JPH08257607A - Method for hot-rolling stainless steel for suppressing occurrence of edge crack - Google Patents
Method for hot-rolling stainless steel for suppressing occurrence of edge crackInfo
- Publication number
- JPH08257607A JPH08257607A JP9145395A JP9145395A JPH08257607A JP H08257607 A JPH08257607 A JP H08257607A JP 9145395 A JP9145395 A JP 9145395A JP 9145395 A JP9145395 A JP 9145395A JP H08257607 A JPH08257607 A JP H08257607A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- stainless steel
- weight
- ferrite
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耳切れ等の欠陥発生が
なく、または耳切れの程度を軽減し、表面品質の優れた
ステンレス鋼熱延板を製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stainless steel hot-rolled sheet having excellent surface quality without causing defects such as cutting edges or reducing the degree of cutting edges.
【0002】[0002]
【従来の技術】二相ステンレス鋼は、オーステナイト系
ステンレス鋼に比較して耐応力腐食割れ性に優れてお
り、フェライト系ステンレス鋼に比較して溶接性に優れ
ている。この二層ステンレス鋼は、オーステナイト系ス
テンレス鋼をワイヤ等の溶接材料として使用するとき、
形成された溶接ビードに割れが発生することを防止する
ため、溶接材料自体に若干のδフェライトが含まれるよ
うに成分調整している。この二相ステンレス鋼は機械的
性質の異なるオーステナイト(γ)相とフェライト
(δ)相が同時に含まれているため、分塊圧延,熱間圧
延等の熱間加工の際にγ相/δ相との界面から割れが発
生し易く、熱間加工性が著しく悪い。これは熱間圧延時
の応力が変形抵抗や変形能の異なるオーステナイトマト
リックスとδフェライトとの境界に集中し、相界面に亀
裂,破断等の欠陥が発生し易くなることに起因するもの
で、これらの欠陥は熱延時に耳切れとなって現れ、製品
歩留りを低下させる。Duplex stainless steels are superior in stress corrosion cracking resistance to austenitic stainless steels and are superior in weldability to ferritic stainless steels. This two-layer stainless steel, when using austenitic stainless steel as a welding material such as wire,
In order to prevent cracks from occurring in the formed weld beads, the composition is adjusted so that the welding material itself contains some δ-ferrite. Since this duplex stainless steel contains the austenite (γ) phase and the ferrite (δ) phase with different mechanical properties at the same time, the γ phase / δ phase is used during hot working such as slabbing and hot rolling. Cracks are likely to occur from the interface with and the hot workability is extremely poor. This is because stress during hot rolling is concentrated on the boundary between austenite matrix and δ ferrite, which have different deformation resistance and deformability, and cracks and fractures tend to occur at the phase interface. Defects appear as edges when hot-rolling and reduce the product yield.
【0003】δフェライトを含むオーステナイト系又は
二相系ステンレス鋼の熱間加工性を改善するため、従来
から種々の方法が提案されている。たとえば、特公昭5
7−15660号公報では、オーステナイト相の変形能
に悪影響を及ぼすS,O等の不純物含有量を低く抑え、
相界面に偏析する不純物の濃度を低下させている。特公
昭59−14099号公報では、粒界に偏析し割れ発生
の原因となるS含有量を0.005重量%以下に低減す
ると共に、B添加によって熱間加工性を改善している。
特開平4−88151号公報では、フェライト相及びオ
ーステナイト相間のバランスをS含有量との関係におい
て定量的に調整することにより、安定して熱間加工性を
改善し、歩留りよくステンレス鋼を熱間圧延する方法を
開示している。更に、特開平5−255737号公報で
は、S含有量を0.001重量%以下に規制したステン
レス鋼を幅殺し圧延することにより、熱延時の耳切れが
防止されることを紹介している。In order to improve the hot workability of austenitic or duplex stainless steel containing δ ferrite, various methods have been conventionally proposed. For example,
JP-A-7-15660 suppresses the content of impurities such as S and O that adversely affect the deformability of the austenite phase,
The concentration of impurities segregated at the phase interface is reduced. In Japanese Examined Patent Publication No. 59-14099, the S content, which causes segregation at the grain boundaries and causes cracking, is reduced to 0.005% by weight or less, and hot workability is improved by adding B.
In JP-A-4-88151, by quantitatively adjusting the balance between the ferrite phase and the austenite phase in relation to the S content, the hot workability is stably improved and the stainless steel is hot-rolled with good yield. A method of rolling is disclosed. Further, Japanese Patent Laid-Open No. 5-255737 discloses that a stainless steel whose S content is regulated to 0.001% by weight or less is width-killed and rolled to prevent edge cutting during hot rolling.
【0004】[0004]
【発明が解決しようとする課題】S含有量を低減するた
めに希土類元素が通常添加されているが、希土類元素は
製造コストを上昇させるばかりでなく、スラブ鋳造時に
タンディッシュノズル閉塞等の製造性を悪化させる原因
にもなる。また、スラブ幅の製造バラツキと熱間圧延に
おける幅殺し量にもバラツキを生じることから、幅殺し
の範囲が狭い場合には、必要な幅殺し量が得られないこ
とがある。本発明は、このような問題を解消すべく案出
されたものであり、熱延温度域における所定量のδフェ
ライト量に対して、幅圧下を行うことにより、粗圧延の
途中で熱処理する必要なく、高歩留りでスラブ,ビレッ
ト等の鋳片を熱延することを目的とする。Rare earth elements are usually added in order to reduce the S content, but the rare earth elements not only increase the manufacturing cost, but also improve manufacturability such as clogging of the tundish nozzle during slab casting. It also causes the deterioration. Further, since the manufacturing variation of the slab width and the width-canceling amount in the hot rolling also vary, the necessary width-canceling amount may not be obtained when the width-canceling range is narrow. The present invention has been devised to solve such a problem, and it is necessary to perform heat treatment during rough rolling by performing width reduction for a predetermined amount of δ ferrite in the hot rolling temperature range. The purpose is to hot-roll slabs, billets and other slabs with high yield.
【0005】[0005]
【課題を解決するための手段】本発明の熱延方法は、そ
の目的を達成するため、熱間圧延されるステンレス鋼を
式(1)で定義されるδフェライト量Xが0〜12%と
なるように成分調整し、幅圧下量−10〜25mmで粗
圧延した後、目標板厚に熱間圧延することを特徴とす
る。 X=3.0×(Cr%+1.5×Si%+Mo%)−
2.8×(Ni%+0.5×Mn%+0.5×Cu%+
30×C%+30×N%)−19.8% 熱間圧延されるステンレス鋼の式(1)で定義されるδ
フェライト量Xが9〜12%にあるとき幅圧下量5〜2
5mmで粗圧延し、δフェライト量Xが0〜8%にある
とき幅圧下量−10〜25mmで粗圧延した後、目標板
厚に熱間圧延することことが好ましい。熱間圧延される
ステンレス鋼としては、C:0.030重量%以下,
N:0.040重量%以下,Si:0.60重量%以
下,Mn:2.00重量%以下,Cr:18.0〜2
1.50重量%,Ni:9.5〜12.8重量%,M
o:0.50重量%以下,Cu:0.20重量%以下及
び必要に応じてNb,Taの1種又は2種:0.50〜
1.10重量%を含むステンレス鋼が使用される。In order to achieve the object of the hot rolling method of the present invention, stainless steel to be hot rolled has a δ ferrite content X defined by the formula (1) of 0 to 12%. It is characterized in that the components are adjusted so that the width is reduced to a rough rolling amount of -10 to 25 mm, and then hot rolling is performed to a target plate thickness. X = 3.0 × (Cr% + 1.5 × Si% + Mo%) −
2.8 x (Ni% + 0.5 x Mn% + 0.5 x Cu% +
30 × C% + 30 × N%)-19.8% δ defined by the equation (1) of the hot rolled stainless steel.
When the ferrite amount X is 9 to 12%, the width reduction amount is 5 to 2
It is preferable to perform rough rolling at 5 mm, rough rolling at a width reduction amount of −10 to 25 mm when the δ ferrite amount X is 0 to 8%, and then hot rolling to a target plate thickness. As hot rolled stainless steel, C: 0.030% by weight or less,
N: 0.040 wt% or less, Si: 0.60 wt% or less, Mn: 2.00 wt% or less, Cr: 18.0-2
1.50 wt%, Ni: 9.5 to 12.8 wt%, M
o: 0.50 wt% or less, Cu: 0.20 wt% or less, and if necessary, one or two types of Nb and Ta: 0.50 to
Stainless steel containing 1.10% by weight is used.
【0006】[0006]
【作用】熱延される鋳片Sは、図1に模式的に示すよう
に、上ロール1と下ロール2との間で圧下される。熱延
時の塑性変形は、鋳片Sの中央部ではロールと圧延材の
摩擦力で拘束され、主として鋳片Sの圧延方向に沿った
二次元変形となる。鋳片Sの幅方向両側部では開放され
た自由端となっているため、鋳片Sの長手方向に延びる
二次元変形に加えて、矢印で示した側方に延びる三次元
の塑性変形となる。そのため、幅方向両端部で塑性流動
が大きくなり、結晶粒界に割れ,破断等の圧延欠陥が生
じ易い。幅方向両側部における圧延欠陥の発生メカニズ
ムを調査・研究する過程で、本発明者等は、熱延温度域
において所定のδフェライト量に対しては、板幅方向に
も鋳片を所定量圧下することにより、圧延欠陥の発生が
効果的に抑制されることを見い出した。The hot rolled slab S is rolled down between the upper roll 1 and the lower roll 2 as schematically shown in FIG. The plastic deformation during hot rolling is constrained by the frictional force between the roll and the rolled material in the central portion of the slab S, and is mainly a two-dimensional deformation of the slab S along the rolling direction. Since both end portions in the width direction of the slab S are open free ends, in addition to the two-dimensional deformation extending in the longitudinal direction of the slab S, there is a three-dimensional plastic deformation extending laterally as indicated by the arrow. . Therefore, plastic flow becomes large at both ends in the width direction, and rolling defects such as cracks and fractures are likely to occur at crystal grain boundaries. In the process of investigating and studying the mechanism of rolling defects on both sides in the width direction, the inventors of the present invention reduced the slab by a predetermined amount in the sheet width direction for a predetermined δ ferrite amount in the hot rolling temperature range. By doing so, it was found that the occurrence of rolling defects is effectively suppressed.
【0007】幅圧下は、上下ロール1,2と直交又は傾
斜するする方向に配置された竪ロールを鋳片の幅方向端
部に押し付けることによって行われる。幅圧下と水平圧
下の組合せによる加工履歴により、鋳片両端部粗大組織
の動的再結晶促進によるδフェライトの分散等が図ら
れ、変形能及び延性が改善される。δフェライト量が9
%以上となる成分範囲では、5mm未満の軽圧下により
動的再結晶が生じるのに十分な歪みを蓄積することは困
難であり、材料の延性改善も不十分である。しかし、2
5mmを超える幅圧下を付与するためには、非常に大き
な加重を幅方向に加えることになり、粗熱延工程での座
屈現象等に起因した操業上の問題が顕在化する。二相ス
テンレス鋼は、熱延板の所与の特性を付与するために、
所定量以上のδフェライトを含有する必要がある。通
常、オーステナイト単相又はフェライト単相の場合、結
晶粒界の結合力が強く、変形に伴う再結晶促進の効果も
大きい。しかし、オーステナイト相とフェライト相の結
晶粒界の結合力は非常に弱く、変形に伴う再結晶促進の
効果も小さい。The width reduction is performed by pressing a vertical roll arranged in a direction orthogonal to or inclined to the upper and lower rolls 1 and 2 against the widthwise end of the slab. Due to the processing history by the combination of width reduction and horizontal reduction, dispersion of δ-ferrite is promoted by promoting dynamic recrystallization of the coarse structure at both ends of the slab, and the deformability and ductility are improved. δ Ferrite amount is 9
%, It is difficult to accumulate sufficient strain to cause dynamic recrystallization under a light pressure of less than 5 mm, and the ductility of the material is not sufficiently improved. But 2
In order to apply a width reduction of more than 5 mm, a very large load is applied in the width direction, which causes a problem in operation due to a buckling phenomenon in the rough hot rolling process. Duplex stainless steel is used to impart the given properties of hot-rolled sheet.
It is necessary to contain a predetermined amount or more of δ ferrite. Usually, in the case of an austenite single phase or a ferrite single phase, the bond strength of the crystal grain boundaries is strong and the effect of promoting recrystallization accompanying deformation is large. However, the bonding strength between the grain boundaries of the austenite phase and the ferrite phase is very weak, and the effect of promoting recrystallization accompanying deformation is also small.
【0008】式(1)で定義されるδフェライト量Xが
8%以下となるように成分調整したものでは、幅圧下を
行わなくても良好なホットコイルに製造できるものもあ
る。更に、図2に示されるように、式(1)で定義され
るδフェライト量Xが8%を超える範囲に成分調整され
たものでは、コイル端部に亀裂が生じ、耳切れ深さが増
大する。この場合には、幅圧下を行うことにより、動的
再結晶促進の効果が大きくなり、耳切れの程度が改善さ
れたホットコイルを製造することができる。しかし、式
(1)で定義されるδフェライト量Xが13%を超える
と、耳切れ深さが急激に増大し、5〜25mmの幅殺し
圧延を実施しても、ホットコイルの耳切れ深さはある程
度改善されるが、完全に耳切れのない良好なホットコイ
ルを製造することができない。以上の点から、本発明で
は、δフェライト量Xを0〜12%の範囲に規定した。
δフェライト相に対する規制及び幅圧下量は、単独でも
耳切れ防止手段として有効なものであるが、このように
両者を組み合わせることにより、相乗的に欠陥が防止さ
れる。特にその効果が顕著な範囲は、式(1)で定義さ
れるδフェライト量が6〜10%である。Some hot-coils manufactured by adjusting the components so that the δ-ferrite amount X defined by the formula (1) is 8% or less can produce a good hot coil without performing width reduction. Further, as shown in FIG. 2, in the case where the amount of δ ferrite X defined by the formula (1) is adjusted to exceed 8%, cracks occur at the coil ends and the depth of edge cutting increases. To do. In this case, by performing the width reduction, the effect of promoting the dynamic recrystallization is enhanced, and a hot coil with improved degree of edge cutting can be manufactured. However, when the amount of δ ferrite X defined by the equation (1) exceeds 13%, the edge depth sharply increases, and even if width-killing rolling of 5 to 25 mm is performed, the edge depth of the hot coil is increased. Although the thickness is improved to some extent, it is not possible to manufacture a good hot coil that is completely free of sharp edges. From the above points, in the present invention, the amount of δ ferrite X is defined in the range of 0 to 12%.
Although the restriction and the width reduction amount for the δ ferrite phase are effective alone as a means for preventing edge disconnection, the combination of both in this way synergistically prevents defects. Particularly in the range where the effect is remarkable, the amount of δ ferrite defined by the formula (1) is 6 to 10%.
【0009】二相ステンレス鋼のフェライト相及びオー
ステナイト相のバランスは、成分で一義的に定まるもの
ではなく、熱処理温度と共に変動することが知られてい
る。すなわち、高温ではフェライト単相に近い組織が8
00〜900℃付近の温度域をノーズにオーステナイト
が析出して二相組織となる。このことは、S固溶度及び
二相組織の変形能の違いの面から考慮するとき、熱間加
工性においてフェライトが多い1200℃以上の高温で
抽出し、加工を加えた方がより有利である。他方、オー
ステナイトが析出する900℃未満の条件で熱延するこ
とは不利になる。また、スラブを中心部まで均一な組織
とするためには、熱延前に150分以上の十分な加熱を
行う必要がある。スラブ加熱条件は、二相ステンレス鋼
においてフェライト生成量が高くなる高温で長時間加熱
した方が熱間加工性に対して有利となる。1200℃未
満の条件で熱処理すると、熱延初期からオーステナイト
が生成し熱間加工性が低下する。そのため、スラブ抽出
温度は、1200℃以上が好ましい。また、スラブを中
心部まで均一な組織とするために、熱延前の加熱を15
0分以上かけて十分に行う必要がある。It is known that the balance of the ferrite phase and the austenite phase of the duplex stainless steel is not uniquely determined by the composition but changes with the heat treatment temperature. That is, at high temperature, the structure close to the ferrite single phase is 8
Austenite precipitates with a nose in the temperature range of about 00 to 900 ° C to form a two-phase structure. This is more advantageous in consideration of the difference in S solid solubility and the deformability of the two-phase structure when it is extracted at a high temperature of 1200 ° C. or higher where hot workability is high and ferrite is added, and it is more advantageous. is there. On the other hand, it becomes disadvantageous to perform hot rolling under the condition of less than 900 ° C at which austenite precipitates. Further, in order to make the slab have a uniform structure up to the central portion, it is necessary to perform sufficient heating for 150 minutes or more before hot rolling. As for the slab heating conditions, it is advantageous for hot workability to heat the duplex stainless steel at a high temperature for a long time at which the amount of ferrite produced becomes high. When the heat treatment is performed at a temperature of less than 1200 ° C, austenite is generated from the initial stage of hot rolling, and hot workability is deteriorated. Therefore, the slab extraction temperature is preferably 1200 ° C or higher. Also, in order to make the slab have a uniform structure up to the center, heating before hot rolling is performed at 15
It is necessary to perform it sufficiently for 0 minutes or more.
【0010】次に、本発明に従って熱延されるステンレ
ス鋼の成分及びその含有量について説明する。 C:0.030重量%以下 鋼中に不可避的に含まれる元素である。C含有量が低減
すると、炭化物の生成が少なくなり、加工性が向上す
る。また、耐食性及び耐粒界腐食割れ性も向上する。こ
のような効果は、0.030重量%以下のC含有量で顕
著になる。 N:0.040重量%以下 二相ステンレス鋼の耐食性をバランスよく保持し、シグ
マ相の析出を抑制し、靭性を向上させる作用を呈する。
しかし、0.040重量%を超えるN含有量は、固溶度
を超えることから、過剰の窒化物が鋼中に発生し、製品
に欠陥を生じさせる。 Si:0.60重量%以下 脱酸剤として鋼に添加される元素である。しかし、Si
含有量が0.60重量%を超えると、シグマ相の生成能
が高くなり、靭性や耐食性が劣化する。Next, the components of the stainless steel hot-rolled according to the present invention and the content thereof will be described. C: 0.030 wt% or less An element inevitably contained in steel. When the C content is reduced, the generation of carbides is reduced and the workability is improved. Further, the corrosion resistance and intergranular corrosion cracking resistance are also improved. Such an effect becomes remarkable when the C content is 0.030% by weight or less. N: 0.040% by weight or less Maintains the corrosion resistance of duplex stainless steel in a well-balanced manner, suppresses the precipitation of sigma phase, and exhibits the action of improving toughness.
However, the N content exceeding 0.040% by weight exceeds the solid solubility, so that an excessive amount of nitride is generated in the steel, causing defects in the product. Si: 0.60 wt% or less An element added to steel as a deoxidizer. But Si
If the content exceeds 0.60% by weight, the ability to form a sigma phase increases, and the toughness and corrosion resistance deteriorate.
【0011】Mn:2.00重量%以下 溶接性を向上させる上で有用な合金元素である。しか
し、Mn含有量が2.00重量%を超えるようになる
と、耐食性が低下する。 Cr:18.00〜21.50重量% 耐食性を向上させるために必要不可欠な合金元素であ
る。16重量%よりも少ないCr含有量では、耐食性が
十分でない。特に二相ステンレス鋼が使用される過酷な
腐食環境においては、Cr含有量が18.00重量%未
満では耐食性が十分でなく、またフェライト相に比率も
低下する。逆に、21.50重量%を超える多量のCr
が含まれると、シグマ相が析出し易くなり、靭性や溶接
性が劣化する。 Ni:9.5〜12.8重量% 耐食性の向上に有効に作用すると共に、オーステナイト
又は二相組織を形成するために不可欠な合金元素であ
る。Ni含有量に関しては、Cr含有量等との関係で適
切な組織を得るために、その含有範囲を9.5〜12.
8重量%とした。Mn: 2.00% by weight or less An alloying element useful for improving weldability. However, when the Mn content exceeds 2.00% by weight, the corrosion resistance decreases. Cr: 18.0 to 21.50% by weight It is an essential alloying element for improving the corrosion resistance. If the Cr content is less than 16% by weight, the corrosion resistance is not sufficient. Particularly in a severe corrosive environment where duplex stainless steel is used, if the Cr content is less than 18.00% by weight, the corrosion resistance is insufficient and the ratio to the ferrite phase is lowered. On the contrary, a large amount of Cr exceeding 21.50% by weight
When included, the sigma phase is likely to precipitate and the toughness and weldability deteriorate. Ni: 9.5 to 12.8 wt% It is an alloying element that effectively acts to improve corrosion resistance and is essential for forming austenite or a two-phase structure. Regarding the Ni content, in order to obtain an appropriate structure in relation to the Cr content and the like, the content range is 9.5 to 12.
It was 8% by weight.
【0012】Mo:0.50重量%以下 Crと共同してCl- イオンを含む腐食環境における局
部腐食に対する抵抗力を高める合金元素である。しか
し、Moは、高価な元素である上、0.50重量%を超
えて添加すると、二相ステンレス鋼においてはシグマ相
析出に起因した脆化が生じ、加工性や靭性等を劣化させ
る。 Cu:0.20重量%以下 耐応力腐食割れ性や耐亜硫酸ガス腐食性を向上させる上
で、有効な合金元素である。しかし、0.20重量%を
超える多量のCuを含有させると、熱間加工性が低下す
る。 本発明に従って熱延されるステンレス鋼は、以上の合金
元素の外に、Nb及びTaの1種又は2種を、合計量で
0.50〜1.10重量%添加することができる。この
範囲でNb及び/又はTaを添加するとき、耳切れ抑制
作用が損なわれず、それぞれの合金元素特有の作用・効
果が発揮される。Mo: 0.50% by weight or less It is an alloying element that enhances resistance to local corrosion in a corrosive environment containing Cl − ions in cooperation with Cr. However, Mo is an expensive element, and if added in excess of 0.50% by weight, embrittlement due to sigma phase precipitation occurs in the duplex stainless steel, deteriorating workability and toughness. Cu: 0.20 wt% or less It is an effective alloying element for improving the stress corrosion cracking resistance and the sulfur dioxide corrosion resistance. However, when a large amount of Cu exceeding 0.20% by weight is contained, the hot workability deteriorates. In the stainless steel hot-rolled according to the present invention, in addition to the above alloy elements, one or two of Nb and Ta can be added in a total amount of 0.50 to 1.10% by weight. When Nb and / or Ta is added within this range, the edge-cutting inhibiting action is not impaired, and the actions and effects peculiar to each alloying element are exhibited.
【0013】[0013]
実施例1:二相ステンレス鋼約40〜80トンを溶製
し、スラブを製造した。得られたスラブの表面疵を取り
除いた後、スラブを加熱炉で1250℃×170分の加
熱条件で加熱した後、抽出し、表1に示した幅圧下の条
件で熱延した。得られた熱延鋼板を観察し、板幅方向両
端部における耳切れの発生状況を調査した。調査結果を
示す図2にみられるように、式(1)で定義されるδフ
ェライト量Xの増加に従って耳切れ発生量が増加してお
り、その増加と共に急激に耳切れ深さが増加している。
また、幅圧下圧延を施したものでは、幅出し圧延のもの
に比較して耳切れ深さが軽減されている。幅圧下圧延を
施しても式(1)で定義されるδフェライト量Xが10
%を超えると、耳切れ発生が軽減されても耳切れ深さが
ゼロにはならないので、トリミングする必要があり、歩
留りの低下を来した。Example 1: About 40-80 tons of duplex stainless steel was melted to produce a slab. After removing the surface flaws of the obtained slab, the slab was heated in a heating furnace under heating conditions of 1250 ° C. for 170 minutes, extracted, and hot-rolled under the conditions of width reduction shown in Table 1. The obtained hot-rolled steel sheet was observed, and the occurrence of edge cutting at both ends in the sheet width direction was investigated. As can be seen in FIG. 2 showing the investigation result, the amount of occurrence of ear-cutting increases as the amount of δ-ferrite X defined by the formula (1) increases, and the depth of ear-cutting increases sharply with the increase. There is.
Further, in the case of width reduction rolling, the edge depth is reduced as compared with the case of width-width rolling. Even if width reduction rolling is performed, the amount of δ ferrite defined by the formula (1) is 10
If the ratio exceeds%, the depth of ear loss does not become zero even if the occurrence of ear loss is reduced, so trimming is necessary, leading to a decrease in yield.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【発明の効果】以上に説明したように、本発明において
は、式(1)で定義されるδフェライトりょうXが0〜
12%となるように成分調整すると共に、熱延時に5〜
25mmの幅圧下を行うことにより、粗圧延の途中で再
加熱する必要がなく、二相系ステンレス鋼の熱延時に板
幅方向両端部に発生しがちであった耳切れを抑制又は軽
減することができる。そのため、得られた熱延鋼板は、
耳切れ部分を除去するトリミング代を小さくすることが
可能となり、高い歩留りで製品となる。As described above, in the present invention, the δ ferrite scale X defined by the formula (1) is 0 to 0.
Adjust the composition so that it will be 12%, and
By performing a width reduction of 25 mm, it is not necessary to reheat during the rough rolling, and it is possible to suppress or reduce the cutting edge that tends to occur at both ends in the plate width direction during hot rolling of duplex stainless steel. You can Therefore, the obtained hot rolled steel sheet,
It is possible to reduce the trimming margin for removing the edge-cutting portion, resulting in a product with high yield.
【図1】 熱延時における板幅方向両端部のメタルフロ
ーFIG. 1 Metal flow at both ends in the sheet width direction during hot rolling
【図2】 δフェライト量及び幅圧下量が耳切れに及ぼ
す影響[Fig. 2] Effects of δ ferrite content and width reduction on ear cutting
1:上ロール 2:下ロール S:熱延中の鋳片 1: Upper roll 2: Lower roll S: Slab during hot rolling
Claims (5)
で定義されるδフェライト量Xが0〜12%となるよう
に成分調整し、幅圧下量−10〜25mmで粗圧延した
後、目標板厚に熱間圧延することを特徴とする耳切れの
発生を抑制したステンレス鋼の熱延方法。 X=3.0×(Cr%+1.5×Si%+Mo%)−2.8×(Ni% +0.5×Mn%+0.5×Cu%+30×C%+30×N%)−19.8% ・・・・(1)1. A hot rolled stainless steel is represented by the formula (1):
The component is adjusted so that the δ-ferrite amount X defined by is 0 to 12%, rough rolling is performed with a width reduction amount of -10 to 25 mm, and then hot rolling is performed to a target plate thickness. Hot rolling method for stainless steel with suppressed generation. X = 3.0 × (Cr% + 1.5 × Si% + Mo%) − 2.8 × (Ni% + 0.5 × Mn% + 0.5 × Cu% + 30 × C% + 30 × N%)-19. 8% ・ ・ ・ ・ (1)
で定義されるδフェライト量Xが9〜12%となるよう
に成分調整し、幅圧下量5〜25mmで粗圧延した後、
目標板厚に熱間圧延することを特徴とする耳切れの発生
を抑制したステンレス鋼の熱延方法。 X=3.0×(Cr%+1.5×Si%+Mo%)−2.8×(Ni% +0.5×Mn%+0.5×Cu%+30×C%+30×N%)−19.8% ・・・・(1)2. The hot rolled stainless steel is represented by the formula (1):
After adjusting the components so that the amount of δ ferrite X defined by is 9 to 12%, and roughly rolling with a width reduction amount of 5 to 25 mm,
A hot rolling method for stainless steel, which suppresses the occurrence of edge cutting, characterized by hot rolling to a target plate thickness. X = 3.0 × (Cr% + 1.5 × Si% + Mo%) − 2.8 × (Ni% + 0.5 × Mn% + 0.5 × Cu% + 30 × C% + 30 × N%)-19. 8% ・ ・ ・ ・ (1)
で定義されるδフェライト量Xが0〜8%となるように
成分調整し、幅圧下量−10〜25mmで粗圧延した
後、目標板厚に熱間圧延することを特徴とする耳切れの
発生を抑制したステンレス鋼の熱延方法。 X=3.0×(Cr%+1.5×Si%+Mo%)−2.8×(Ni% +0.5×Mn%+0.5×Cu%+30×C%+30×N%)−19.8% ・・・・(1)3. The hot rolled stainless steel is represented by the formula (1):
The composition is adjusted so that the amount of δ ferrite X defined by is 0 to 8%, rough rolling is performed with a width reduction amount of -10 to 25 mm, and then hot rolling is performed to a target plate thickness. Hot rolling method for stainless steel with suppressed generation. X = 3.0 × (Cr% + 1.5 × Si% + Mo%) − 2.8 × (Ni% + 0.5 × Mn% + 0.5 × Cu% + 30 × C% + 30 × N%)-19. 8% ・ ・ ・ ・ (1)
40重量%以下,Si:0.60重量%以下,Mn:
2.00重量%以下,Cr:18.0〜21.50重量
%,Ni:9.5〜12.8重量%,Mo:0.50重
量%以下及びCu:0.20重量%以下を含むステンレ
ス鋼を熱間圧延する請求項1〜3の何れかに記載の熱延
方法。4. C: 0.030% by weight or less, N: 0.0
40% by weight or less, Si: 0.60% by weight or less, Mn:
2.00% by weight or less, Cr: 18.0 to 21.50% by weight, Ni: 9.5 to 12.8% by weight, Mo: 0.50% by weight or less and Cu: 0.20% by weight or less The hot rolling method according to claim 1, wherein the stainless steel is hot rolled.
Nb,Taの1種又は2種:0.50〜1.10重量%
を含むステンレス鋼を使用する請求項1〜3の何れかに
記載の熱延方法。5. The stainless steel according to claim 4, further comprising one or two of Nb and Ta: 0.50 to 1.10% by weight.
The hot rolling method according to any one of claims 1 to 3, wherein a stainless steel containing is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09145395A JP3537530B2 (en) | 1995-03-24 | 1995-03-24 | Hot rolling method for stainless steel with reduced occurrence of ear breaks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09145395A JP3537530B2 (en) | 1995-03-24 | 1995-03-24 | Hot rolling method for stainless steel with reduced occurrence of ear breaks |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08257607A true JPH08257607A (en) | 1996-10-08 |
JP3537530B2 JP3537530B2 (en) | 2004-06-14 |
Family
ID=14026792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09145395A Expired - Fee Related JP3537530B2 (en) | 1995-03-24 | 1995-03-24 | Hot rolling method for stainless steel with reduced occurrence of ear breaks |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3537530B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117483424A (en) * | 2023-11-17 | 2024-02-02 | 燕山大学 | Axially movable special-shaped roller for improving edge crack of magnesium alloy plate and rolling method |
-
1995
- 1995-03-24 JP JP09145395A patent/JP3537530B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117483424A (en) * | 2023-11-17 | 2024-02-02 | 燕山大学 | Axially movable special-shaped roller for improving edge crack of magnesium alloy plate and rolling method |
CN117483424B (en) * | 2023-11-17 | 2024-06-04 | 燕山大学 | Axially movable special-shaped roller for improving edge crack of magnesium alloy plate and rolling method |
Also Published As
Publication number | Publication date |
---|---|
JP3537530B2 (en) | 2004-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109072367B (en) | Wear-resistant steel sheet and method for producing wear-resistant steel sheet | |
CN109072366B (en) | Wear-resistant steel sheet and method for producing wear-resistant steel sheet | |
CN108884531B (en) | Wear-resistant steel sheet and method for producing wear-resistant steel sheet | |
CN109072368B (en) | Wear-resistant steel sheet and method for producing wear-resistant steel sheet | |
JPH0647694B2 (en) | Method for producing high-strength stainless steel with excellent workability and no welding softening | |
EP2792761A1 (en) | High-strength extra-thick steel h-beam | |
JP6311633B2 (en) | Stainless steel and manufacturing method thereof | |
JP7444018B2 (en) | Steel plates, their manufacturing methods, and members | |
JP4428550B2 (en) | Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same | |
EP3372702B1 (en) | Steel member and steel plate and manufacturing method for them | |
JP2002105601A (en) | High strength dual phase stainless steel and its production method | |
JPH0830253B2 (en) | Precipitation hardening type martensitic stainless steel with excellent workability | |
JP3384890B2 (en) | Method for producing austenitic stainless steel with excellent surface properties | |
JP4222073B2 (en) | H-section steel with excellent fillet part toughness and method for producing the same | |
JP3941363B2 (en) | Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same | |
JP2003328083A (en) | High-strength stainless steel sheet with plural phases for welded structure, and manufacturing method therefor | |
JP4660363B2 (en) | Manufacturing method of thick steel plate with excellent toughness | |
JP2019081929A (en) | Nickel-containing steel plate and method for manufacturing the same | |
JP3537530B2 (en) | Hot rolling method for stainless steel with reduced occurrence of ear breaks | |
JP3210255B2 (en) | Ferritic stainless steel with excellent corrosion resistance and manufacturability | |
JP6673320B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP5921352B2 (en) | Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same | |
JP6024401B2 (en) | Manufacturing method of thick steel plate with excellent surface quality | |
JP2838468B2 (en) | Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling | |
JP2006257461A (en) | Method for manufacturing high-tensile-strength hot-rolled steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040316 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20040317 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080326 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090326 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100326 |
|
LAPS | Cancellation because of no payment of annual fees |