 0.5 mm is used, the condensing diameter of the light beam L is preferably 0.4 mm.

さらに、粉末材料の粒径についても、切削工具41の工具径に応じて設定することが好ましい。具体的には、工具径が1.0mmの切削工具41を用いる場合には、粉末材料の平均粒径として30μmが好適である。一方、工具径が0.5mmの切削工具41を用いる場合には、粉末材料の平均粒径として15μmが好適である。   Further, the particle size of the powder material is preferably set according to the tool diameter of the cutting tool 41. Specifically, when a cutting tool 41 having a tool diameter of 1.0 mm is used, the average particle diameter of the powder material is preferably 30 μm. On the other hand, when the cutting tool 41 having a tool diameter of 0.5 mm is used, 15 μm is preferable as the average particle diameter of the powder material.

なお、粉末層10の厚さおよび照射する光ビームLのエネルギー量、光ビームLの集光径、粉末材料の粒径は、切削工具41の工具径に応じて自動的に制御されるようにしてもよい。   The thickness of the powder layer 10 and the amount of energy of the light beam L to be irradiated, the condensing diameter of the light beam L, and the particle size of the powder material are automatically controlled according to the tool diameter of the cutting tool 41. May be.

そして、上記粉末層10を形成しては光ビームLを照射して焼結層11を形成することを繰り返していくのであるが、焼結層11の全厚みが例えば切削工具41の工具長さなどから求めた所要の値になれば、いったん除去手段4を作動させてそれまでに造形した造形物の表面を切削する。たとえば、工具径1.0mm、有効刃長3.0mmで深さ3.0mmの切削加工が可能である切削工具41を用いる場合には、粉末層10の厚みΔt1を0.05mmとしているので、60層の焼結層11を形成した時点で、除去手段4を作動させる。   Then, when the powder layer 10 is formed, the light beam L is irradiated and the sintered layer 11 is repeatedly formed. The total thickness of the sintered layer 11 is, for example, the tool length of the cutting tool 41. When the required value obtained from the above is reached, the removal means 4 is once activated to cut the surface of the modeled object that has been modeled so far. For example, when using a cutting tool 41 capable of cutting with a tool diameter of 1.0 mm, an effective blade length of 3.0 mm and a depth of 3.0 mm, the thickness Δt1 of the powder layer 10 is 0.05 mm. When the 60 sintered layers 11 are formed, the removing means 4 is operated.

この除去手段4による切削加工により、図4に示すように、造形物表面に付着した粉末による低密度表面層16を除去すると同時に、高密度部12まで削り込むことで、造形物表面に高密度部12を全面的に露出させる。これにより、造形物表面の面粗度を高くすることができる。このために、所望の形状Mよりも焼結層11が少し大きくなるようにしておく。   As shown in FIG. 4, the removal means 4 performs the cutting process to remove the low density surface layer 16 from the powder adhering to the surface of the modeled object, and at the same time, the high density part 12 is scraped to obtain a high density on the modeled object surface. The part 12 is exposed entirely. Thereby, the surface roughness of the modeled object surface can be increased. Therefore, the sintered layer 11 is made slightly larger than the desired shape M.

この除去手段4による切削加工経路は、光ビームLの照射経路と同様に、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定するが、Z方向ピッチは焼結時の積層ピッチにこだわる必要はなく、緩い傾斜の場合はZ方向ピッチをより細かくして補間することで、滑らかな表面を得られるようにしておく。切削加工を工具径1mmの切削工具41で行う場合は、切り込み量を0.1〜0.5mm、送り速度を5m/min〜50m/min、工具回転数を20,000rpm〜100,000rpmとするのが好ましい。   The cutting path by the removing means 4 is created in advance from three-dimensional CAD data in the same manner as the irradiation path of the light beam L. At this time, the machining path is determined by applying contour processing, but the Z-direction pitch does not need to stick to the lamination pitch at the time of sintering, and in the case of a gentle inclination, by interpolating with a finer Z-direction pitch, Keep a smooth surface. When cutting is performed with the cutting tool 41 having a tool diameter of 1 mm, the cutting depth is 0.1 to 0.5 mm, the feed rate is 5 m / min to 50 m / min, and the tool rotation speed is 20,000 rpm to 100,000 rpm. Is preferred.

なお、切削による除去に際しては、図5に示すように、切削加工の直前の部分にエネルギー密度を小さくした光ビームLを照射して加熱することで軟化させておき、この軟化した状態の部分を切削工具41が切削していくようにすると、切削抵抗が小さくなるために切削加工時間を短くできるとともに切削工具41の寿命を延ばすことができる。   In the removal by cutting, as shown in FIG. 5, the portion immediately before the cutting is softened by irradiating and heating the light beam L having a reduced energy density, and the softened portion is removed. When the cutting tool 41 performs cutting, the cutting resistance is reduced, so that the cutting time can be shortened and the life of the cutting tool 41 can be extended.

また、図6に示すように、切削除去直後の部分に再度光ビームLを照射して、溶融硬化させたり、熱処理したりすることで、表面密度を高めるようにすることも好ましい。   In addition, as shown in FIG. 6, it is also preferable to increase the surface density by irradiating the light beam L again to the portion immediately after cutting and removing it by heat-curing or heat treatment.

ところで、除去手段4による造形物表面および不要部分の除去に際して、未焼結粉末や除去手段4による切削屑が除去作業の邪魔になる上に、次の粉末層10の形成に際して、ブレード21に切削屑が引っかかって平坦な粉末層10を形成することができなかったり、ブレード21と造形物との間に切削屑が挟まってブレード21が停止してしまったりすることがある。このために、図7および図8(a)あるいは図8(b)に示すように、例えば、エアポンプ50および吸引ノズル51からなる排除手段5を設けることが好ましい。ここで、エアポンプ50に接続した吸引ノズル51を切削工具41に隣接させて配置し、切削と同時に未焼結粉末および切削屑を吸引してしまうとよい。吸引ノズル51で切削工具41を囲んでいる図8(b)に示すものでは、切削工具41にスピンドルヘッドを好ましく用いることができる。   By the way, when removing the surface of the molded article and unnecessary parts by the removing means 4, unsintered powder and cutting scraps by the removing means 4 interfere with the removal work, and when the next powder layer 10 is formed, the blade 21 is cut. The flat powder layer 10 may not be formed due to scraps, or the blade 21 may stop due to the cutting scraps sandwiched between the blade 21 and the modeled object. For this purpose, as shown in FIG. 7 and FIG. 8 (a) or FIG. 8 (b), it is preferable to provide, for example, an exclusion means 5 comprising an air pump 50 and a suction nozzle 51. Here, the suction nozzle 51 connected to the air pump 50 may be disposed adjacent to the cutting tool 41 to suck the unsintered powder and the cutting waste simultaneously with the cutting. In the case shown in FIG. 8B in which the cutting tool 41 is surrounded by the suction nozzle 51, a spindle head can be preferably used for the cutting tool 41.

図9に示すように、切削加工前に、未焼結粉末のみを吸引回収し、切削加工と同時に切削屑を吸引排除するようにしてもよく、この場合、未焼結粉末に切削屑が混入することがないために、未焼結粉末の再利用が容易となる。   As shown in FIG. 9, before cutting, only the unsintered powder may be sucked and collected, and the cutting waste may be sucked out simultaneously with the cutting. In this case, the cutting waste is mixed in the unsintered powder. This makes it easy to reuse the unsintered powder.

ところで、未焼結粉末を吸引回収してしまった場合、除去工程後にさらに粉末層10を積層する時、多量の粉末が必要となり、除去工程を複数回繰り返す場合、その都度、未焼結粉末がなくなった全空間に粉末を埋めなくてはならず、時間的なロスが大きくなる。このために、未焼結粉末がなくなった空間には、図10に示すように、樹脂あるいはろう材を流し込んで固化させることで固化部18を形成し、次の粉末層10は最上層の焼結層11と上記固化部18の上面に形成するとよい。使用する粉末量を削減することができる。   By the way, when the unsintered powder has been collected by suction, a large amount of powder is required when the powder layer 10 is further laminated after the removal step. The lost space must be filled with powder, which increases time loss. For this reason, as shown in FIG. 10, a solidified portion 18 is formed by pouring a resin or brazing material into the space where the unsintered powder is eliminated, and solidifying the next powder layer 10. It may be formed on the upper surface of the binder layer 11 and the solidified portion 18. The amount of powder used can be reduced.

なお、上記排除手段5における吸引ノズル51は、除去工程に先だって未焼結粉末を吸引回収するものについては、図11に示すように、粉末層形成手段2におけるブレード21の駆動部に取り付けておくと、全域の未焼結粉末の吸引回収を行うことができるとともに吸引ノズル51のための専用の駆動機構を必要としなくなるために、装置構成を簡単にすることができる。   As shown in FIG. 11, the suction nozzle 51 in the exclusion means 5 is attached to the drive portion of the blade 21 in the powder layer forming means 2 for sucking and collecting the unsintered powder prior to the removing step. In addition, it is possible to suck and collect the unsintered powder in the entire area and to eliminate the need for a dedicated drive mechanism for the suction nozzle 51, so that the apparatus configuration can be simplified.

また、図12に示すように、吸引ノズル51を専用のXY駆動機構55、もしくは除去手段4におけるXY駆動機構40に取り付けた場合には、造形物の断面輪郭線形状に沿って吸引ノズル51を移動させることができる。   In addition, as shown in FIG. 12, when the suction nozzle 51 is attached to the dedicated XY drive mechanism 55 or the XY drive mechanism 40 in the removing means 4, the suction nozzle 51 is moved along the cross-sectional contour shape of the modeled object. Can be moved.

未焼結粉末については、除去工程前に吸引回収してしまうのではなく、例えば液体窒素などを吹き付ける(必要とあれば湿気を含んだガスを同時に吹き付ける)ことで未焼結粉末を冷凍して固化させたり、樹脂やろう材などを流し込んで固化させたりしておき、この状態で除去手段4を動作させるようにしてもよい。切削屑が未焼結粉末内に入り込んでしまうことがないために、粉末の再充填などを必要とすることなく、切削屑のみを容易に吸引排除することができる。   As for the unsintered powder, it is not sucked and collected before the removal step. For example, the unsintered powder is frozen by spraying liquid nitrogen or the like (by simultaneously blowing a gas containing moisture if necessary). The removing means 4 may be operated in this state by solidifying or pouring a resin or brazing material. Since the cutting waste does not enter the unsintered powder, only the cutting waste can be easily sucked out without requiring refilling of the powder.

図13に示すものは、焼結直後もしくは除去加工直後の造形物の形状および位置を測定するための計測手段6を設けたものである。光ビームの照射精度や除去加工の加工精度をオンマシンで計測することができるものであり、計測結果をフィードバックして、測定データ(位置座標データ)とCADデータを比較することで、造形精度を算出することができるとともに、比較結果に基づいて次の光ビーム照射経路データを修正したり、次の除去加工経路データを修正したりすることで、より高精度な造形が可能となる。   What is shown in FIG. 13 is provided with measuring means 6 for measuring the shape and position of a shaped article immediately after sintering or immediately after removal processing. Light beam irradiation accuracy and removal processing accuracy can be measured on-machine. The measurement result (positional coordinate data) and CAD data are compared by feeding back the measurement results. In addition to being able to calculate, the next light beam irradiation path data is corrected or the next removal processing path data is corrected based on the comparison result, thereby enabling more accurate modeling.

上記計測手段6が例えば圧電型接触センサである場合には、除去手段4におけるXY駆動機構40に計測手段6を設けると、計測手段6のための専用駆動機構を必要とすることなく、計測を行うことができる。   When the measuring means 6 is, for example, a piezoelectric contact sensor, if the measuring means 6 is provided in the XY drive mechanism 40 in the removing means 4, the measurement can be performed without requiring a dedicated drive mechanism for the measuring means 6. It can be carried out.

また、計測手段6としてはCCDカメラのような撮像手段を用いてもよい。測定しようとする点が画像の中心となるように撮像手段を移動させて、画像中心と造形物中の測定しようとしている点とのずれた画素数からずれ量を計測するのである。   Further, as the measuring means 6, an imaging means such as a CCD camera may be used. The imaging means is moved so that the point to be measured is the center of the image, and the amount of deviation is measured from the number of pixels that are shifted between the center of the image and the point to be measured in the modeled object.

なお、除去部分は造形物の表面部に限るものではなく、造形の都合上、本来ならば不要である部分も造形しなくてはならない場合、この不要部分の除去も行うことができる。   Note that the removed portion is not limited to the surface portion of the modeled object. For the sake of modeling, if an unnecessary part must be modeled, the unnecessary part can be removed.

したがって、除去工程で使用する切削工具41の工具径に応じて、粉末材料の被覆厚さおよび照射する光ビームLのエネルギー量を設定することにより、造形物の表面に付着する不要な粉末の量を切削工具41の工具径に応じた量に設定することができるため、効率的に切削除去加工を行うことができ、その結果、表面の外観がよい三次元形状造形物を短時間で製造することができる。   Therefore, by setting the coating thickness of the powder material and the energy amount of the light beam L to be irradiated according to the tool diameter of the cutting tool 41 used in the removing process, the amount of unnecessary powder that adheres to the surface of the modeled object Can be set to an amount corresponding to the tool diameter of the cutting tool 41, so that it is possible to efficiently perform the cutting and removing process, and as a result, a three-dimensional shaped article having a good surface appearance is produced in a short time. be able to.

また、除去工程で使用する切削工具41の工具径に応じて、光ビームLの集光径も設定することにより、造形物の表面に付着する不要な粉末の量を切削工具41の工具径に応じた量に設定することができるため、さらに効率的に三次元形状造形物を製造することができる。   Further, by setting the condensing diameter of the light beam L according to the tool diameter of the cutting tool 41 used in the removal process, the amount of unnecessary powder adhering to the surface of the modeled object is set to the tool diameter of the cutting tool 41. Since it can set to the quantity according to, a three-dimensional shape molded article can be manufactured still more efficiently.

そして、除去工程で使用する切削工具41の工具径に応じて、被覆する粉末の粒径も設定することにより、造形物の表面に付着する不要な粉末の粒径を切削工具41の工具径に応じた粒径に設定することができるため、さらに効率的に三次元形状造形物を製造することができる。   And according to the tool diameter of the cutting tool 41 used at a removal process, the particle size of the powder to coat | cover is set to the tool diameter of the cutting tool 41 by setting the particle diameter of the powder to coat | cover. Since it can set to the particle size according to, a three-dimensional shaped molded article can be manufactured more efficiently.

特に、工具径が小さい切削工具41を用いた場合には、被覆する粉末材料の粒径を細かくし、被覆する粉末厚さを薄くし、焼結層を形成する時の光ビームの照射エネルギー量を小さくし、その集光径も小さくすることにより、効率的に三次元形状造形物を製造することができるとともに、切削工具41の破損を少なくすることができる。   In particular, when the cutting tool 41 having a small tool diameter is used, the particle size of the powder material to be coated is made fine, the powder thickness to be coated is made thin, and the irradiation energy amount of the light beam when forming the sintered layer By reducing the diameter and reducing the light condensing diameter, it is possible to efficiently produce a three-dimensional shaped object and to reduce the breakage of the cutting tool 41.

なお、粉末材料が粒径の細かい金属粉末を含むことにより、粉末材料の表面積が大きくなり光ビームLの吸収率も大きくなるので、エネルギー密度の低い照射条件でも粉末材料が焼結しやすく、造形速度が向上する。また、ある程度の造形強度を得るためには、隣接する焼結層11どうしの密着強度を高くする必要があるが、粉末材料であれば、粉末間にある隙間を通して、光ビームLが下の焼結層11にも照射され、下の焼結層11も加熱されて密着強度が向上する。   In addition, since the powder material contains metal powder with a small particle size, the surface area of the powder material is increased and the absorption rate of the light beam L is increased, so that the powder material is easily sintered even under irradiation conditions with low energy density. Increases speed. Further, in order to obtain a certain degree of modeling strength, it is necessary to increase the adhesion strength between the adjacent sintered layers 11. However, in the case of a powder material, the light beam L passes through the gap between the powders, and the lower firing layer 11 The binder layer 11 is also irradiated, and the lower sintered layer 11 is heated to improve the adhesion strength.

本発明の実施形態の一例に係る概略斜視図である。It is a schematic perspective view which concerns on an example of embodiment of this invention. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の表面高密度部に関する説明図である。It is explanatory drawing regarding the surface high-density part same as the above. 同上の除去工程を示す断面図である。It is sectional drawing which shows the removal process same as the above. 同上の他例の動作を示す斜視図である。It is a perspective view which shows operation | movement of the other example same as the above. 同上のさらなる他例の動作を示す斜視図である。It is a perspective view which shows operation | movement of the further another example same as the above. 同上の他例の概略斜視図である。It is a schematic perspective view of the other example same as the above. 排除手段の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of an exclusion means. 排除手段の他例の動作を示す概略断面図である。It is a schematic sectional drawing which shows operation | movement of the other example of an exclusion means. 排除後の処理を示す概略断面図である。It is a schematic sectional drawing which shows the process after exclusion. 排除手段の他例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of an exclusion means. 排除手段のさらなる他例を示す概略斜視図である。It is a schematic perspective view which shows the further another example of an exclusion means. 計測手段を備えた例の概略斜視図である。It is a schematic perspective view of the example provided with the measurement means.

符号の説明Explanation of symbols

4 除去手段
10 粉末層
11 焼結層
41 切削工具
L 光ビーム
4 Removal means 10 Powder layer 11 Sintered layer 41 Cutting tool L Light beam

Claims (5)

粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで焼結層を形成し、当該焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して、複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、
焼結層の形成後にそれまでに製造した造形物における表面部または不要部分の少なくとも一方の除去を行う除去工程を含み、当該除去工程が切削工程である三次元形状造形物の製造方法において、
除去工程で、使用する切削工具の工具径に応じて、焼結層を形成するために供給する粉末材料の被覆厚さおよび照射する光ビームのエネルギー量を設定することを特徴とする三次元形状造形物の製造方法。
A predetermined layer of the powder material layer is irradiated with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer to cover the predetermined portion. A plurality of sintered layers are laminated and integrated by repeating the formation of a new sintered layer that is integrated with the lower sintered layer by irradiating the light beam to the powder and sintering the powder at the corresponding location. In manufacturing a three-dimensional shaped object
In the method for producing a three-dimensional shape shaped article, including a removal step of removing at least one of the surface portion or unnecessary portion in the shaped article produced so far after the formation of the sintered layer, the removing step is a cutting process.
Three-dimensional shape characterized by setting the coating thickness of the powder material supplied to form the sintered layer and the amount of energy of the irradiated light beam according to the tool diameter of the cutting tool used in the removal process Manufacturing method of a model.
除去工程で、使用する切削工具の工具径に応じて、さらに光ビームの集光径も設定することを特徴とする請求項1に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped article according to claim 1, wherein in the removing step, a condensing diameter of the light beam is further set according to a tool diameter of a cutting tool to be used. 除去工程で、使用する切削工具の工具径に応じて、さらに被覆する粉末の粒径も設定することを特徴とする請求項1または2に記載の三次元形状造形物の製造方法。   3. The method for producing a three-dimensional shaped object according to claim 1, wherein in the removing step, the particle diameter of the powder to be coated is further set according to the tool diameter of the cutting tool to be used. 粉末材料の層の所定箇所に光ビームを照射して該当箇所の粉末を焼結することで焼結層を形成し、当該焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射して該当箇所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成することを繰り返して、複数の焼結層が積層一体化された三次元形状造形物を製造するにあたり、
焼結層の形成後にそれまでに製造した造形物における表面部または不要部分の少なくとも一方の除去を行う除去工程を含み、当該除去工程が切削工程である三次元形状造形物の製造方法において、
除去工程で、使用する切削工具の工具径が小さい場合には、被覆する粉末材料の粒径を細かくし、被覆する粉末厚さを薄くし、焼結層を形成する時の光ビームの照射エネルギー量を小さくし、その集光径も小さくすることを特徴とする三次元形状造形物の製造方法。
A predetermined layer of the powder material layer is irradiated with a light beam to sinter the powder at the corresponding portion to form a sintered layer, and a new layer of the powder material is coated on the sintered layer to cover the predetermined portion. A plurality of sintered layers are laminated and integrated by repeating the formation of a new sintered layer that is integrated with the lower sintered layer by irradiating the light beam to the powder and sintering the powder at the corresponding location. In manufacturing a three-dimensional shaped object
In the method for producing a three-dimensional shape shaped article, including a removal step of removing at least one of the surface portion or unnecessary portion in the shaped article produced so far after the formation of the sintered layer, the removing step is a cutting process.
In the removal process, when the tool diameter of the cutting tool to be used is small, the particle size of the powder material to be coated is made fine, the powder thickness to be coated is made thin, and the irradiation energy of the light beam when forming the sintered layer A method for producing a three-dimensional shaped object, characterized in that the amount is reduced and the diameter of the condensed light is also reduced.
粉末材料が金属粉末を含むことを特徴とする請求項1〜4のいずれか1項に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped article according to any one of claims 1 to 4, wherein the powder material includes a metal powder.
JP2007138031A 2007-05-24 2007-05-24 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP4655063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138031A JP4655063B2 (en) 2007-05-24 2007-05-24 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138031A JP4655063B2 (en) 2007-05-24 2007-05-24 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2008291315A true JP2008291315A (en) 2008-12-04
JP4655063B2 JP4655063B2 (en) 2011-03-23

Family

ID=40166350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138031A Expired - Fee Related JP4655063B2 (en) 2007-05-24 2007-05-24 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP4655063B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458722A (en) * 2009-06-23 2012-05-16 松下电器产业株式会社 Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
CN102762323A (en) * 2010-02-17 2012-10-31 松下电器产业株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
WO2015005497A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method and production device for three-dimensionally shaped molded object
JP2016078306A (en) * 2014-10-16 2016-05-16 アビー株式会社 Shaping apparatus
WO2016184685A1 (en) * 2015-05-20 2016-11-24 Man Diesel & Turbo Se Method for producing a rotor of a flow engine
JP6458182B1 (en) * 2018-03-19 2019-01-23 株式会社松浦機械製作所 3D modeling method
WO2019083040A1 (en) 2017-10-27 2019-05-02 キヤノン株式会社 Molded object production method and molded object
WO2022234658A1 (en) * 2021-05-07 2022-11-10 三菱電機株式会社 Numerical control device and numerical control method
US11813769B2 (en) 2017-10-27 2023-11-14 Canon Kabushiki Kaisha Method of producing manufactured object and manufactured object

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082556A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method and apparatus for manufacturing three-dimensional shape molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082556A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method and apparatus for manufacturing three-dimensional shape molding

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000021B2 (en) 2009-06-23 2018-06-19 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object obtained by the same
CN102458722A (en) * 2009-06-23 2012-05-16 松下电器产业株式会社 Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
CN102762323B (en) * 2010-02-17 2016-05-25 松下知识产权经营株式会社 The manufacture method of three dimensional structure and three dimensional structure
CN102762323A (en) * 2010-02-17 2012-10-31 松下电器产业株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
US10022797B2 (en) 2010-02-17 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
US9586285B2 (en) 2013-07-10 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for manufacturing three-dimensional shaped object
WO2015005496A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method for three-dimensionally shaped molded object
JP2015017294A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Method for producing three-dimensional shape formed article
CN104768681B (en) * 2013-07-10 2016-05-25 松下知识产权经营株式会社 The manufacture method of three dimensional structure and manufacturing installation thereof
TWI549807B (en) * 2013-07-10 2016-09-21 松下知識產權經營股份有限公司 Method for manufacturing three-dimensional modeled object
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
WO2015005497A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method and production device for three-dimensionally shaped molded object
US9604282B2 (en) 2013-07-10 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
JP2015017295A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Method for producing three-dimensional shape formed article and manufacturing apparatus therefor
JP2016078306A (en) * 2014-10-16 2016-05-16 アビー株式会社 Shaping apparatus
CN107735196A (en) * 2015-05-20 2018-02-23 曼柴油机和涡轮机欧洲股份公司 For the method for the rotor for manufacturing turbine
WO2016184685A1 (en) * 2015-05-20 2016-11-24 Man Diesel & Turbo Se Method for producing a rotor of a flow engine
CN107735196B (en) * 2015-05-20 2020-12-08 曼恩能源方案有限公司 Method for producing a rotor of a turbomachine
US10913113B2 (en) 2015-05-20 2021-02-09 Man Energy Solutions Se Method for producing a rotor of a flow engine
WO2019083040A1 (en) 2017-10-27 2019-05-02 キヤノン株式会社 Molded object production method and molded object
US11813769B2 (en) 2017-10-27 2023-11-14 Canon Kabushiki Kaisha Method of producing manufactured object and manufactured object
JP6458182B1 (en) * 2018-03-19 2019-01-23 株式会社松浦機械製作所 3D modeling method
US10532514B2 (en) 2018-03-19 2020-01-14 Matsuura Machinery Corp. Three-dimensional shaping method
WO2022234658A1 (en) * 2021-05-07 2022-11-10 三菱電機株式会社 Numerical control device and numerical control method

Also Published As

Publication number Publication date
JP4655063B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
JP4882868B2 (en) Manufacturing method of three-dimensional shaped object
Kumar et al. Selective laser sintering
JP4925048B2 (en) Manufacturing method of three-dimensional shaped object
US9902113B2 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
WO2012160811A1 (en) Method for producing three-dimensional shape structure
JP5991574B2 (en) Manufacturing method of three-dimensional shaped object
JP4487636B2 (en) Manufacturing method of three-dimensional shaped object
CN107848212B (en) Method for manufacturing three-dimensional shaped object
KR100574268B1 (en) Method of manufacturing a three dimensional object
JP2000296561A (en) Variable weld lamination type rapid shaping method and apparatus
WO2010150805A1 (en) Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
JP2009007669A (en) Laminating shaping apparatus
RU2674588C2 (en) Method for additive welding and melting manufacture of three-dimensional products and installation for its implementation
JP2004277881A (en) Method for manufacturing three dimensionally shaped article and apparatus therefor
JP2017137563A (en) Manufacturing method of three-dimensional shape molded article
JP4915660B2 (en) Manufacturing method of three-dimensional shaped object
TWI232786B (en) Method of making a three-dimensional sintered product
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP3687667B2 (en) Metal powder for metal stereolithography
Kumar Process and Classification
JP2004122490A (en) Method for manufacturing three-dimensionally shaped article
JP3433745B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4655063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees