JPH082568B2 - How to set holding pressure switching point of injection molding machine - Google Patents

How to set holding pressure switching point of injection molding machine

Info

Publication number
JPH082568B2
JPH082568B2 JP11185090A JP11185090A JPH082568B2 JP H082568 B2 JPH082568 B2 JP H082568B2 JP 11185090 A JP11185090 A JP 11185090A JP 11185090 A JP11185090 A JP 11185090A JP H082568 B2 JPH082568 B2 JP H082568B2
Authority
JP
Japan
Prior art keywords
holding pressure
point
switching point
pressure switching
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11185090A
Other languages
Japanese (ja)
Other versions
JPH0412821A (en
Inventor
剛史 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP11185090A priority Critical patent/JPH082568B2/en
Publication of JPH0412821A publication Critical patent/JPH0412821A/en
Publication of JPH082568B2 publication Critical patent/JPH082568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、インラインスクリュー型の射出成形機にお
いて、保圧切替え点を最適値に設定可能な保圧切替え点
設定方法に関する。
TECHNICAL FIELD The present invention relates to a holding pressure switching point setting method capable of setting a holding pressure switching point to an optimum value in an inline screw type injection molding machine.

[従来の技術] インラインスクリュー型の射出成形機において、公知
のように、計量点まで後退したスクリューを保圧切替え
点まで前進させることにより、スクリューの先端側に計
量して貯えられた溶融樹脂を金型のキャビティ内に射出
・充填する射出行程を実行し、射出終了後、引き続いて
キャビティ内の溶融樹脂にスクリューによって保圧圧力
(2次射出圧力)を加えて、これを一定時間維持する保
圧行程を実行するようになっている。
[Prior Art] In an in-line screw type injection molding machine, as is well known, by advancing a screw retracted to a measuring point to a holding pressure switching point, the molten resin measured and stored on the tip side of the screw is stored. The injection process of injecting and filling into the cavity of the mold is executed, and after the injection is completed, a holding pressure (secondary injection pressure) is continuously applied to the molten resin in the cavity by a screw, and this is maintained for a certain period of time. It is designed to carry out a pressure stroke.

ところで、保圧切替え点の設定位置は、キャビティ内
の溶融樹脂圧,充填量と密接に関連するために、成形品
品質を左右する重要なファクターである。例えば、この
保圧切替え位置が適正位置よりもノズル先端に近づく方
向に設定されるとオーバーパックぎみになって、キャビ
ティ内に充填される溶融樹脂の圧力が適正値を超えて上
昇し、離型困難あるいは金型の損傷を招来するという問
題が起き、また、成形品にクラックが生じ易くなる。ま
た、反対に保圧切替え位置が適正位置よりもノズル先端
から離れる方向に設定されるとショーショットぎみとな
り、充填重量と保圧圧力とが不足し、成形品に寸法バラ
ツキやヒケ等が生じるという問題が起きる。
By the way, the setting position of the holding pressure switching point is an important factor that influences the quality of the molded product because it is closely related to the molten resin pressure and the filling amount in the cavity. For example, if the holding pressure switching position is set closer to the nozzle tip than the proper position, overpacking will occur, and the pressure of the molten resin filled in the cavity will rise above the proper value, and the mold release This causes problems such as difficulty or damage to the mold, and also tends to cause cracks in the molded product. On the other hand, if the holding pressure switching position is set in a direction farther from the nozzle tip than the proper position, it will be a show shot, resulting in insufficient filling weight and holding pressure, resulting in dimensional variations and sink marks in the molded product. I have a problem.

斯様に成形品品質と密接に関与する運転条件設定値で
ある保圧切替え点の設定は、これまで、熟練した作業者
による経験と勘に頼って行われていた。すなわち、試シ
ョットにおいて保圧切替え点をノズル先端に近づく方向
またはノズル先端から離れる方向に変化させながら、成
形された製品の品質を作業者が確認して、人間の判断に
よって謂わば手探りしながら経験と勘とによって、概ね
適正値であろうと思われる値に保圧切替え点を設定する
ようにしていた。
As described above, the setting of the holding pressure switching point, which is the operating condition setting value that is closely related to the quality of the molded product, has hitherto been performed based on the experience and intuition of a skilled worker. That is, in the trial shot, while changing the holding pressure switching point toward the nozzle tip or away from the nozzle tip, the operator confirms the quality of the molded product, and the human experience makes a so-called groping experience. Therefore, the holding pressure switching point was set to a value that seems to be a proper value.

[発明が解決しようとする課題] 上記したように、従来の保圧切替え点の設定手法は経
験と勘とに頼っていたため、経験の少ないオペレータ
(作業者)には適正な保圧切替え点の設定が困難であっ
た。また、豊かな経験をもつオペレータであっても、保
圧切替え点の設定作業は煩雑で時間のかかる作業であ
り、真に適正な保圧切替え点であるか否かの確認がとれ
ないまま、多少のバラツキをもって保圧切替え点の設定
が為されているのが実情であるという問題があった。
[Problems to be Solved by the Invention] As described above, since the conventional holding pressure switching point setting method relies on experience and intuition, an operator (worker) who has little experience has an appropriate holding pressure switching point. It was difficult to set. Also, even an operator with a wealth of experience, the work of setting the holding pressure switching point is a complicated and time-consuming task, and it is impossible to confirm whether it is a truly appropriate holding pressure switching point. There was a problem that the actual condition is that the holding pressure switching point is set with some variation.

従って、本発明の解決すべき技術的課題は上記した従
来技術のもつ問題点を解消することにあり、その目的と
するところは、初心のオペレータであっても最適保圧切
替え点の設定が、略自動的に容易・確実に行え、しかも
保圧切替え点の設定のために要する時間が短縮可能な射
出成形機の保圧切替え点設定方法を提供することにあ
る。
Therefore, the technical problem to be solved by the present invention is to solve the problems with the above-mentioned conventional technology, and the purpose thereof is to set the optimum holding pressure switching point even for an innocent operator. An object of the present invention is to provide a method for setting a holding pressure switching point of an injection molding machine, which can be easily and reliably performed almost automatically and can shorten the time required for setting the holding pressure switching point.

[課題を解決するための手段] 本発明の上記した目的は、運転条件がマイクロコンピ
ュータ(以下マイコンと称す)で制御されるインライン
スクリュー型の射出成形機において、 a.充填量が不足することが充分保証できる仮の保圧切替
え点と、充填量が不足することが充分保証できる仮の計
量点とを設定した後、前記マイコンが、前記仮の保圧切
替え点を固定したまま、計量点を前記仮の計量点から充
填量が増す方向に所定値づつ段階的にずらせて試ショッ
トを繰り返し、 b.次に、充填量が適正量よりも所定量だけ不足する計量
点に至った時点で、この計量点をマイコンで制御する運
転条件の設定計量点として確定し、 c.次に、マイコンが、前記設定計量点を固定したまま、
保圧切替え点を前記仮の保圧切替え点から充填量が増す
方向に所定値づつ段階的にずらせて試ショットを繰り返
すと共に、各試ショットの保圧行程における保圧圧力を
ゼロに設定してこの間の保圧切替え点対ピーク射出圧力
特性線を計測・作成し、 d.次に、前記保圧切替え点対ピーク射出圧力特性線に屈
曲点が現われた時点で、マイコンが、前記屈曲点が現わ
れる最前の試ショットにおける保圧切替え点を運転条件
の設定保圧切替え点として確定・設定する、 ようにした保圧切替え点設定方法によって達成される。
[Means for Solving the Problems] The above-mentioned object of the present invention is to provide an in-line screw type injection molding machine whose operating conditions are controlled by a microcomputer (hereinafter referred to as a microcomputer). After setting a temporary holding pressure switching point that can sufficiently guarantee and a temporary weighing point that can sufficiently guarantee that the filling amount is insufficient, the microcomputer can change the weighing point while fixing the temporary holding pressure switching point. Repeat the test shot by gradually shifting by a predetermined value in the direction in which the filling amount increases from the tentative weighing point, b. Next, when the filling amount reaches a weighing point that is less than the proper amount by a predetermined amount, This measurement point is confirmed as the set measurement point of the operating conditions controlled by the microcomputer, c. Next, the microcomputer keeps the set measurement point fixed,
Repeat the test shot by gradually shifting the holding pressure switching point from the temporary holding pressure switching point by a predetermined value in the direction in which the filling amount increases, and set the holding pressure in the holding stroke of each trial shot to zero. During this period, measure and create the holding pressure switching point vs. peak injection pressure characteristic line, d. Next, when the bending point appears on the holding pressure switching point vs. peak injection pressure characteristic line, the microcomputer This is achieved by the holding pressure switching point setting method, in which the holding pressure switching point in the first test shot that appears is set and set as the operating pressure setting holding pressure switching point.

[作 用] 前記したa,bの試ショットプロセス、すなわち、前記
仮の保圧切替え点を固定したまま、計量点を前記仮の計
量点から充填量が増す方向に所定値づつ段階的にずらせ
て試ショットを繰り返し、充填量が適正量よりも所定量
だけ不足する計量点に至った時点で(例えば予定する充
填量の90%程度の充填量となったことが試ショットによ
る成形品で確認された時点で)、この計量点をマイコン
で制御する運転条件の設定計量点として確定する。こ
の、計量点の確定設定は、オペレータがキー操作でマイ
コンに指示するようにされる。
[Operation] The trial shot process of a and b described above, that is, with the temporary holding pressure switching point fixed, the measuring point is gradually shifted from the temporary measuring point by a predetermined value in the direction of increasing the filling amount. The test shot is repeated and the filling amount reaches a weighing point that is less than the appropriate amount by a predetermined amount (for example, it is confirmed in the molded product by the trial shot that the filling amount is about 90% of the planned filling amount). Then, the measuring point is set as the setting measuring point for the operating condition controlled by the microcomputer. This fixed setting of the weighing point is performed by the operator instructing the microcomputer by key operation.

上記のように計量点のみが先ず確定設定された時点で
は、充填量が必ず不足するようにされており、この後、
前記したcの試ショットプロセスで、マイコンが、前記
設定計量点を固定したまま、保圧切替え点を前記仮の保
圧切替え点から充填量が増す方向に所定値づつ段階的に
ずらせて試ショットを繰り返すと共に、各試ショットの
保圧行程における保圧圧力をゼロに設定してこの間の保
圧切替え点対ピーク射出圧力特性線を計測・作成する。
斯様に保圧圧力をゼロにして試ショットを行うと、各試
ショット毎に例えば1mm刻みに可変設定される各保圧切
替え点でスクリュー先端は不動状態に維持され、ピーク
射出圧力が正確に計測可能となる。
As described above, at the time when only the weighing points are first fixed and set, the filling amount is always insufficient.
In the trial shot process of the above-mentioned c, the microcomputer performs the trial shot by gradually shifting the holding pressure switching point from the temporary holding pressure switching point in the direction of increasing the filling amount by a predetermined value while the set weighing point is fixed. Repeating the above, the holding pressure in the holding stroke of each test shot is set to zero, and the holding pressure switching point-peak injection pressure characteristic line during this period is measured and created.
In this way, if the holding pressure is set to zero and a test shot is performed, the screw tip is kept immobile at each holding pressure switching point that is variably set in increments of 1 mm for each test shot, and the peak injection pressure becomes accurate. It becomes possible to measure.

ところで、上記した保圧切替え点対ピーク射出圧力特
性線において、キャビティ内への溶融樹脂の充填量が適
正量を超えた時点(充填量100%を超えた時点)で、こ
の特性線には明瞭な屈曲点が現われ、この屈曲点以後は
特性線の勾配は急激に増すことが、本願発明者らの実験
によって確認されており、本願発明者はこの点に着目し
て、保圧切替え点対ピーク射出圧力特性線に屈曲点が現
われた時点で、マイコンが、屈曲点が現われる最前の試
ショットにおける保圧切替え点を運転条件の設定補圧切
替え点として設定するようにしたものである。
By the way, in the above-mentioned holding pressure switching point vs. peak injection pressure characteristic line, when the filling amount of the molten resin in the cavity exceeds the appropriate amount (when the filling amount exceeds 100%), this characteristic line clearly shows It has been confirmed by experiments conducted by the inventors of the present application that an inflection point appears, and the slope of the characteristic line increases sharply after this inflection point. When a bending point appears on the peak injection pressure characteristic line, the microcomputer sets the holding pressure switching point in the test shot before the bending point appears as the operating condition setting compensating pressure switching point.

よって、経験の少ないオペレータであっても、マイコ
ンに予め書き込まれた保圧切替え点のサーチ・設定用の
プログラムに従って実行される試ショットにより、容易
・確実に、且つ試行錯誤を伴わず短時間で、最適保圧切
替え点の設定が可能となる。
Therefore, even an inexperienced operator can easily, reliably, and in a short time without trial and error by using a test shot executed according to a program for searching and setting the holding pressure switching point written in advance in the microcomputer. It is possible to set the optimum holding pressure switching point.

[実施例] 以下、本発明の実施例を第1図〜第5図によって説明
する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS.

第1図はインラインスクリュー式射出成形機の要部の
概略構成を示す説明図である。同図における左上部分は
型開閉メカニズム系を示しており、該図示部分におい
て、1はベース、2は該ベース1上に固設された固定ダ
イプレート、3はベース1に延設されたスライドベース
1a上に設置された支持盤、4は固定ダイプレート2と支
持盤3との間に架設された複数本のタイバーである。上
記支持盤3には、型開閉駆動源たる型締シリンダ(油圧
シリンダ)5が固設されており、該型締シリンダ5のピ
ストンロッド5aの先端部には、公知のトグルリンク機構
6を介して前記タイバー4に挿通された可能ダイプレー
ト7が連結されている。そして、ピストンロッド5aを前
後進させることにより、可動ダイプレート7を固定ダイ
プレート2に対し、接近または後退させるようになって
いる。
FIG. 1 is an explanatory diagram showing a schematic configuration of a main part of an in-line screw type injection molding machine. The upper left part of the figure shows the mold opening / closing mechanism system. In the illustrated part, 1 is a base, 2 is a fixed die plate fixedly mounted on the base 1, and 3 is a slide base extended on the base 1.
Support plates 4 installed on the la 1 are a plurality of tie bars installed between the fixed die plate 2 and the support plate 3. A mold clamping cylinder (hydraulic cylinder) 5 serving as a mold opening / closing drive source is fixedly mounted on the support board 3, and a known toggle link mechanism 6 is provided at the tip of the piston rod 5a of the mold clamping cylinder 5. The movable die plate 7 inserted through the tie bar 4 is connected. Then, by moving the piston rod 5a forward and backward, the movable die plate 7 is moved toward or away from the fixed die plate 2.

また、前記固定ダイプレート2と前記可動ダイプレー
ト7の相対向する面には、固定側金型8と可動側金型9
とが取付けられている。そして、成形サイクル中の型閉
じ行程時には、前記ピストンロッド5aの前進で前記トグ
ルリンク機構6を伸長させて可動ダイプレート7を前進
させて、両金型8,9を密着させ、続いて公知のようにト
グルリンク機構6を突っ張らせて所定の型締力を与える
ようになっている。一方、成形サイクル中の型開き行程
時には、ピストンロッド5aの後退でトグルリンク機構6
を折り縮めて可動ダイプレート7を後退させ、両金型8,
9を離間させ、公知の図示せぬエジェクト機構と成形品
の自動取り出し機とによって成形品を取り出すようにな
っている。
Further, on the surfaces of the fixed die plate 2 and the movable die plate 7 which face each other, a fixed side die 8 and a movable side die 9 are provided.
And are installed. Then, during the mold closing process during the molding cycle, the toggle link mechanism 6 is extended by the advancement of the piston rod 5a to advance the movable die plate 7, and the two dies 8 and 9 are brought into close contact with each other. As described above, the toggle link mechanism 6 is stretched to give a predetermined mold clamping force. On the other hand, during the mold opening stroke during the molding cycle, the toggle link mechanism 6 is moved by the retraction of the piston rod 5a.
And retract the movable die plate 7 to move both molds 8,
9 are separated from each other, and the molded product is taken out by a known eject mechanism (not shown) and an automatic take-out machine for the molded product.

第1図における右上部分は射出メカニズム系を示して
おり、該図示部分において、12は加熱シリンダ、13は該
加熱シリンダ12内に回転並びに前後進可能に配設された
スクリュー、14は加熱シリンダ12の先端に取付けられた
ノズル、15は加熱シリンダ12の外周に巻装されたバンド
ヒータ、16は樹脂材料をスクリュー13の後部に供給する
ためのホッパー、17はスクリュー13の回転駆動源たるモ
ータ(本実施例では例えば電磁モータを用いているが、
油圧モータなどにも代替可能である)、18はスクリュー
13の前後進を制御するための射出シリンダ(油圧シリン
ダ)である。公知のように、ホッパー16から供給された
樹脂材料は、スクリュー13の回転によって混練・可塑化
されつつスクリュー13の先端側に移送されて溶融され、
溶融樹脂がスクリュー13の先端側に貯えられるに従って
スクリュー13が背圧を制御されつつ後退し、1ショット
分の溶融樹脂がスクリュー13の先端側に貯えられた時点
(計量点に至った時点)でスクリュー13の回転は停止さ
れる。そして、所定秒時を経た後、射出開始タイミング
に至ると、スクリュー13が保圧切替え点まで前進駆動さ
れて、型締めされた前記金型8,9間のキャビティ内へ溶
融樹脂が射出され、続いて、キャビティ内の溶融樹脂に
は所定秒時だけ保圧圧力がスクリュー13によって付加さ
れる。なお、本実施例ではスクリュー13の前後進並びに
スクリュー13への圧力付与を前記射出シリンダ(油圧シ
リンダ18)によって行っているが、これは油圧モータも
しくは電動モータと回転−直線運動変換機構の組合せた
ものに代替可能である。
The upper right portion of FIG. 1 shows the injection mechanism system, in which 12 is a heating cylinder, 13 is a screw arranged in the heating cylinder 12 so as to be rotatable and forward and backward, and 14 is a heating cylinder 12. Nozzle attached to the tip of the, 15 is a band heater wound around the outer periphery of the heating cylinder 12, 16 is a hopper for supplying the resin material to the rear part of the screw 13, and 17 is a motor (rotational drive source of the screw 13). In this embodiment, for example, an electromagnetic motor is used,
It can be replaced with a hydraulic motor, etc.), 18 is a screw
It is an injection cylinder (hydraulic cylinder) for controlling the forward and backward movement of 13. As is known, the resin material supplied from the hopper 16 is transferred to the tip side of the screw 13 and melted while being kneaded and plasticized by the rotation of the screw 13.
As the molten resin is stored on the tip side of the screw 13, the screw 13 moves backward while controlling the back pressure, and when one shot of the molten resin is stored on the tip side of the screw 13 (at the time when the measuring point is reached). The rotation of the screw 13 is stopped. Then, after a lapse of a predetermined time, when the injection start timing is reached, the screw 13 is driven forward to the holding pressure switching point, and the molten resin is injected into the cavity between the molds 8 and 9 that have been clamped, Subsequently, a holding pressure is applied to the molten resin in the cavity for a predetermined time by the screw 13. In this embodiment, the forward and backward movement of the screw 13 and the application of pressure to the screw 13 are performed by the injection cylinder (hydraulic cylinder 18), which is achieved by combining a hydraulic motor or an electric motor with a rotary-linear motion conversion mechanism. It can be replaced by one.

20は油圧測定ヘッド等よりなる射出圧力検出センサ、
21はエンコーダ等よりなる射出ストローク検出センサ、
22は回転エンコーダ等よりなるスクリュー回転検出セン
サ、23は加熱シリンダ12の温度を検出する温度検出セン
サ、24はノズル14先端部における溶融樹脂圧力を検出す
る圧力測定ヘッドよりなる圧力検出センサ、25はエンコ
ーダ等よりなる型開閉ストローク検出センサ、26は油圧
測定ヘッド等よりなる型締圧力検出センサで、これら各
センサ20〜26の計測情報信号S1〜S7や、図示せぬ他の各
センサからの計測情報信号が、後記するマイコン30に必
要に応じ適宜入力変換処理を施して送出される。なお、
本実施例では射出シリンダ18の油圧を前記射出圧力検出
センサ20で測定しているので、このセンサ20の測定値を
換算することにより、前記圧力検出センサ24の測定値と
することが出来、斯様な油圧駆動方式をとる場合には敢
えて圧力検出センサ24を設置する必要はないが、電磁サ
ーボ駆動の場合には溶融樹脂圧を測定する必要があるの
で、このような圧力検出センサが必要となる(よって、
本実施例においては圧力検出センサ24は参考までに示し
てあると理解されたい)。
20 is an injection pressure detection sensor composed of a hydraulic measuring head, etc.
21 is an injection stroke detection sensor including an encoder,
22 is a screw rotation detection sensor including a rotary encoder, 23 is a temperature detection sensor that detects the temperature of the heating cylinder 12, 24 is a pressure detection sensor that is a pressure measurement head that detects the molten resin pressure at the tip of the nozzle 14, and 25 is A mold opening / closing stroke detection sensor composed of an encoder, etc., 26 is a mold clamping pressure detection sensor composed of a hydraulic pressure measuring head, etc., and measurement information signals S1 to S7 of these respective sensors 20 to 26, and measurement from other sensors not shown. The information signal is sent to the microcomputer 30 to be described later with appropriate input conversion processing if necessary. In addition,
In the present embodiment, since the oil pressure of the injection cylinder 18 is measured by the injection pressure detection sensor 20, it is possible to obtain the measurement value of the pressure detection sensor 24 by converting the measurement value of this sensor 20. It is not necessary to intentionally install the pressure detection sensor 24 when adopting such a hydraulic drive system, but in the case of electromagnetic servo drive, it is necessary to measure the molten resin pressure, so such a pressure detection sensor is necessary. (So,
It should be understood that the pressure detection sensor 24 is shown for reference in this embodiment).

30は、マシン全体の動作制御などを司るマイコンで、
型開閉動作、チャージ動作、射出動作などの成形行程全
体の制御や、良品/不良品判定処理、並びに測定データ
の演算,グラフィク化処理等々の各種演算処理を実行す
る。該マイコン30は実際には、各種I/Oインターフェー
ス、主制御プログラム並びに各種固定データなどを格納
したROM、各種フラグや測定データ等を読み書きするRA
M、全体の制御を司るCPU(セントラルプロセッサーユニ
ット)等を具備しており、予め作成された各種プログラ
ムに従って各種処理を実行するものであるが、本実施例
においては説明の便宜上、成形条件設定記憶部31、成形
プロセス制御部32、実測値記憶部33、特性線作成部34、
屈曲点判定部35、保圧切替え点サーチ動作制御部36等の
機能部を具備しているものとして、以下の説明を行う。
30 is a microcomputer that controls the operation of the entire machine,
Control of the entire molding process such as mold opening / closing operation, charging operation, injection operation, non-defective / defective product determination processing, calculation of measurement data, and various calculation processing such as graphic processing are executed. The microcomputer 30 is actually a ROM that stores various I / O interfaces, main control programs and various fixed data, and RA that reads and writes various flags and measurement data.
M, a CPU (central processor unit) for controlling the whole, etc. are provided and various processes are executed in accordance with various programs created in advance. However, in this embodiment, the molding condition setting memory is stored for convenience of explanation. Unit 31, molding process control unit 32, measured value storage unit 33, characteristic line creation unit 34,
The following description will be given on the assumption that the bending point determination unit 35, the holding pressure switching point search operation control unit 36, and other functional units are provided.

上記成形条件設定記憶部31には、キー入力手段40もし
くは他の適宜入力手段によって入力された各種成形条件
値が、必要に応じ演算処理されて書き替え可能な形で記
憶されている。この成形条件としては、例えば、チャー
ジ行程時のスクリュー位置とスクリュー回転数及び背圧
との関係、サックバック制御条件、計量点(射出開始
点)から保圧切替え点までの細分化された射出速度条
件、保圧切替時点から保圧終了時点までの細分化された
2次射出圧力(保圧圧力)条件、各部のバンドヒータ温
度、型閉じストロークと速度、型締め力、型開きストロ
ークと速度、エジェクト制御条件、製品取り出し機制御
条件等々が挙げられる。
The molding condition setting storage unit 31 stores various molding condition values input by the key input means 40 or other appropriate input means in a rewritable form after being subjected to arithmetic processing as necessary. The molding conditions include, for example, the relationship between the screw position and the screw rotation speed and the back pressure during the charging process, suck back control conditions, and the injection speed subdivided from the measuring point (injection start point) to the holding pressure switching point. Conditions, subdivided secondary injection pressure (holding pressure) conditions from the holding pressure switching time to the holding pressure end time, band heater temperature of each part, mold closing stroke and speed, mold closing force, mold opening stroke and speed, Examples include eject control conditions and product take-out machine control conditions.

前記成形プロセス制御部32は、予め作成された成形プ
ロセス制御プログラムと成形条件設定記憶部31に格納さ
れた設定条件値とに基づき、前記したセンサ20〜23,25,
26などからの計測情報及びマイコン30に内蔵されたクロ
ックからの計時情報を参照しつつ、ドライバ群41を介し
て対応する駆動源を駆動制御し、一連の成形行程を実行
させる。第1図においては、ドライバ群41の駆動信号D1
が制御弁42を介して前記型締シリンダ5を駆動制御し、
駆動信号D2が前記バンドヒータ15の電熱源を駆動制御
し、駆動信号D3が前記モータ17を駆動制御し、駆動信号
D4が制御弁43を介して前記射出シリンダ18を駆動制御
し、また、他の駆動信号が図示せぬ適宜の駆動源を駆動
制御するようになっている。
The molding process control unit 32 is based on the molding process control program created in advance and the setting condition values stored in the molding condition setting storage unit 31, based on the sensors 20 to 23, 25,
While referring to the measurement information from 26 and the like and the timing information from the clock built in the microcomputer 30, the corresponding drive source is driven and controlled via the driver group 41 to execute a series of molding steps. In FIG. 1, the drive signal D1 of the driver group 41
Drives and controls the mold clamping cylinder 5 via the control valve 42,
The drive signal D2 drives and controls the electric heat source of the band heater 15, the drive signal D3 drives and controls the motor 17, and the drive signal
D4 drives and controls the injection cylinder 18 via the control valve 43, and another drive signal drives and controls an appropriate drive source (not shown).

前記実測値記憶部33には、前記した各センサ20〜23,2
5,26などからの計測情報を適宜変換処理した、位置(距
離)データ、圧力データ、速度データ、温度データ、時
間データが多数解のショットにわたって格納・保持され
るようになっている。この実測値記憶部33に記憶された
データは、後述する試ショット時における保圧切替え点
のサーチ・設定処理における保圧切替え点対ピーク射出
圧力特性線作成に利用されたり、現在進行中のショット
データは該ショットの制御に利用されたり、あるいは統
計演算処理やグラフ化処理等に利用される。
The measured value storage unit 33 includes the sensors 20 to 23, 2 described above.
Position (distance) data, pressure data, velocity data, temperature data, and time data obtained by appropriately converting measurement information from 5, 26, etc. are stored and held over multiple solution shots. The data stored in the actual measurement value storage unit 33 is used to create a characteristic line for holding pressure switching point vs. peak injection pressure in the processing for searching and setting the holding pressure switching point during the trial shot, which will be described later. The data is used for controlling the shot, or for statistical calculation processing and graphing processing.

前記特性線作成部34は、後述する保圧切替え点のサー
チ・設定処理のための試ショット過程において、順次可
変される保圧切替え位置データと該保圧切替え位置にお
けるピーク射出圧力データとを前記実測値記憶部33から
取り込んで、これを演算処理して、例えば第3図や第4
図に示した如き保圧切替え点対ピーク射出圧力特性線を
作成する。
In the trial shot process for searching and setting the holding pressure switching point, which will be described later, the characteristic line creating unit 34 stores the holding pressure switching position data that is sequentially changed and the peak injection pressure data at the holding pressure switching position. It is loaded from the measured value storage unit 33, and this is subjected to arithmetic processing, for example, as shown in FIG.
A holding pressure switching point vs. peak injection pressure characteristic line as shown in the figure is created.

特性線作成部34で作成された上記した保圧切替え点対
ピーク射出圧力特性線のデータは前記屈曲点判定部35に
送出され、該屈曲点判定部35において特性線上に屈曲点
があるか否かが判定されて、この判定結果は前記保圧切
替え点サーチ動作制御部36に送出される。また、屈曲点
判定部35で屈曲点が確定されると、このデータは確定し
た保圧切替え点データとして前記成形条件設定記憶部31
に送出されて、連続成形時(通常運転時)の保圧切替え
点として設定・格納される。
The data of the holding pressure switching point vs. peak injection pressure characteristic line created by the characteristic line creating section 34 is sent to the bending point determining section 35, and whether or not there is a bending point on the characteristic line in the bending point determining section 35. It is determined whether or not the result of this determination is sent to the holding pressure switching point search operation control unit 36. When the bending point is determined by the bending point determination unit 35, this data is used as the determined holding pressure switching point data and the molding condition setting storage unit 31
And is set and stored as a holding pressure switching point during continuous molding (during normal operation).

前記保圧切替え点サーチ動作制御部36は、オペレータ
の指示により、予め定められた保圧切替え点のサーチ・
設定のためのプログラムを実行し、該保圧切替え点サー
チ動作制御部36の指令によって前記成形プロセス制御部
32が、後述するような保圧切替え点のサーチ・設定動作
(試ショット)を実行する。
The holding pressure switching point search operation control unit 36 searches for a predetermined holding pressure switching point according to an operator's instruction.
A program for setting is executed, and the molding process control unit is operated by a command from the holding pressure switching point search operation control unit 36.
32 executes a holding pressure switching point search / setting operation (test shot) as described later.

なおここで、第1図において、44はカラーCRTディス
プレイ等よりなる表示装置、45はドットプリンタ等のプ
リンタで、この出力装置44,45には、マイコン30での処
理結果などが必要に応じ出力される。また、46は磁気デ
ィスク装置等の外部メモリで、マイコン30との間で必要
に応じ情報の授受がなされる。
In FIG. 1, reference numeral 44 denotes a display device such as a color CRT display or the like, and reference numeral 45 denotes a printer such as a dot printer. The output devices 44 and 45 output processing results by the microcomputer 30 as necessary. Is done. Reference numeral 46 denotes an external memory such as a magnetic disk device, which exchanges information with the microcomputer 30 as needed.

上述した構成をとる本陰イオンにおける保圧切替え点
のサーチ・設定のための動作を第2図を参照しつつ次に
説明する。第2図は保圧切替え点のサーチ・設定動作の
説明図である。
An operation for searching / setting a holding pressure switching point in the present anion having the above-described configuration will be described below with reference to FIG. FIG. 2 is an explanatory diagram of the search / setting operation of the holding pressure switching point.

製品を成形するための連続成形運転に先立ち、保圧切
替え点及び計量点を除き試ショットが可能な概略の条件
をオペレータがキー入力手段40によって入力した後、オ
ペレータが前記キー入力手段40により保圧切替え点のサ
ーチ・設定のための試ショットを指示すると、前記マイ
コン30はこれを受けて例えば前記表示装置44上に、仮の
保圧切替え点と仮の計量点とを入力するように表示さ
せ、オペレータはこれによって仮の保圧切替え点と仮の
計量点の位置データ(距離データ)を入力する。
Prior to the continuous molding operation for molding the product, after the operator inputs the general conditions by which the test shot can be performed except the holding pressure switching point and the weighing point by the key input means 40, the operator uses the key input means 40 When a trial shot for searching and setting the pressure switching point is instructed, the microcomputer 30 receives this and displays on the display device 44, for example, to input a temporary holding pressure switching point and a temporary weighing point. Then, the operator inputs the position data (distance data) of the temporary holding pressure switching point and the temporary weighing point by this.

上記した仮の保圧切替え点並びに仮の計量点は、キャ
ビティ内への充填量が充分不足することが保証できる値
が設定され、これは極くラフな値で良いので経験の少な
いオペレータであっても容易に指示可能である。第2図
において、PC0,PM0はそれぞれこのように仮設定された
仮の保圧切替え点並びに仮の計量点を示しており、これ
らはスクリュー13の最前進位置(樹脂のない状態でのメ
カ的最前進位置)S0をゼロ基準として表わされている。
参考までに述べると、いま当該マシンの保圧切替え点の
通常範囲が例えば2〜10mm、計量点の通常範囲が例えば
70〜90mmである場合には、仮の保圧切替え点PC0を例え
ば15mm以上、仮の計量点PM0を例えば60mm以下という風
にラフに設定すればよく、例え初心のオペレータであっ
ても仮の保圧切替え点PC0と仮の計量点PM0の設定は容易
である。
The temporary holding pressure switching point and the temporary weighing point are set to values that can guarantee that the filling amount in the cavity is sufficiently insufficient. Since this is an extremely rough value, it is an operator with little experience. However, it is possible to instruct easily. In FIG. 2, P C0 and P M0 respectively indicate the temporary holding pressure switching point and the temporary measuring point which are provisionally set in this way, and these are the most advanced position of the screw 13 (in the state without resin). The mechanically most advanced position) S 0 is represented as a zero reference.
For reference, the normal range of the holding pressure switching point of the machine is, for example, 2 to 10 mm, and the normal range of the weighing point is, for example,
In the case of 70 to 90 mm, the temporary holding pressure switching point P C0 may be roughly set to 15 mm or more, and the temporary weighing point P M0 may be roughly set to 60 mm or less, for example, even if the operator is a beginner. It is easy to set the temporary holding pressure switching point P C0 and the temporary weighing point P M0 .

仮の保圧切替え点PC0と仮の計量点PM0とが設定された
ことを前記マイコン30が確認すると、前記保圧切替え点
サーチ動作制御部36からの信号を参照して前記成形プロ
セス制御部32がマシン全体の成形動作を制御し、1回目
の試ショット(1回目の試成形)SH1では、チャージ行
程(計量行程)でスクリュー13を仮の計量点PM0までバ
ックさせた後、設定された射出速度、圧力によってスク
リュー13を仮の保圧切替え点PC0まで前進させて射出を
行わせる。このとき、仮の保圧切替え点PC0までスクリ
ュー13が前進した後、スクリュー13には設定してある保
圧圧力がゼロになるようにされている。なお、保圧圧力
をゼロにすることは以下の各試ショットにおいても同様
である。続いてマイコン30は、2回目の試ショットSH2
では、計量点を前記仮の計量点PM0から充填量が増す方
向に所定量(例えば0.数〜数mm程度であるが、このピッ
チはオペレータが任意に設定できるようにすることも可
能である)だけずらせた計量点PM1までスクリュー13を
後退させてチャージを行い、この計量点PM1から前記仮
の保圧切替え点PC0までスクリューを前進させて射出を
行わせる。3回目の試ショットSH3では、計量点をPM1
らPM2まで所定量だけ充填量増加方向に移動させ、同様
に仮の保圧切替え点PC0までスクリューを前進させて射
出を行わせる。
When the microcomputer 30 confirms that the temporary holding pressure switching point P C0 and the temporary weighing point P M0 are set, the molding process control is performed with reference to the signal from the holding pressure switching point search operation control unit 36. The part 32 controls the molding operation of the entire machine, and in the first trial shot (first trial molding) SH 1 , after the screw 13 is moved back to the temporary weighing point P M0 in the charging process (measuring process), The screw 13 is advanced to the temporary pressure holding switching point P C0 by the set injection speed and pressure, and injection is performed. At this time, after the screw 13 has moved forward to the temporary holding pressure switching point P C0 , the holding pressure set on the screw 13 is set to zero. Note that the holding pressure is set to zero in the same manner in each of the following test shots. Next, the microcomputer 30 uses the second test shot SH 2
Then, the measuring point is a predetermined amount in the direction in which the filling amount increases from the tentative measuring point P M0 (for example, about 0 to several mm, but this pitch can be arbitrarily set by the operator. The screw 13 is retracted to a measuring point P M1 which is shifted by a certain amount to perform charging, and the screw is advanced from this measuring point P M1 to the temporary holding pressure switching point P C0 to perform injection. In the third test shot SH 3 , the metering point is moved from P M1 to P M2 in the direction of increasing the filling amount by a predetermined amount, and similarly, the screw is advanced to the temporary holding pressure switching point P C0 to perform injection.

斯様に最初に仮設定された仮の保圧切替え点PC0を固
定したまま、計量点を仮の計量点PM0から充填量が増す
方向に所定量づつ段階的にずらせて行う試ショットが、
充填量が適正量よりも所定量だけ不足する計量点PMN
至るまで、繰り返される。この充填量が適正量よりも所
定量だけ不足する計量点PMNとは、例えば充填量が90%
程度となった時点で、これは試ショットによる試験成形
品を視認することなどで容易にオペレータが確認でき、
オペレータはキー操作等でこの旨をマイコン30(前記保
圧切替え点サーチ動作制御部36)に認知させるようにな
っている。
In this way, with the temporary holding pressure switching point P C0 initially set temporarily fixed, the trial shot is performed by gradually shifting the weighing point from the temporary weighing point P M0 by a predetermined amount in the direction in which the filling amount increases. ,
The process is repeated until the filling amount reaches the weighing point P MN, which is less than the proper amount by the predetermined amount. The metering point P MN that the filling amount is insufficient by a predetermined amount than a proper amount, for example, the filling amount of 90%
At this point, the operator can easily confirm this by visually observing the test molded product from the test shot.
The operator causes the microcomputer 30 (the holding pressure switching point search operation control unit 36) to recognize this by operating a key or the like.

上記したようにN回目の試ショットSHNで充填量が適
正量よりも所定量だけ(これもかなりラフな値でよい)
不足する計量点PMNに至ったことが認知されると、前記
マイコン30は、この計量点PMNを連続成形運転時の計量
点データとして確定し、該データが前記成形条件設定記
憶部31に格納される。
As described above, in the Nth test shot SH N , the filling amount is only a predetermined amount than the proper amount (this may be a considerably rough value).
When it is recognized that the insufficient measuring point P MN is reached, the microcomputer 30 determines this measuring point P MN as the measuring point data during continuous molding operation, and the data is stored in the molding condition setting storage unit 31. Is stored.

この後引き続き、マイコン30の成形プロセス制御部32
が前記保圧切替え点サーチ動作制御部36からの指令を参
照して、次の試ショットを行わせる。該次の試ショット
SHN+1では、前記計量点PMNを固定してチャージを行った
後、射出時には保圧切替え点を前記仮の保圧切替え点P
C0から充填量が増す方向に所定値だけ(例えば1mm程度
であるが、このピッチはオペレータが任意に設定できる
ようにすることも可能である)ずらせた保圧切替え点P
C1までスクリュー13を前進させて射出を行う。この際、
保圧切替え点PC1においては、前記したように保圧圧力
がゼロとされているので、前記射出圧力検出センサ20に
よって、保圧切替え点PC1におけるキャビティ内の溶融
樹脂圧力に対応する圧力が検出され、これが樹脂圧力に
換算されたピーク射出圧力として保圧切替え点PC1のデ
ータと共に前記実測値記憶部33に格納される。
After this, the molding process control unit 32 of the microcomputer 30 continues.
Refers to the command from the holding pressure switching point search operation control section 36 to perform the next test shot. The next test shot
In SH N + 1 , after fixing the measuring point P MN and performing charging, the holding pressure switching point is changed to the temporary holding pressure switching point P during injection.
Holding pressure switching point P shifted from C0 by a predetermined value in the direction of increasing filling amount (for example, about 1 mm, but this pitch can be set arbitrarily by the operator)
Injection is performed by advancing the screw 13 to C1 . On this occasion,
At the holding pressure switching point P C1 , since the holding pressure is set to zero as described above, the injection pressure detection sensor 20 causes the pressure corresponding to the molten resin pressure in the cavity at the holding pressure switching point P C1 . The detected value is stored in the measured value storage unit 33 together with the data of the pressure holding switching point P C1 as the peak injection pressure converted into the resin pressure.

同様に、この次の試ショットSHN+2では、前記計量点P
MNを固定してチャージを行った後、射出時には保圧切替
え点を保圧切替え点PC1から充填量が増す方向にさらに
所定値だけずらせた保圧切替え点PC2までスクリュー13
を前進させて射出を行い、以下同様に、計量点PMNを固
定して保圧切替え点を漸次充填量が増す方向にずらせた
試ショットが、後述するように保圧切替え点ピーク射出
圧力特性線に屈曲点が現われるまで(例えば図示の例で
は、保圧切替え点がPCKとなる試ショットSHN+4=SHN+K
まで)繰り返される。
Similarly, in this next test shot SH N + 2 , the weighing point P
After charging with MN fixed, at the time of injection, the holding pressure switching point is shifted from the holding pressure switching point P C1 to the holding pressure switching point P C2 which is further shifted by a predetermined value in the direction of increasing the filling amount.
, The injection is performed, and in the same manner, the trial shot in which the weighing point P MN is fixed and the holding pressure switching point is shifted in the direction in which the filling amount gradually increases is the holding pressure switching point peak injection pressure characteristic as described later. Until a bending point appears on the line (For example, in the example shown in the figure, the test shot SH N + 4 = SH N + K where the holding pressure switching point is P CK
Repeated).

上述した各試ショットSHN+1〜SHN+Kにおいて計測さ
れ、前記実測値記憶部33に格納された各可変保圧切替え
点データ並びにこれと関連するピーク射出圧力データに
基づき、前記特性線作成部34は、例えば第3図の如き保
圧切替え点対ピーク射出圧力特性線を最新データが入力
される毎に更新して作成していく。そして、この保圧切
替え点対ピーク射出圧力特性線データは、前記屈曲点判
定部35に転送されて特性線の単位領域当たりの傾き度合
いから屈曲点Xの有無が判別されるようになっている。
すなわち、第3図に示した例では保圧切替え点4mmと保
圧切替え点3mmとの間に屈曲点Xがあるので、保圧切替
え点PCK=3mmとした試ショットSHN+Kの直後に屈曲点X
が屈曲点判定部35で検出されて、この旨を示す信号が前
記保圧切替え点位置サーチ制御部36に送出される。
Based on the variable holding pressure switching point data measured in each of the trial shots SH N + 1 to SH N + K and stored in the measured value storage unit 33 and the peak injection pressure data related thereto, the characteristic line The creating unit 34 creates and updates the holding pressure switching point vs. peak injection pressure characteristic line as shown in FIG. 3 each time the latest data is input. The holding pressure switching point vs. peak injection pressure characteristic line data is transferred to the bending point determination unit 35, and the presence or absence of the bending point X is determined from the degree of inclination of the characteristic line per unit area. .
That is, in the example shown in FIG. 3, since there is a bending point X between the holding pressure switching point 4 mm and the holding pressure switching point 3 mm, immediately after the trial shot SH N + K with the holding pressure switching point P CK = 3 mm. Bending point X
Is detected by the bending point determination unit 35, and a signal indicating this is sent to the holding pressure switching point position search control unit 36.

本実施例ではこの後更に、マイコン30の成形プロセス
制御部32が前記保圧切替え点サーチ動作制御部36からの
指令を参照して、次の試ショットを行わせる。該次の試
ショットSHN+K+1では、前記計量点PMNを固定してチャー
ジを行った後、射出時には保圧切替え点を、前記した屈
曲点が現われる直前の試ショットSHN+K-1=SN+3におけ
る保圧切替え点(第2図に示すように本実施例では
PC3)から充填量が増す方向に先程よりも細かい所定ピ
ッチだけ(例えば0.1mm程度であるが、このピッチもオ
ペレータが任意に設定できるようにすることも可能であ
る)ずらせた保圧切替え点PC3+0.1までスクリュー13
を前進させて射出を行う。以下、同様にして計量点PMN
を固定して保圧切替え点を漸次充填量が増す方向に細か
いピッチでずらせた試ショットが、保圧切替え点対ピー
ク射出圧力特性線に屈曲点Xが現われるまで(例えば図
示の例では、保圧切替え点がPC3+Lとなる試ショットSH
N+K+2=SHN+K+Lまで)繰り返される。
In the present embodiment, after this, the molding process control unit 32 of the microcomputer 30 further refers to the command from the holding pressure switching point search operation control unit 36 to perform the next test shot. In the next test shot SH N + K + 1 , after the measurement point P MN is fixed and charging is performed, the holding pressure switching point during injection is set to the test shot SH N + K immediately before the bending point appears. -1 = S N + 3 holding pressure switching point (In the present embodiment, as shown in FIG.
P C3 ) In the direction of increasing the filling amount, a predetermined pitch finer than before (for example, about 0.1 mm, but this pitch can be set arbitrarily by the operator). Screw 13 up to P C3 + 0.1
Is advanced to perform injection. Similarly, weigh points P MN
The test shots in which the holding pressure switching point is fixed and the holding pressure switching point is shifted at a fine pitch in the direction in which the filling amount is gradually increased until the bending point X appears on the characteristic curve of the holding pressure switching point versus the peak injection pressure (for example, in the example shown in the figure, Test shot SH where the pressure switching point is P C3 + L
N + K + 2 = SH N + K + L ) Repeated.

よって、第2図に示した例では、保圧切替え点PC3+L
=PC3+0.2=3.8mmとした試ショットSHN+K+L=SHN+K+2
の直後に、前記屈曲点Xが屈曲点判定部35で検出され
て、この旨を示す信号が前記保圧切替え位置サーチ制御
部36に送出されて、保圧切替え位置サーチ制御部36はこ
れによって保圧切替え点をサーチ・設定するための該シ
ョットプログラムを終了させる。また同時に、屈曲点判
定部35は、屈曲点Xが現われる最前(直前)の試ショッ
トSHN+K+L-1=SHN+K+1における、保圧切替え点PC3+1
3.9mmを連続成形運転時の保圧切替え点データとして確
定し、該データを前記成形条件設定記憶部31に格納させ
るようになっている。
Therefore, in the example shown in FIG. 2, the holding pressure switching point P C3 + L
= P C3 + 0.2 = Trial shot with 3.8mm SH N + K + L = SH N + K + 2
Immediately after, the bending point X is detected by the bending point determination unit 35, and a signal indicating this is sent to the holding pressure switching position search control unit 36, which causes the holding pressure switching position search control unit 36 to detect it. The shot program for searching and setting the holding pressure switching point is ended. At the same time, the bending point determination unit 35 determines that the pressure holding switching point P C3 + 1 = at the test shot SH N + K + L-1 = SH N + K + 1 before (just before) the bending point X appears.
3.9 mm is fixed as the holding pressure switching point data during the continuous molding operation, and the data is stored in the molding condition setting storage unit 31.

なお、上記した実施例においては、保圧切替え点を正
確・詳細に決定するため、屈曲点Xの検索を保圧切替え
点を1mm刻みに可変する試ショットと0.1mm刻みに可変す
る試ショットとに分けて行っているが、保圧切替え点を
1mm刻みに可変する試ショット過程でのみ屈曲点Xを検
出し、屈曲点Xが現われる最前(直前)の試ショットに
おける保圧切替え点を連続成形運転時の保圧切替え点デ
ータとして確定しても、実用上差し支えない場合も勿論
あり得る。
In the above-described embodiment, in order to determine the holding pressure switching point accurately and in detail, the bending point X is searched by a test shot in which the holding pressure switching point is changed in 1 mm steps and a trial shot in which the holding pressure change points are changed in 0.1 mm steps. Although it is divided into
Even if the bending point X is detected only in the trial shot process in which the bending point X is varied in 1 mm increments, the holding pressure switching point in the trial shot immediately before (immediately before) where the bending point X appears can be determined as the holding pressure switching point data during continuous molding operation. Of course, there may be cases where there is no practical problem.

ここで、前記した第3図の保圧切替え点対ピーク射出
圧力特性線は、第2図の動作説明図と対応するものであ
り、成形品として円板を耐衝撃性ポリスチレン樹脂で成
形したものを示しているが、成形品形状、樹脂材料等に
より保圧切替え点対ピーク射出圧力特性線は種々変化
し、例えば、成形品としてレンズをアクリル樹脂で成形
した場合には、第4図に示したような保圧切替え点対ピ
ーク射出圧力特性線となる。なお、第3,4図において、
2点鎖線で示した特性線部分は、実験により得た屈曲点
X以降の高圧力のピーク射出圧力部分を参考までに示し
ており、当該2点鎖線部分では過度の圧力のため金型の
損傷や型開き不良を招来する虞れがあるので、2点鎖線
部分から試ショットを行って保圧切替え点を充填量が減
じる方向に可変して屈曲点Xをサーチすることは避けね
ばならず、屈曲点Xのサーチはあくまでピーク射出圧力
が増大する方向に保圧切替え点を可変して行うことが肝
要である。
Here, the holding pressure switching point vs. peak injection pressure characteristic line of FIG. 3 described above corresponds to the operation explanatory diagram of FIG. 2, and is a molded disk formed of impact-resistant polystyrene resin. However, the characteristic curve of the holding pressure switching point vs. peak injection pressure changes variously depending on the shape of the molded product, the resin material, etc. For example, when the lens is molded with acrylic resin as the molded product, it is shown in Fig. 4. The above-mentioned holding pressure switching point vs. peak injection pressure characteristic line is obtained. In addition, in FIGS. 3 and 4,
The characteristic line part shown by the two-dot chain line shows the peak injection pressure part of the high pressure after the bending point X obtained by the experiment for reference, and in the two-dot chain line part, the mold is damaged due to excessive pressure. Therefore, it is necessary to make a trial shot from the two-dot chain line part and change the holding pressure switching point in the direction in which the filling amount decreases to search the bending point X, because it may cause mold opening failure. It is essential to search the bending point X by changing the holding pressure switching point in the direction in which the peak injection pressure increases.

第5図は、前記マイコン30で実行される保圧切替え点
のサーチ・設定のための処理フローの1例を示すフロー
チャート図である。同図において、ST1,ST2は前記した
仮の保圧切替え点並びに仮の計量点を設定するステップ
で、このステップST1,ST2を経てステップST3に進む。ス
テップST3では、仮の保圧切替え点を固定したまま、計
量点を充填量が増す方向に所定値だけずらせて(バック
させて)試ショットを行い、次のステップST4に進む。
ステップST4では、充填量が適正量よりも所定量だけ不
足する計量点に至ったか否かが(例えば充填量が90%を
超えたか否かが)問われ、NOなら前記ステップST3に戻
り、YES(この判定はオペレータが行う)なら次のステ
ップST5へ進む。ステップST5では、例えば充填量が90%
を超えた時点の計量点を確定計量点として、これを固定
したまま今度は保圧切替え点を、充填量が増す方向に第
1のピッチ(例えば1mm)だけずらせて(前進させて)
試ショットを行い、次のステップST6に進む。ST6では前
記の如く作成される保圧切替え点対ピーク射出圧力特性
線を参照して屈曲点が現われたか否かが判定され、NOな
ら前記ステップST5に戻り、YESなら次のステップST7へ
進む。ステップST7では、ステップST6で屈曲点が現われ
た時点で見た最前のショットにおける保圧切替え点か
ら、保圧切替え点を充填量が増す方向に第2のピッチ
(例えば0.1mm)だけずらせて(前進させて)試ショッ
トを行い、次のステップST8に進む。ステップST8では、
ステップST6と同様に、保圧切替え点対ピーク射出圧力
特性線を参照して屈曲点が現われたか否かが判定され、
NOなら前記ステップST7に戻り、YESなら次のステップST
9へ進む。ステップST9では、ステップST8で屈曲点が現
われた時点で見た最前のショットにおける保圧切替え点
を、連続運転時における保圧切替え点として確定設定
し、一連の処理は終了する。なお、この一連の処理の終
了は、例えばブザーとCRT画面等でオペレータに告示さ
れ、オペレータは保圧切替え点、計量点のサーチ・設定
動作の終了を認知する。この後、オペレータは必要に応
じ他の条件確定のための試験ショットを実行させ、全て
の自動成形運転条件を確認した後、全自動成形に入る。
FIG. 5 is a flow chart showing an example of a processing flow for searching / setting a holding pressure switching point executed by the microcomputer 30. In the figure, ST1 and ST2 are steps for setting the temporary holding pressure switching point and the temporary measuring point, and the processing proceeds to step ST3 via these steps ST1 and ST2. In step ST3, a trial shot is performed by shifting (backing) the metering point by a predetermined value in the direction of increasing the filling amount while the temporary holding pressure switching point is fixed, and the process proceeds to the next step ST4.
In step ST4, it is asked whether or not the filling amount reaches a weighing point that is less than the proper amount by a predetermined amount (for example, whether or not the filling amount exceeds 90%). If NO, the process returns to step ST3, and YES If (the operator makes this determination), the process proceeds to the next step ST5. In step ST5, for example, the filling amount is 90%
With the weighing point at the time of exceeding the set as the fixed weighing point, with this fixed, this time the holding pressure switching point is shifted (moved forward) by the first pitch (eg 1 mm) in the direction in which the filling amount increases
Perform a test shot and proceed to the next step ST6. In ST6, it is determined whether or not the bending point appears by referring to the holding pressure switching point vs. peak injection pressure characteristic line created as described above. If NO, the process returns to step ST5, and if YES, the process proceeds to the next step ST7. In step ST7, the holding pressure switching point is shifted by a second pitch (for example, 0.1 mm) in the direction of increasing the filling amount from the holding pressure switching point in the previous shot when the bending point appears in step ST6 ( Make a trial shot (by moving it forward) and proceed to the next step ST8. In step ST8,
Similar to step ST6, it is determined whether or not the bending point appears by referring to the holding pressure switching point vs. peak injection pressure characteristic line,
If NO, the process returns to step ST7, and if YES, the next step ST
Go to 9. In step ST9, the holding pressure switching point in the last shot seen when the bending point appears in step ST8 is fixedly set as the holding pressure switching point in continuous operation, and the series of processes ends. The end of this series of processing is notified to the operator by, for example, a buzzer and a CRT screen, and the operator recognizes the end of the holding pressure switching point and the weighing point search / setting operation. After this, the operator executes a test shot for determining other conditions as necessary, confirms all the automatic molding operation conditions, and then starts full-automatic molding.

以上、本発明を図示した実施例によって説明したが、
当業者には本発明の精神を逸脱しない範囲で種々の変形
が可能であることは言うまでもなく、例えば、保圧切替
え点のサーチ・設定動作時の計量点並びに保圧切替え点
の段階的変量(ピッチ)は任意の値が選定可能である。
The present invention has been described above with reference to the illustrated embodiment,
It goes without saying that those skilled in the art can make various modifications without departing from the spirit of the present invention. For example, a stepwise variation of the measuring point and the holding pressure switching point during the search / setting operation of the holding pressure switching point ( Any value can be selected for the pitch).

[発明の効果] 叙上のように本発明によれば、初心のオペレータであ
っても最適保圧切替え点の設定が、略自動的に容易・確
実に行え、良品成形が可能となる射出成形機の保圧切替
え点設定方法が提供できる。しかも、保圧切替え点の設
定のために要する時間が、従来手法では30分以上を要し
たのに対し、本発明ではこれが10分以下と3/1以下に短
縮可能となり、且つ条件設定に対しての不安もなくなる
という、この種インラインスクリュー式の射出成形機に
あって産業上顕著な効果を奏する。
[Advantages of the Invention] As described above, according to the present invention, even an inexperienced operator can easily and reliably set the optimum holding pressure switching point almost automatically, and injection molding that enables good product molding. It is possible to provide a method for setting the holding pressure switching point of the machine. Moreover, the time required for setting the holding pressure switching point required 30 minutes or more in the conventional method, while in the present invention, this can be shortened to 10 minutes or less and 3/1 or less, and for the condition setting. This type of in-line screw type injection molding machine, which eliminates the anxiety, has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

図面は何れも本発明の実施例に係り、第1図は射出成形
機の概略構成を示す説明図、第2図は保圧切替え点のサ
ーチ・設定動作の説明図、第3図は保圧切替え点対ピー
ク射出圧力特性線の1例を示す説明図、第4図は保圧切
替え点対ピーク射出圧力特性線の他の一例を示す説明
図、第5図はマイコンで実行される保圧切替え点のサー
チ・設定処理のための処理フローの1例を示すフローチ
ャート図である。 1……ベース、2……固定ダイプレート、3……支持
盤、4……タイバー、5……型締シリンダ、6……トグ
ルリンク機構、7……可動ダイプレート、8……固定側
金型、9……可動側金型、12……加熱シリンダ、13……
スクリュー、14……ノズル、15……バンドヒータ、16…
…ホッパー、17……モータ、18……射出シリンダ、20…
…射出圧力検出センサ、21……射出ストローク検出セン
サ、22……スクリュー回転検出センサ、23……温度検出
センサ、24……圧力検出センサ、25……型開閉ストロー
ク検出センサ、26……型締圧力検出センサ、30……マイ
コン、31……成形条件設定記憶部、32……成形プロセス
制御部、33……実測値記憶部、34……特性線作成部、35
……屈曲点判定部、36……保圧切替え点サーチ動作制御
部、40……キー入力手段、41……ドライバ群、42,43…
…制御弁、44……表示装置、45……プリンタ、46……外
部メモリ。
Each of the drawings relates to an embodiment of the present invention, FIG. 1 is an explanatory view showing a schematic structure of an injection molding machine, FIG. 2 is an explanatory view of a search / setting operation of a holding pressure switching point, and FIG. 3 is a holding pressure. Explanatory drawing showing an example of the switching point vs. peak injection pressure characteristic line, FIG. 4 is an explanatory view showing another example of the pressure holding switching point vs. peak injection pressure characteristic line, and FIG. 5 is a holding pressure executed by a microcomputer. It is a flow chart figure showing an example of the processing flow for search and setting processing of a switching point. 1 ... Base, 2 ... Fixed die plate, 3 ... Support board, 4 ... Tie bar, 5 ... Mold clamping cylinder, 6 ... Toggle link mechanism, 7 ... Movable die plate, 8 ... Fixed side metal Mold, 9 ... Movable mold, 12 ... Heating cylinder, 13 ...
Screw, 14 ... Nozzle, 15 ... Band heater, 16 ...
… Hopper, 17 …… Motor, 18 …… Injection cylinder, 20…
... Injection pressure detection sensor, 21 ... Injection stroke detection sensor, 22 ... Screw rotation detection sensor, 23 ... Temperature detection sensor, 24 ... Pressure detection sensor, 25 ... Mold opening and closing stroke detection sensor, 26 ... Mold clamping Pressure detection sensor, 30 ... Microcomputer, 31 ... Molding condition setting storage unit, 32 ... Molding process control unit, 33 ... Actual measurement value storage unit, 34 ... Characteristic line creation unit, 35
...... Bending point judgment unit, 36 ...... Holding pressure switching point search operation control unit, 40 ...... Key input means, 41 ...... Driver group, 42,43 ...
… Control valve, 44 …… Display device, 45 …… Printer, 46 …… External memory.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】加熱シリンダ内に回転並びに前後進可能に
配置されたスクリューを備え、計量行程においては、ス
クリューの回転によってホッパーから加熱シリンダ内の
スクリュー後部に供給された原料を混練・可塑化しつつ
スクリューの先端側に送り込み、スクリューの先端側に
溶融樹脂が貯えられるに従ってスクリューを回転させつ
つ計量点まで後退させ、計量完了時点でスクリューの回
転を停止させて、然る後の所定秒時をおいた射出開始タ
イミング時点でスクリューを保圧切替え点まで前進さ
せ、加熱シリンダの先端のノズルから金型のキャビティ
内に溶融樹脂を射出・充填する射出行程を実行し、続い
て、スクリューを介してキャビティ内の樹脂に保圧圧力
を与える保圧行程を実行するようにされ、運転条件がマ
イクロコンピュータで制御されるインラインスクリュー
型の射出成形機において、 a.充填量が不足することが充分保証できる仮の保圧切替
え点と、充填量が不足することが充分保証できる仮の計
量点とを設定した後、前記マイクロコンピュータが、前
記仮の保圧切替え点を固定したまま、計量点を前記仮の
計量点から充填量が増す方向に所定値づつ段階的にずら
せて試ショットを繰り返し、 b.次に、充填量が適正量よりも所定量だけ不足する計量
点に至った時点で、この計量点をマイクロコンピュータ
で制御する運転条件の設定計量点として確定し、 c.次に、マイクロコンピュータが、前記設定計量点を固
定したまま、保圧切替え点を前記仮の保圧切替え点から
充填量が増す方向に所定値づつ段階的にずらせて試ショ
ットを繰り返すと共に、各試ショットの保圧行程におけ
る保圧圧力をゼロに設定してこの間の保圧切替え点対ピ
ーク射出圧力特性線を計測・作成し、 d.次に、前記保圧切替え点対ピーク射出圧力特性線に屈
曲点が現われた時点で、マイクロコンピュータが、前記
屈曲点が現われる最前の試ショットにおける保圧切替え
点を運転条件の設定保圧切替え点として設定する、 ようにしたことを特徴とする射出成形機の保圧切替え点
設定方法。
1. A heating cylinder is provided with a screw arranged so as to be able to rotate and move forward and backward, and in the measuring process, the raw material supplied from the hopper to the rear part of the screw in the heating cylinder is kneaded and plasticized by the rotation of the screw. It is fed to the tip side of the screw, and as the molten resin is stored on the tip side of the screw, the screw is rotated and retracted to the measuring point, and when the measurement is completed, the rotation of the screw is stopped and the predetermined time after that. At the same time as the injection start timing, the screw is advanced to the holding pressure switching point, the injection process of injecting and filling the molten resin into the cavity of the mold from the nozzle at the tip of the heating cylinder is executed, and then the cavity is passed through the screw. A pressure-holding process is performed to give a pressure-holding pressure to the resin inside, and the operating condition is a microcomputer. In the controlled in-line screw type injection molding machine, a. Temporary holding pressure switching point that can sufficiently guarantee that the filling amount is insufficient and temporary measurement point that can sufficiently guarantee that the filling amount is insufficient are set. After that, the microcomputer repeats the test shot by gradually shifting the measuring point from the temporary measuring point by a predetermined value in the direction of increasing the filling amount while fixing the temporary holding pressure switching point.b. When the filling amount reaches a weighing point that is less than the proper amount by a predetermined amount, the weighing point is confirmed as the setting weighing point of the operating condition controlled by the microcomputer, and c. While holding the set metering point fixed, the holding pressure switching point is gradually shifted from the temporary holding pressure switching point by a predetermined value in the direction in which the filling amount increases, and the trial shots are repeated, and the holding pressure of each trial shot is increased. Set the holding pressure to zero and measure / create the holding pressure switching point vs. peak injection pressure characteristic line during this period.d. Next, the bending point appears on the holding pressure switching point vs. peak injection pressure characteristic line. At that time, the microcomputer sets the holding pressure switching point in the test shot before the bending point appears as the setting holding pressure switching point of the operating condition, so that the holding pressure switching of the injection molding machine is performed. Point setting method.
【請求項2】請求項1記載において、前記した保圧切替
え点対ピーク射出圧力特性線に屈曲点が現われた時点
で、該屈曲点が現われる最前の試ショットにおける保圧
切替え点から、保圧切替え点を充填量が増す方向に先と
は異なる更に細かいピッチで所定値づつ段階的にずらせ
て試ショットを繰り返すと共に、各試ショットの保圧圧
力をゼロに設定してこの間の保圧切替え点対ピーク射出
圧力特性線を計測・作成し、保圧切替え点対ピーク射出
圧力特性線に屈曲点が現われた時点で、この屈曲点が現
われる最前の試ショットにおける保圧切替え点を運転条
件の設定保圧切替え点として確実・設定するようにした
ことを特徴とする射出成形機の保圧切替え点設定方法。
2. The holding pressure from the holding pressure switching point in the last test shot at which the bending point appears at the time when the bending point appears on the holding pressure switching point vs. peak injection pressure characteristic line. Repeat the test shots by gradually shifting the switching point in the direction of increasing the filling amount at a finer pitch different from the previous one by a predetermined value, and set the holding pressure of each test shot to zero to set the holding pressure switching point in the meantime. Measure and create a characteristic curve for peak injection pressure vs. holding pressure switching point When the bending point appears on the characteristic curve for peak injection pressure vs. peak pressure setting, set the operating pressure at the holding pressure switching point in the last test shot where this bending point appears. A method for setting a holding pressure switching point of an injection molding machine, which is characterized in that the holding pressure switching point is set surely.
JP11185090A 1990-05-01 1990-05-01 How to set holding pressure switching point of injection molding machine Expired - Fee Related JPH082568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185090A JPH082568B2 (en) 1990-05-01 1990-05-01 How to set holding pressure switching point of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185090A JPH082568B2 (en) 1990-05-01 1990-05-01 How to set holding pressure switching point of injection molding machine

Publications (2)

Publication Number Publication Date
JPH0412821A JPH0412821A (en) 1992-01-17
JPH082568B2 true JPH082568B2 (en) 1996-01-17

Family

ID=14571731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185090A Expired - Fee Related JPH082568B2 (en) 1990-05-01 1990-05-01 How to set holding pressure switching point of injection molding machine

Country Status (1)

Country Link
JP (1) JPH082568B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT404076B (en) * 1994-08-31 1998-08-25 Battenfeld Kunststoffmasch METHOD FOR AUTOMATICALLY DETERMINING THE OPTIMAL WORKING POINT OF AN INJECTION MOLDING MACHINE
JP2006166763A (en) * 2004-12-15 2006-06-29 Mitsubishi Agricult Mach Co Ltd Working implement transmission case for combine harvester
JP6075694B2 (en) * 2013-07-26 2017-02-08 宇部興産機械株式会社 Control method of injection filling process of injection molding machine

Also Published As

Publication number Publication date
JPH0412821A (en) 1992-01-17

Similar Documents

Publication Publication Date Title
US6258303B1 (en) Apparatus and method of monitoring injection molding operation wherein sprue gate closing point of time is indicated together with displayed parameter waveforms
CN104772877A (en) Mold clamping force setting device and mold clamping force setting method of injection molding machine
CN103029276B (en) Method for setting clamping force of injection mold and clamping force setting apparatus
US5251146A (en) Injection compression molding method and an apparatus therefor
JP2545465B2 (en) Method for automatically setting upper and lower limits of molding conditions of molding machine
KR960015298B1 (en) Positioning method for an electrically driven injection molding machine
JPH082568B2 (en) How to set holding pressure switching point of injection molding machine
JPH06126800A (en) Method for regulating mold clamping force in molding machine
JP2567968B2 (en) Automatic product inspection method for molding machines
JPH03199025A (en) Measure data processing system in injection molding machine
JP2627047B2 (en) Injection molding machine molding condition setting method
EP0362395B1 (en) Method and apparatus for injection compression molding
JP2010069869A (en) Mold clamping control device and mold clamping control method
JP4011133B2 (en) Control method of injection molding machine
JP3258151B2 (en) Control device for gate cutting pin position of injection molding machine
KR960016030B1 (en) Method and apparatus for injection compression molding
JP4385193B2 (en) Injection molding method in injection molding machine
JP5764230B2 (en) Mold clamping control device and mold clamping control method
JPH09216266A (en) Control of injection molding machine
JPH0698650B2 (en) Injection molding machine injection characteristic display method
JP2996255B2 (en) Injection molding machine
JP3154379B2 (en) Injection compression molding method and apparatus
JP3282435B2 (en) Injection press molding method and injection press molding apparatus
JP3291129B2 (en) Post-processing start timing detection method for injection molding machine
JP2779082B2 (en) Adjustment method of mold clamping force in molding machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees