JPH08253433A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPH08253433A
JPH08253433A JP8462895A JP8462895A JPH08253433A JP H08253433 A JPH08253433 A JP H08253433A JP 8462895 A JP8462895 A JP 8462895A JP 8462895 A JP8462895 A JP 8462895A JP H08253433 A JPH08253433 A JP H08253433A
Authority
JP
Japan
Prior art keywords
ruthenium
catalyst
reaction
hydrogen
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8462895A
Other languages
Japanese (ja)
Other versions
JP3897830B2 (en
Inventor
Masaru Suzuki
賢 鈴木
Hiroshi Ishida
浩 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP08462895A priority Critical patent/JP3897830B2/en
Publication of JPH08253433A publication Critical patent/JPH08253433A/en
Application granted granted Critical
Publication of JP3897830B2 publication Critical patent/JP3897830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To stably produce cycloolefins in high selectivity and yield by partially reducing a monocyclic aromatic hydrocarbon using a ruthenium supported catalyst having a specific value or above of a metal dispersion degree. CONSTITUTION: A catalyst supported on a carrier and prepared by supporting ruthenium on the carrier in a state so as to provide the chemical adsorptivity for hydrogen of at least (0.6/1) expressed in terms of the ratio (H/Ru) of the number of the adsorbed hydrogen atoms to the total number of metallic ruthenium atoms in the catalyst is used as a hydrogenation catalyst to carry out partial hydrogenating reaction in partially reducing a monocyclic aromatic hydrocarbon with hydrogen in the coexistence of the hydrogenating catalyst consisting essentially of the ruthenium and water. The hydrogenating catalyst is prepared by using a ruthenium complex compound comprising a reactive ligand selected from carbonyl and an olefin as a precursor of the ruthenium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単環芳香族炭化水素を
部分水素化して、対応するシクロオレフイン類、特にシ
クロヘキセン類を高収率で、かつ安定的に製造する方法
に関するものである。得られるシクロオレフイン類は、
ポリアミド原料、ラクタム類、リジン類、医薬、農薬な
どの重要な中間原料として有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for partially hydrogenating a monocyclic aromatic hydrocarbon to stably produce corresponding cycloolefins, particularly cyclohexenes, in high yield. The obtained cycloolefins are
It is a compound useful as an important intermediate raw material for polyamide raw materials, lactams, lysines, pharmaceuticals, agricultural chemicals and the like.

【0002】[0002]

【従来の技術】シクロヘキセン類の製造法としては、例
えば、(1)水およびアルカリ剤と周期表第VIII族元素
を含有する触媒組成物を用いる方法(特公昭56ー22
850号公報)、(2)ニッケル、コバルト、クロム、
チタンまたはジルコニウムの酸化物に担持したルテニウ
ム触媒を用い、アルコールまたはエステルを添加剤とし
て用いる方法(特公昭52−3933号公報)、(3)
ルテニウム触媒ならびに周期表のIA族金属、IIA族金
属およびマンガンより選ばれた少なくとも1種の陽イオ
ンの塩を含む中性または酸性水溶液の存在下に反応を行
う方法(特公昭57−7607号公報)、(4)シリ
カ、アルミナ等の酸化物に主に、ルテニウムを担持させ
た触媒、水および硫酸コバルトの存在下、部分水素化す
る方法(特開昭57−130926号公報)、(5)
鉄、コバルト、銀および銅からなる群より選ばれた少な
くとも1種以上の金属およびルテニウムを硫酸バリウム
担体に担持した触媒を用いて、リチウム、コバルト、鉄
および亜鉛からなる群より選ばれた1種以上の金属硫酸
塩と水の共存下に反応を行う方法(特公平2−5981
1号公報)、
As a method for producing cyclohexenes, for example, (1) a method using a catalyst composition containing (1) water and an alkali agent and an element of Group VIII of the periodic table (Japanese Patent Publication No. 56-22).
No. 850), (2) nickel, cobalt, chromium,
Method using ruthenium catalyst supported on oxide of titanium or zirconium and using alcohol or ester as additive (Japanese Patent Publication No. 52-3933), (3)
A method of carrying out the reaction in the presence of a ruthenium catalyst and a neutral or acidic aqueous solution containing a salt of at least one cation selected from Group IA metals, Group IIA metals and manganese of the periodic table (Japanese Patent Publication No. 57-7607). ), (4) Partial hydrogenation in the presence of a catalyst having ruthenium supported on oxides such as silica and alumina, water and cobalt sulfate (JP-A-57-130926), (5)
One selected from the group consisting of lithium, cobalt, iron and zinc by using a catalyst in which at least one metal selected from the group consisting of iron, cobalt, silver and copper and ruthenium are supported on a barium sulfate carrier. The method for carrying out the reaction in the presence of the above metal sulfate and water
No. 1),

【0003】(6)硫酸バリウムを担体としたルテニウ
ム担持触媒および水の共存下、二酸化ケイ素、二酸化チ
タンおよび酸化アルミニウムから選ばれた少なくとも1
種以上の金属酸化物を反応系に共存させる方法(特公平
6−4545号公報)、(7)水素化触媒として200
オングストローム以下の平均結晶子径を有する金属ルテ
ニウム結晶子および/またはその凝集した粒子を用い、
水および少なくとも1種の亜鉛化合物の存在下に反応を
行う方法(特公平2−19098号公報)、(8)水素
化触媒としてあらかじめ亜鉛を含有させたルテニウムの
還元物であつて、亜鉛含有量がルテニウムに対し0.1
〜50重量%である触媒を使用し、少なくとも1種の水
溶性亜鉛化合物および水の共存下、酸性条件下で反応を
行う方法(特公平2−16736号公報)などが提案さ
れている。
(6) At least one selected from silicon dioxide, titanium dioxide and aluminum oxide in the presence of a ruthenium-supported catalyst having barium sulfate as a carrier and water.
A method in which one or more kinds of metal oxides are allowed to coexist in a reaction system (Japanese Patent Publication No. 6-4545), (7) 200 as a hydrogenation catalyst
Using a metal ruthenium crystallite having an average crystallite size of angstrom or less and / or its agglomerated particles,
Method for carrying out reaction in the presence of water and at least one zinc compound (Japanese Patent Publication No. 19098/1990), (8) Ruthenium reduced product containing zinc in advance as hydrogenation catalyst, wherein zinc content Is 0.1 against ruthenium
A method has been proposed in which the reaction is carried out under acidic conditions in the presence of at least one water-soluble zinc compound and water, using a catalyst of 50% by weight (Japanese Patent Publication No. 2-16736).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の従来公知の方法においては、例えば、上記(1)の方
法では、反応系が複雑であつたり、シクロヘキセン類の
選択率向上のために原料の転化率や反応速度を著しく抑
制したり、さらには反応装置の耐食性に問題が予想され
るなど実用的でなく、また、(2)〜(4)の方法にお
いては、選択率、収率の点で飛躍的な向上がないと実用
化は困難であるという問題点がある。さらに(5)、
(6)の方法においては、シクロヘキセン類の収率は3
0〜40%と高く、また触媒寿命が改善された方法では
あるものの、その収率の値は高転化率下で得られるもの
であつて、シクロヘキセン類の選択率自身は、高くても
50%前後であり、副生成物であるシクロヘキサン類が
すでに工業的に安価に製造されている現状においては、
経済的見地から有利とは言い難いものである。
However, in these conventionally known methods, for example, in the above method (1), the reaction system is complicated and the conversion of the raw materials is improved in order to improve the selectivity of cyclohexenes. It is not practical because the rate and the reaction rate are significantly suppressed, and further, the corrosion resistance of the reactor is expected to be a problem, and in the methods (2) to (4), in terms of selectivity and yield. There is a problem that practical application is difficult unless there is a dramatic improvement. Furthermore (5),
In the method of (6), the yield of cyclohexenes is 3
Although it is as high as 0 to 40% and the method has improved catalyst life, the yield value is obtained at a high conversion rate, and the selectivity of cyclohexene itself is at most 50%. Before and after, in the current situation that the by-product cyclohexanes are already manufactured industrially at low cost,
It is hard to say that it is advantageous from an economic point of view.

【0005】一方、(7)、(8)の方法においても、
選択率、収率については相当な改善がなされているが、
主に金属ルテニウムからなる微粒子をそれ自身で用いて
いるため、反応系における該微粒子状触媒どうしの凝集
などが発生して、経済的に安定な製造法とはなり難く、
又凝集による反応活性点の減少により、ルテニウム単位
重量当たりの生産性が低くなるなど必ずしも経済的でな
い。
On the other hand, in the methods (7) and (8),
Significant improvements have been made in selectivity and yield,
Since the fine particles mainly composed of metal ruthenium are used by themselves, agglomeration of the fine particle catalysts in the reaction system occurs, and it is difficult to be an economically stable production method.
Further, the reduction of reaction active points due to aggregation lowers the productivity per unit weight of ruthenium, which is not always economical.

【0006】[0006]

【課題を解決するための手段】本発明者らは、かかる従
来技術の問題点を解決するため、シクロヘキセン類の高
選択率、高収率かつ工業的に安定な触媒系を得るべく鋭
意検討した結果、次の本発明に到達した。すなわち、本
発明は、主にルテニウムからなる水素化触媒および水の
共存下、水素により単環芳香族炭化水素を部分水素化す
るに際し、該水素化触媒として、水素の化学吸着能が吸
着された水素原子数と触媒中の全金属ルテニウム原子数
との間の比(H/Ru)で表して、少なくとも0.6/
1となる状態で担持された担体担持触媒を用いることを
特徴とするシクロオレフインの製造方法を提供するもの
である。
[Means for Solving the Problems] In order to solve the problems of the prior art, the inventors of the present invention have earnestly studied to obtain a catalyst system having a high selectivity for cyclohexenes, a high yield, and industrial stability. As a result, the following invention has been reached. That is, in the present invention, in the partial hydrogenation of a monocyclic aromatic hydrocarbon with hydrogen in the coexistence of a hydrogenation catalyst mainly composed of ruthenium and water, the chemisorption ability of hydrogen was adsorbed as the hydrogenation catalyst. The ratio (H / Ru) between the number of hydrogen atoms and the total number of ruthenium metal atoms in the catalyst is at least 0.6 /
The present invention provides a method for producing cycloolefin, which comprises using a carrier-supported catalyst supported in the state of 1.

【0007】以下、本発明を詳細に説明する。本発明に
おいては、水素化触媒として、水素の化学吸着能が吸着
された水素原子数と触媒中の全金属ルテニウム原子数と
の間の比(H/Ru)で表して、少なくとも0.6/1
となる状態で担持された担体担持触媒が使用される。
Hereinafter, the present invention will be described in detail. In the present invention, as the hydrogenation catalyst, the chemisorption capacity of hydrogen is represented by the ratio (H / Ru) between the number of adsorbed hydrogen atoms and the number of all-metal ruthenium atoms in the catalyst, and is at least 0.6 / 1
A carrier-supported catalyst that is supported in the following state is used.

【0008】一般に、金属を担体に担持した触媒におい
ては、担持したことによる金属の分散効果により、金属
当たりの触媒活性が高められたり、反応選択性あるいは
活性金属物質の安定性が向上することなどが経験的に知
られている。また、担体上の金属微粒子結晶は、活性種
金属の前駆体化合物、担体金属酸化物の表面性状、調製
方法および条件などによつて特有の大きさ、形態及び表
面構造を示し、この金属の状態が反応性に大きく関与す
ることが知られている。さらに活性金属が担体上に高分
散した場合は、担体との相互作用により生じるガス吸着
特性の変化などから、反応活性や反応選択性が向上する
効果が見いだされている。このような担体担持触媒の金
属微粒子の状態がおよぼす反応性への影響は、本発明者
らによって特開昭63−243038号公報に記載され
ている30〜200オングストロームの平均結晶子径を
有するルテニウム担持触媒が有効とされるように、当該
部分水素化反応においても重要な因子となることが考え
られる。
Generally, in a catalyst in which a metal is supported on a carrier, the catalytic activity per metal is increased, the reaction selectivity or the stability of the active metal substance is improved due to the dispersion effect of the metal supported. Is empirically known. In addition, the metal fine particle crystals on the carrier show a unique size, morphology and surface structure depending on the precursor compound of the active species metal, the surface properties of the carrier metal oxide, the preparation method and conditions, etc. Is known to be greatly involved in reactivity. Furthermore, when the active metal is highly dispersed on the carrier, it has been found that the reaction activity and the reaction selectivity are improved due to changes in gas adsorption characteristics caused by the interaction with the carrier. The influence of the state of the fine metal particles of the carrier-supported catalyst on the reactivity is the ruthenium having an average crystallite size of 30 to 200 angstroms described in JP-A-63-243038. It may be an important factor in the partial hydrogenation reaction so that the supported catalyst is effective.

【0009】一方、本発明者らの検討によると、触媒の
水素の化学吸着能で定義される金属ルテニウムの分散度
(H/Ru)は、単環芳香族炭化水素の部分水素化反応
に影響を与え、特にシクロヘキセン類の選択率や収率、
さらには触媒寿命がそれによって著しく異なることが判
明し、部分水素化反応に有利なルテニウムの分散度が、
少なくとも0.6/1、好ましくは0.8/1となる状
態で担持された担体担持触媒が特に有効であるとの結論
に達した。
On the other hand, according to the studies by the present inventors, the dispersity (H / Ru) of ruthenium metal, which is defined by the chemisorption capacity of hydrogen of the catalyst, affects the partial hydrogenation reaction of monocyclic aromatic hydrocarbons. , Especially the selectivity and yield of cyclohexenes,
Furthermore, it was found that the catalyst life was remarkably different, and the dispersity of ruthenium, which is advantageous for the partial hydrogenation reaction, was
It was concluded that a carrier-supported catalyst supported in a state of at least 0.6 / 1, preferably 0.8 / 1 was particularly effective.

【0010】ここで、水素−化学吸着量(H/Ru)の
測定は、担持金属触媒の表面露出原子数(分散度)を推
定する方法として一般的である化学吸着法に従つて行わ
れ、具体的には、後述する測定法にて測定した触媒の水
素の化学吸着量から、化学吸着した水素原子数と触媒中
の全ルテニウム原子数との間の比より算出されるもので
ある。
Here, the hydrogen-chemisorption amount (H / Ru) is measured according to the chemisorption method, which is a general method for estimating the number of exposed atoms (dispersion degree) of the supported metal catalyst, Specifically, it is calculated from the ratio of the number of chemisorbed hydrogen atoms to the total number of ruthenium atoms in the catalyst from the amount of chemisorption of hydrogen in the catalyst measured by the measuring method described later.

【0011】上記の如き担体上にルテニウムを高分散さ
せた状態にすることにより、部分水素化反応の選択率や
収率、さらには触媒寿命に対して極めて有利な触媒系と
なり、また、ルテニウム単位重量当たりの反応速度、す
なわち生産性についても、高分散化による金属表面積の
増大によつて、一般的な手法で得られた低分散度触媒よ
りも向上することから、高選択率かつ高活性でシクロオ
レフインを製造することが可能となったのである。
By placing ruthenium in a highly dispersed state on the carrier as described above, the catalyst system becomes extremely advantageous for the selectivity and yield of the partial hydrogenation reaction, and further for the catalyst life, and also the ruthenium unit. The reaction rate per weight, that is, the productivity is also improved by the increase in the metal surface area due to the high dispersion, compared with the low-dispersion catalyst obtained by the general method, so that the selectivity and the activity are high. It was possible to produce cycloolefin.

【0012】本発明における水素化触媒は、金属の分散
性の支配因子となる金属担持量、担体の表面物性、金属
前駆体、担持方法および調製条件など適宜選択して種々
の方法で調製することができるが、特にルテニウムの前
駆体化合物にルテニウム錯体を用いて調製すると好まし
い結果が得られる。ここで、ルテニウム錯体とは、カル
ボニル、オレフインより選ばれた少なくとも1種の反応
性配位子からなるルテニウム錯体化合物を指し、例え
ば、ルテニウムカルボニル、ルテニウムオレフイン錯体
のほか、カルボニル基が水素化物イオン、オレフインな
どの配位子によつて一部置換されたルテニウムカルボニ
ル化合物などが挙げられる。
The hydrogenation catalyst in the present invention may be prepared by various methods by appropriately selecting the amount of metal supported, which is a factor controlling the dispersibility of the metal, the surface properties of the carrier, the metal precursor, the supporting method and the preparation conditions. In particular, when a ruthenium complex is used as a precursor compound for ruthenium, preferable results can be obtained. Here, the ruthenium complex refers to a ruthenium complex compound composed of at least one kind of reactive ligand selected from carbonyl and olefin, and includes, for example, ruthenium carbonyl and ruthenium olefin complex, and a carbonyl group having a hydride ion, Examples thereof include ruthenium carbonyl compounds partially substituted with a ligand such as olefin.

【0013】具体的には、ペンタカルボニルルテニウ
ム、ドデカカルボニル三ルテニウムなどのルテニウムカ
ルボニル錯体、テトラ−μ−ヒドリドドデカカルボニル
四ルテニウム、テトラカルボニルビス(η−シクロペン
タジニエル)二ルテニウム、テトラカルボニルビス(η
−ペンタメチルシクロペンタジニエル)二ルテニウム、
トリカルボニル(シクロオクタテトラエン)ルテニウ
ム、トリカルボニル(1、5−シクロオクタジエン)ル
テニウム、ジカルボニルビス(η−アリル)ルテニウム
などに代表されるルテニウムカルボニル化合物錯体、
Specifically, ruthenium carbonyl complexes such as pentacarbonyl ruthenium and dodecacarbonyl triruthenium, tetra-μ-hydridododecacarbonyl tetraruthenium, tetracarbonylbis (η-cyclopentadiene) diruthenium, tetracarbonylbis ( η
-Pentamethylcyclopentadiene) diruthenium,
Ruthenium carbonyl compound complexes represented by tricarbonyl (cyclooctatetraene) ruthenium, tricarbonyl (1,5-cyclooctadiene) ruthenium, dicarbonylbis (η-allyl) ruthenium, and the like,

【0014】ビス(η−シクロペンタジエニル)ルテニ
ウム、(シクロペンタジエニル)(ペンタメチルシクロ
ペンタジエニル)ルテニウム、ヒドリド(シクロペンタ
ジエニル)(1、5−シクロオクタジエン)ルテニウ
ム、(η−シクロオクタトリエン)(η−シクロオクタ
ジエン)ルテニウム、(η−ベンゼン)(η−1、3シ
クロヘキサジエン)ルテニウム、ビス(η−アリル)
(η4 −ノルボルナジエン)ルテニウムなどに代表され
るルテニウムオレフイン錯体などがあり、ドデカカルボ
ニル三ルテニウム、テトラ−μ−ヒドリドドデカカルボ
ニル四ルテニウム、トリカルボニル(1、5−シクロオ
クタジエン)ルテニウム、(η−シクロオクタトリエ
ン)(η−シクロオクタジエン)ルテニウムは好ましく
使用され、特に、ドデカカルボニル三ルテニウムはシク
ロヘキセン類の選択性や収率に好ましい結果を与える。
Bis (η-cyclopentadienyl) ruthenium, (cyclopentadienyl) (pentamethylcyclopentadienyl) ruthenium, hydride (cyclopentadienyl) (1,5-cyclooctadiene) ruthenium, (η -Cyclooctatriene) (η-cyclooctadiene) ruthenium, (η-benzene) (η-1,3cyclohexadiene) ruthenium, bis (η-allyl)
There are ruthenium olefin complexes represented by (η 4 -norbornadiene) ruthenium and the like, and dodecacarbonyltriruthenium, tetra-μ-hydridododecacarbonyltetraruthenium, tricarbonyl (1,5-cyclooctadiene) ruthenium, (η- Cyclooctatriene) (η-cyclooctadiene) ruthenium is preferably used, and in particular, dodecacarbonyltriruthenium gives favorable results in the selectivity and yield of cyclohexenes.

【0015】このようにして得られた高分散ルテニウム
触媒が部分水素化反応に対し、優れた効果を発揮する原
因については必ずしも定かではないが、高分散担持によ
る担体との相互作用の増加やルテニウム粒子の安定性の
向上、さらには塩素などの残留根イオンによる被毒の低
減などからシクロヘキセン類の選択率、収率、および触
媒寿命に対し、有効な活性点が形成されると考えること
ができる。
The reason why the highly dispersed ruthenium catalyst thus obtained exerts an excellent effect on the partial hydrogenation reaction is not always clear, but the increased interaction with the carrier and the ruthenium supported by the highly dispersed support are not clear. It can be considered that effective active sites are formed for the selectivity of cyclohexenes, the yield, and the life of the catalyst due to the improvement of particle stability and the reduction of poisoning by residual root ions such as chlorine. .

【0016】上記のようなルテニウム錯体を触媒前駆体
とする触媒の調製方法としては、反応性配位子を持つル
テニウム錯体と担体金属酸化物の表面との反応性を利用
して調製される。例えば、ルテニウム錯体の一部の反応
性配位子と担体金属酸化物の表面官能基(例えば、水酸
基、ルイス酸、塩基点など)との表面反応により担体金
属酸化物の表面上に錯体化合物を固定化し、この錯体担
持触媒を加熱−排気処理もしくは水素還元処理を施し、
金属配位子を脱離させることにより、高分散したルテニ
ウム結晶を金属酸化物上に形成させる。
As a method for preparing the above-mentioned catalyst using the ruthenium complex as a catalyst precursor, the catalyst is prepared by utilizing the reactivity between the ruthenium complex having a reactive ligand and the surface of the carrier metal oxide. For example, a complex compound is formed on the surface of the carrier metal oxide by the surface reaction of some of the reactive ligands of the ruthenium complex and the surface functional groups of the carrier metal oxide (eg, hydroxyl group, Lewis acid, basic points). Immobilize and subject this complex-supported catalyst to heating-exhaust treatment or hydrogen reduction treatment,
By removing the metal ligand, highly dispersed ruthenium crystals are formed on the metal oxide.

【0017】以下、該触媒の具体的な調製方法について
述べる。反応性配位子を持つルテニウム錯体の担体表面
上への固定化法は、通常行われる担持触媒の調製方法に
従つて行われる。例えば、ルテニウム錯体化合物を適当
な溶媒中に溶解した溶液を用いて、蒸発乾固法、吸着
法、浸漬法、スプレー法などの公知含浸法により担体に
吸着させる化学湿式法、ルテニウム錯体化合物結晶を昇
華させ、担体と直接気相反応させる化学気相法などが好
適に用いられる。触媒調製時に化学湿式法を用いる場合
の溶媒としては、水またはテトラヒドロフラン、n−ヘ
キサン、アセトン、アルコ−ルなどが使用される。
A specific method for preparing the catalyst will be described below. The method for immobilizing the ruthenium complex having a reactive ligand on the surface of the support is performed according to the method for preparing a supported catalyst that is usually used. For example, using a solution of a ruthenium complex compound dissolved in a suitable solvent, a chemical wet method in which it is adsorbed on a carrier by a known impregnation method such as an evaporation dryness method, an adsorption method, an immersion method, or a spray method, a ruthenium complex compound crystal A chemical vapor phase method or the like in which a sublimation is performed and a direct vapor phase reaction with a carrier is used. Water or tetrahydrofuran, n-hexane, acetone, alcohol or the like is used as a solvent when the chemical wet method is used for preparing the catalyst.

【0018】このようにルテニウム錯体化合物を担体上
に固定化した触媒は、ルテニウム配位子を脱離させるた
めに不活性ガス中、真空中あるいは水素中で加熱−活性
化処理を加えて使用する。加熱温度は100−500
℃、好ましくは、130−400℃が選ばれる。加熱処
理時の上記雰囲気は、単独もしくは併用して行われる
が、有価のルテニウム錯体化合物を用いる場合は水素に
よる還元処理が好ましく行われる。
The catalyst in which the ruthenium complex compound is immobilized on the carrier as described above is used in order to desorb the ruthenium ligand by adding heat-activation treatment in an inert gas, vacuum or hydrogen. . Heating temperature is 100-500
C., preferably 130-400.degree. C. is chosen. The above-mentioned atmosphere during the heat treatment is performed alone or in combination. When a valuable ruthenium complex compound is used, reduction treatment with hydrogen is preferably performed.

【0019】触媒の活性種であるルテニウムは単独で担
体に担持することもできるが、触媒の調製段階もしくは
調製後において、他の金属種を共担持してもよい。金属
種としては、例えば、それ自体公知のZn、Cr、M
n、Co、Ni、Fe、Cuなどが好適に用いられる。
特に、Zn、Mn、Feから成る金属化合物を共担持す
るとシクロオレフイン類の選択率、収率に好ましい結果
を与える。共担持成分であるZn、Mn、Feの化合物
としては各金属のハロゲン化物、硝酸塩、硫酸塩、酢酸
塩などが使用される。
Ruthenium, which is the active species of the catalyst, can be supported alone on the carrier, but other metal species may be co-supported during or after the preparation stage of the catalyst. Examples of the metal species include Zn, Cr, and M, which are known per se.
N, Co, Ni, Fe, Cu and the like are preferably used.
In particular, co-supporting a metal compound consisting of Zn, Mn and Fe gives favorable results in the selectivity and yield of cycloolefins. As compounds of Zn, Mn, and Fe that are co-supporting components, halides, nitrates, sulfates, acetates, etc. of each metal are used.

【0020】担体としては様々なものが使用できるが、
金属酸化物、酸化物の水酸化物、もしくは複合酸化物な
どが好適に用いられる。具体的には、例えば、Zr、H
f、Si、Al、Nd、Ta、Cr、Ti、Fe、C
o、Gaの酸化物、酸化物の水和物もしくはこれらの複
合酸化物である。特に、ZrO2 、SiO2 、TiO2
はシクロヘキセン類の選択率や収率の向上に顕著に作用
する。その他の担体としては、実質的に反応系内で溶解
しない炭酸マグネシウム、炭酸バリウム、硫酸バリウム
などの金属塩や活性炭、テフロンなどの樹脂も使用可能
である。
Although various carriers can be used,
A metal oxide, a hydroxide of an oxide, or a composite oxide is preferably used. Specifically, for example, Zr, H
f, Si, Al, Nd, Ta, Cr, Ti, Fe, C
It is an oxide of o, Ga, a hydrate of an oxide, or a composite oxide of these. In particular, ZrO 2 , SiO 2 , TiO 2
Significantly affects the selectivity and yield of cyclohexenes. As other carriers, metal salts such as magnesium carbonate, barium carbonate and barium sulfate, which are substantially insoluble in the reaction system, activated carbon, and resins such as Teflon can be used.

【0021】金属ルテニウムの担持量は、担体に対し
0.01〜20重量%であつて、好ましくは0.1〜1
0重量%である。共担持成分をを用いる場合、Zn、M
n、Feの含有量は、ルテニウムに対する原子比で0.
01〜20であつて、好ましくは0.1〜10である。
The supported amount of ruthenium metal is 0.01 to 20% by weight, preferably 0.1 to 1 based on the carrier.
0% by weight. When using a co-supported component, Zn, M
The content of n and Fe is 0.
It is 01 to 20, preferably 0.1 to 10.

【0022】本発明においては、水の存在が必要であ
る。水の量としては、反応形式によつて異なるが、一般
的に用いる単環芳香族炭化水素に対して、0.01〜1
00重量倍共存させることができる。しかし、反応条件
下において、原料および生成物を主成分とする有機相
と、水を含む液相とが2相を形成することが好ましく、
反応条件下において均一相となるような極く微量の水の
共存、もしくは極く多量の水の共存は効果を減少させ、
また、水の量が多すぎると反応器を大きくする必要性も
生ずるので、実用的には0.5〜20重量倍共存させる
ことが望ましい。
In the present invention, the presence of water is necessary. The amount of water varies depending on the reaction mode, but is 0.01 to 1 relative to the generally used monocyclic aromatic hydrocarbon.
It is possible to coexist with 100 times by weight. However, under the reaction conditions, it is preferable that the organic phase containing the raw material and the product as main components and the liquid phase containing water form two phases.
The coexistence of a very small amount of water or a coexistence of an extremely large amount of water under the reaction conditions reduces the effect,
Further, if the amount of water is too large, it is necessary to make the reactor large. Therefore, it is desirable to coexist 0.5 to 20 times by weight practically.

【0023】また、本発明においては、すでに提案され
ている公知の方法のように、周期表IA族元素、IIA族
元素、Mn、Fe、Zn、Co等の各種金属の塩類等を
添加してもよい。特に、Znの塩類の存在がよい結果を
与える。亜鉛化合物としては、水溶性、難水溶性を問わ
ず、多くのものが使用可能である。水溶性亜鉛化合物と
しては、硫酸亜鉛、塩化亜鉛、硝酸亜鉛に代表される強
酸塩、酢酸亜鉛に代表される弱酸塩、および種々のアン
モニウム錯体などが使用できるが、特に強酸塩水溶液が
好ましく使用される。
Further, in the present invention, as in the known method already proposed, salts of various metals such as Mn, Fe, Zn and Co of the periodic table IA group element, IIA group element and the like are added. Good. In particular, the presence of Zn salts gives good results. Many zinc compounds can be used regardless of whether they are water-soluble or poorly water-soluble. As the water-soluble zinc compound, zinc sulfate, zinc chloride, strong acid salts typified by zinc nitrate, weak acid salts typified by zinc acetate, and various ammonium complexes can be used, but strong acid salt aqueous solutions are particularly preferably used. It

【0024】水溶性亜鉛化合物の共存は、シクロオレフ
イン類の選択率を向上させる効果があり、強酸塩の場
合、この効果がより顕著であり、塩化亜鉛、硫酸亜鉛は
好ましく、特に硫酸亜鉛は最も好ましいものといえる。
かかる亜鉛の強酸塩は、反応系中で必ずしも全部が溶解
している必要はないが、水溶液の濃度として、通常は1
×10-3重量%から飽和溶解度までの濃度領域で使用す
る。硫酸亜鉛水溶液を用いる場合は、0.1〜30重量
%の濃度領域で使用するとさらに好ましい。また、難水
溶性亜鉛化合物である塩基性亜鉛塩を共存させてもよ
い。ここで、塩基性亜鉛塩とは、各種の酸の共役塩基残
基と、これとは別の陰性成分とみなされる水酸基または
酸素原子を併含する亜鉛塩を指す。
The coexistence of a water-soluble zinc compound has an effect of improving the selectivity of cycloolefins, and in the case of a strong acid salt, this effect is more remarkable. Zinc chloride and zinc sulfate are preferable, and zinc sulfate is most preferable. It can be said to be preferable.
It is not necessary that all of the strong salt of zinc is dissolved in the reaction system, but the concentration of the aqueous solution is usually 1
Used in the concentration range from × 10 −3 wt% to saturated solubility. When using a zinc sulfate aqueous solution, it is more preferable to use it in a concentration range of 0.1 to 30% by weight. Further, a basic zinc salt which is a sparingly water-soluble zinc compound may be allowed to coexist. Here, the basic zinc salt refers to a zinc salt containing a conjugate base residue of various acids and a hydroxyl group or an oxygen atom which is regarded as a negative component other than this.

【0025】具体的には、ZnSO4 ・1/2ZnO、
ZnSO4 ・ZnO・H2 O(ZnSO4 ・Zn(O
H)2 またはZn2 (OH)2 SO4 )、ZnSO4
3ZnO、ZnSO4 ・3ZnO・3H2 O(ZnSO
4 ・3Zn(OH)2 )、ZnSO4 ・3ZnO・6H
2 O、ZnSO4 ・3ZnO・7H2 O、ZnSO4
3ZnO・8H2 O、ZnSO4 ・4ZnO・4H2
(ZnSO4 ・4Zn(OH)2 )などに代表される塩
基性硫酸亜鉛、
Specifically, ZnSO 4 .1 / 2ZnO,
ZnSO 4 · ZnO · H 2 O (ZnSO 4 · Zn (O
H) 2 or Zn 2 (OH) 2 SO 4 ), ZnSO 4 ·
3ZnO, ZnSO 4 3ZnO 3H 2 O (ZnSO
4 · 3Zn (OH) 2) , ZnSO 4 · 3ZnO · 6H
2 O, ZnSO 4 · 3ZnO · 7H 2 O, ZnSO 4 ·
3ZnO / 8H 2 O, ZnSO 4 / 4ZnO / 4H 2 O
(ZnSO 4 .4Zn (OH) 2 ) and other basic zinc sulfate,

【0026】ZnO・3ZnCl2 ・H2 O、ZnO・
ZnCl2 ・nH2 O(nは1または1.5)、3Zn
O・2ZnCl2 ・11H2 O、2ZnO・ZnCl2
・4H2 O、5ZnO・2ZnCl2 ・6H2 O、5Z
nO・5ZnCl2 ・8H2O、3ZnO・ZnCl2
・nH2 O(nは2、3、4、5または8)、4ZnO
・ZnCl2 ・nH2 O(nは4、6または11)、9
ZnO・2ZnCl2・12H2 O、5ZnO・ZnC
2 ・nH2 O(nは6、8または29)、11ZnO
・2ZnCl2 、6ZnO・ZnCl2 ・nH2 O(n
は6または10)、ZnO・ZnCl2 ・10H2 O、
9ZnO・ZnCl2 ・nH2 O(nは3または1
4)、ZnBr2 ・4ZnO・nH2 O(nは10、1
3、または29)、ZnBr2 ・5ZnO・6H2 O、
ZnBr2 ・6ZnO・35H2 O、ZnI2 ・4Zn
(OH)2 、ZnI2 ・5ZnO・11H2 O、ZnI
2 ・9ZnO・24H2 Oなどに代表される塩基性ハロ
ゲン化亜鉛、
ZnO.3ZnCl 2 .H 2 O, ZnO.
ZnCl 2 · nH 2 O (n is 1 or 1.5), 3Zn
O · 2ZnCl 2 · 11H 2 O, 2ZnO · ZnCl 2
・ 4H 2 O, 5ZnO ・ 2ZnCl 2・ 6H 2 O, 5Z
nO · 5ZnCl 2 · 8H 2 O, 3ZnO · ZnCl 2
NH 2 O (n is 2, 3, 4, 5 or 8), 4ZnO
.ZnCl 2 .nH 2 O (n is 4, 6 or 11), 9
ZnO ・ 2ZnCl 2・ 12H 2 O, 5ZnO ・ ZnC
l 2 · nH 2 O (n is 6, 8 or 29), 11ZnO
・ 2ZnCl 2 , 6ZnO ・ ZnCl 2・ nH 2 O (n
6 or 10), ZnO · ZnCl 2 · 10H 2 O,
9 ZnO.ZnCl 2 .nH 2 O (n is 3 or 1
4), ZnBr 2 .4ZnO.nH 2 O (n is 10, 1
3 or 29), ZnBr 2 .5ZnO.6H 2 O,
ZnBr 2 · 6ZnO · 35H 2 O, ZnI 2 · 4Zn
(OH) 2 , ZnI 2.5 ZnO 11H 2 O, ZnI
Basic zinc halide typified 2 · 9ZnO · 24H 2 O,

【0027】8ZnO・N2 5 ・4H2 O、4ZnO
・N2 5 ・4H2 O、5ZnO・N2 5 ・4H
2 O、4ZnO・N2 5 ・4H2 O、5ZnO・N2
5 ・5H2 Oおよび6H2 O、5ZnO・N2 5
5H2 Oなどで代表される塩基性硝酸亜鉛、さらには、
塩基性酢酸亜鉛などがあり、塩基性硫酸亜鉛、塩基性塩
化亜鉛は好ましく使用され、塩基性硫酸亜鉛は特に好ま
しい。かかる塩基性亜鉛塩を使用する場合は、水素化触
媒1×10-6〜1重量倍、好ましくは1×10-3〜0.
5重量倍共存させて反応を行う。特に、硫酸亜鉛と塩基
性硫酸亜鉛を共用すると、反応の選択率、収率を高める
上で有利である。
8ZnO.N 2 O 5 .4H 2 O, 4ZnO
・ N 2 O 5・ 4H 2 O, 5 ZnO ・ N 2 O 5・ 4H
2 O, 4ZnO ・ N 2 O 5・ 4H 2 O, 5ZnO ・ N 2
O 5 · 5H 2 O and 6H 2 O, 5ZnO · N 2 O 5 ·
Basic zinc nitrate represented by 5H 2 O, etc.
There are basic zinc acetate and the like, and basic zinc sulfate and basic zinc chloride are preferably used, and basic zinc sulfate is particularly preferable. When such a basic zinc salt is used, the hydrogenation catalyst is 1 × 10 −6 to 1 times by weight, preferably 1 × 10 −3 to 0.
The reaction is carried out by coexisting 5 times by weight. In particular, sharing zinc sulfate with basic zinc sulfate is advantageous in increasing the selectivity and yield of the reaction.

【0028】また、本発明においては、共存する水相を
中性もしくは酸性条件下に保ち反応させることが好まし
い結果を与える。水相がアルカリ性となると特に反応速
度が著しく低下するので好ましくない。好ましくは、水
相のpHは0.5ないし7未満、さらに好ましくは2〜
6.5である。
Further, in the present invention, it is preferable to keep the coexisting aqueous phase under neutral or acidic conditions for the reaction. When the aqueous phase becomes alkaline, the reaction rate is particularly lowered, which is not preferable. Preferably, the pH of the aqueous phase is 0.5 to less than 7, more preferably 2 to
It is 6.5.

【0029】本発明における単環芳香族炭化水素とは、
ベンゼン、トルエン、キシレン類および炭素数4以下の
低級アルキルベンゼン類をいう。原料自身の純度は特に
高純度である必要はなく、シクロパラフイン、低級パラ
フイン系炭化水素などを含有しても差し障りはない。
The monocyclic aromatic hydrocarbon in the present invention means
Benzene, toluene, xylenes and lower alkylbenzenes having 4 or less carbon atoms. The purity of the raw material itself does not need to be particularly high, and inclusion of cycloparaffins, lower paraffin hydrocarbons, etc. does not cause any problems.

【0030】本発明における部分水素反応は、通常、液
相懸濁法で連続的または回分的に行われるが、固定相式
でも行うことができる。反応条件は、使用する触媒や添
加物の種類や量によつて適宜選択されるが、通常、水素
圧は1〜200Kg/cm2G、好ましくは10〜10
0Kg/cm2 Gの範囲であり、反応温度は室温〜25
0℃、好ましくは100〜200℃の範囲である。ま
た、反応時間は、目的とするシクロヘキセン類の選択率
や収率の実質的な目標値を定め、適宜選択すればよく、
特に制限はないが、通常、数秒ないし数時間である。
The partial hydrogen reaction in the present invention is usually carried out continuously or batchwise by a liquid phase suspension method, but can also be carried out by a stationary phase system. The reaction conditions are appropriately selected depending on the type and amount of the catalyst and additives used, but the hydrogen pressure is usually 1 to 200 Kg / cm 2 G, preferably 10 to 10
In the range of 0Kg / cm 2 G, the reaction temperature is room temperature to 25
The temperature is 0 ° C, preferably 100 to 200 ° C. Further, the reaction time may be appropriately selected by setting a substantial target value of the selectivity and yield of the desired cyclohexenes,
There is no particular limitation, but it is usually several seconds to several hours.

【0031】[0031]

【発明の効果】本発明においては、水素化触媒として、
水素の化学吸着能が吸着された水素原子数と触媒中の全
金属ルテニウム原子数との間の比(H/Ru)で表し
て、少なくとも0.6/1となる状態で担持された担体
担持触媒を用いて反応を行うことにより、単環芳香族炭
化水素からシクロオレフイン類を高い選択率、収率で得
ることができ、さらに、触媒寿命が著しく改善された系
となり、工業的に極めて価値の高いものとなる。
In the present invention, as the hydrogenation catalyst,
Support carried in a state in which the chemisorption capacity of hydrogen is at least 0.6 / 1 expressed as a ratio (H / Ru) between the number of adsorbed hydrogen atoms and the number of all-metal ruthenium atoms in the catalyst By carrying out the reaction using a catalyst, cycloolefins can be obtained from a monocyclic aromatic hydrocarbon with high selectivity and yield, and further, the system has a significantly improved catalyst life, which is of great industrial value. Will be high.

【0032】[0032]

【実施例】次に、実施例ならびに比較例をもつて本発明
をさらに詳細に説明するが、本発明は、これらの実施例
に限定されるものでない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0033】実施例 1 (触媒調製)窒素雰囲気下、市販のRu3 (CO)
12(1.1g)を300mlのテトラヒドロフランに溶
解し、ルテニウムカルボニルの均一溶液とした。これに
市販のZrO2 粉末(10g)を入れ、撹拌下に分散さ
せ、室温で12時間吸着させた後、ロ−タリ−エバポレ
−タ−に仕込み、減圧下に80℃に保ちながらテトラヒ
ドロフランを留去し、さらに2時間の真空排気処理を行
つた。このようにして得られた蒸発乾固物をパイレツク
ス製ガラス反応管に仕込み、100ml/minの流量
で水素を流しながら、200℃まで昇温し、2時間保持
することによつて脱CO処理を行い、5%Ru/ZrO
2 の担持触媒を得た。
Example 1 (Catalyst preparation) Commercially available Ru 3 (CO) under nitrogen atmosphere
12 (1.1 g) was dissolved in 300 ml of tetrahydrofuran to obtain a uniform solution of ruthenium carbonyl. Commercially available ZrO 2 powder (10 g) was put into this, dispersed with stirring, adsorbed at room temperature for 12 hours, then charged in a rotary evaporator, and tetrahydrofuran was distilled under reduced pressure at 80 ° C. Then, the vacuum evacuation process was performed for another 2 hours. The evaporated dry solid thus obtained was charged into a glass reaction tube made of Pyrex, the temperature was raised to 200 ° C. while hydrogen was flowed at a flow rate of 100 ml / min, and the temperature was kept for 2 hours to perform de-CO treatment. Perform 5% Ru / ZrO
2 supported catalysts were obtained.

【0034】(分散度の測定)得られた触媒の水素の化
学吸着量は、吸着測定装置に島津製作所製アキユソ−ブ
2100−02を用い、静止ガス吸着法に基づいて測定
した。具体的には、試料管に正確に秤量した触媒を入
れ、前処理として、100℃にて約12時間真空排気し
た後、水素ガスを約700mmHg導入し、約1時間の
還元処理を行つた。次に、200℃にて約24時間の真
空排気を行い、吸着した水素を脱離させ、室温まで冷却
した後、試料管に水素を導入し、水素の平衡吸着圧を変
えて吸着等温線を求め、その吸着量を測定した。さら
に、ルテニウム原子1個に対し水素原子が1個吸着する
と仮定して、得られた吸着水素の原子数と触媒中の全ル
テニウム原子数の比(H/Ru)を算出し、これを表面
金属ルテニウムの分散度とした。このような方法で、上
記で得た5%Ru/ZrO2 の分散度を測定した結果、
0.97となつた。
(Measurement of Dispersion Degree) The amount of chemisorption of hydrogen of the obtained catalyst was measured based on the static gas adsorption method using an adsorption measuring device Akiyuso 2100-02 manufactured by Shimadzu Corporation. Specifically, an accurately weighed catalyst was put into a sample tube, and as pretreatment, after evacuation at 100 ° C. for about 12 hours, hydrogen gas was introduced at about 700 mmHg and reduction treatment was performed for about 1 hour. Next, vacuum evacuation is performed at 200 ° C. for about 24 hours to desorb the adsorbed hydrogen, cool it to room temperature, introduce hydrogen into the sample tube, and change the equilibrium adsorption pressure of hydrogen to change the adsorption isotherm. Then, the amount of adsorption was measured. Furthermore, assuming that one hydrogen atom is adsorbed to one ruthenium atom, the ratio (H / Ru) between the number of adsorbed hydrogen atoms obtained and the total number of ruthenium atoms in the catalyst is calculated, and this is calculated as the surface metal. The dispersity of ruthenium was used. As a result of measuring the dispersity of 5% Ru / ZrO 2 obtained above by such a method,
It was 0.97.

【0035】(部分水素化反応)次に、上記で得た触媒
(2.0g)、ZnSO4 ・7H2 O(50g)、水
(280ml)を、内面にテフロンコ−テイングを施し
た内容積1000mlのオ−トクレ−ブに仕込み、オ−
トクレ−ブ内を窒素、ついで水素により置換したのち、
撹拌下に温度を150℃とし、ついでベンゼン140m
lを水素と共に圧入し、全圧50kg/cm2 Gとし、
反応温度を150℃に保ちながら、強力撹拌下にベンゼ
ンの部分水素化反応を行い、経時的に内容物の一部を抜
き出し、ガスクロマトグラフイーにより油相の組成を分
析した。その結果を表1に示す。これは、前記従来の技
術において記載した(1)〜(6)に比し、シクロヘキ
センの選択率、収率において大きく優れていることは明
白である。一方、本実施例におけるルテニウム単位重量
当たりのベンゼン反応量は、ベンゼン転化率60%を基
準にとると、約1500g/g−ルテニウム・時間とな
り、前記従来の技術において記載した(7)、(8)と
比較して、シクロヘキセン選択率および収率は遜色な
く、かつ大幅に活性が向上していることが明白である。
(Partial hydrogenation reaction) Next, the catalyst (2.0 g) obtained above, ZnSO 4 .7H 2 O (50 g) and water (280 ml) were applied to the inner surface with Teflon coating, and the internal volume was 1000 ml. Charge the autoclave of the
After replacing the inside of the toclave with nitrogen and then with hydrogen,
The temperature was raised to 150 ° C with stirring, and then benzene 140m
1 together with hydrogen to a total pressure of 50 kg / cm 2 G,
While maintaining the reaction temperature at 150 ° C., a partial hydrogenation reaction of benzene was carried out under vigorous stirring, a part of the content was extracted with time, and the composition of the oil phase was analyzed by gas chromatography. Table 1 shows the results. It is obvious that this is much superior in cyclohexene selectivity and yield as compared with (1) to (6) described in the above-mentioned prior art. On the other hand, the reaction amount of benzene per unit weight of ruthenium in this example is about 1500 g / g-ruthenium.hour based on the benzene conversion rate of 60%, which is described in the above-mentioned conventional techniques (7), (8). It is clear that the cyclohexene selectivity and yield are comparable to those in Example 1), and the activity is significantly improved.

【0036】実施例2 Ru3 (CO)12(2.0g)にn−オクタン300m
lを加え、水素を吹き込みながら90℃にて1時間還流
を行い、反応液のIR吸収に原料の2061cm-1の吸
収がなくなつたことを確認した後、溶液を濃縮し、Ru
4 (μ−H)4(CO)12結晶(1.4g)を得た。こ
のようにして得られた結晶(1.0g)を使用した他
は、実施例1と同様に5%Ru/ZrO2 担持触媒を調
製し、同様にして反応を行つた。この触媒のルテニウム
の分散度と反応結果を表1に示す。
Example 2 Ru 3 (CO) 12 (2.0 g) and n-octane 300 m
l was added, and the mixture was refluxed at 90 ° C. for 1 hour while blowing hydrogen, and after confirming that the absorption of the starting material at 2061 cm −1 in the reaction solution was gone, the solution was concentrated and Ru was added.
4 (μ-H) 4 (CO) 12 crystals (1.4 g) were obtained. A 5% Ru / ZrO 2 supported catalyst was prepared in the same manner as in Example 1 except that the thus obtained crystal (1.0 g) was used, and the reaction was carried out in the same manner. The ruthenium dispersity of this catalyst and the reaction results are shown in Table 1.

【0037】実施例3 アルゴン雰囲気下、RuCl3 ・3H2 O(1.6g)
のメタノール(36ml)溶液を亜鉛粉末(18g)、
1、5−シクロオクタジエン(38ml)のメタノール
(15ml)混合液に滴下し、70℃にて2時間還流し
た後、カラム精製、再結晶を行うことでRu(1,3,
5−C8 10)(1,5−C8 12)結晶(1.8g)
を得た。このようにして得られた結晶(1.6g)を使
用した他は、実施例1と同様に5%Ru/ZrO2 担持
触媒を調製し、同様にして反応を行つた。この触媒のル
テニウムの分散度と反応結果を表1に示す。
Example 3 RuCl 3 .3H 2 O (1.6 g) under an argon atmosphere
Methanol solution (36 ml) in zinc powder (18 g),
Ru (1,3,3) was added dropwise to a mixed solution of 1,5-cyclooctadiene (38 ml) in methanol (15 ml) and refluxed at 70 ° C. for 2 hours, followed by column purification and recrystallization.
5-C 8 H 10) ( 1,5-C 8 H 12) crystals (1.8 g)
I got A 5% Ru / ZrO 2 supported catalyst was prepared in the same manner as in Example 1 except that the thus obtained crystal (1.6 g) was used, and the reaction was carried out in the same manner. The ruthenium dispersity of this catalyst and the reaction results are shown in Table 1.

【0038】実施例4 アルゴン雰囲気下、Ru3 (CO)12(2.9g)と
1、5−シクロオクタジエン(45ml)をベンゼン還
流下で10時間反応させた後、減圧下30℃にて溶媒を
留去し、この乾固物にペンタンを加えて生成物を抽出し
た後、カラム精製と昇華を再度行うことによりRu(C
O)3 (η−C8 12)結晶(2.0g)を得た。この
ようにして得られた結晶(1.5g)を使用した他は、
実施例1と同様に5%Ru/ZrO2 担持触媒を調製
し、同様にして反応を行つた。この触媒のルテニウムの
分散度と反応結果を表1に示す。
Example 4 Ru 3 (CO) 12 (2.9 g) and 1,5-cyclooctadiene (45 ml) were reacted under reflux of benzene for 10 hours under an argon atmosphere, and then at 30 ° C. under reduced pressure. The solvent was distilled off, pentane was added to the dried solid matter to extract the product, and then column purification and sublimation were carried out again to obtain Ru (C
O) 3 (η-C 8 H 12 ) crystals (2.0 g) were obtained. The crystals (1.5 g) thus obtained were used,
A 5% Ru / ZrO 2 supported catalyst was prepared in the same manner as in Example 1, and the reaction was carried out in the same manner. The ruthenium dispersity of this catalyst and the reaction results are shown in Table 1.

【0039】実施例5 ルテニウムの担持量を1%とし、反応に用いた触媒量を
5.0gとした他は、実施例1と同様に調製し、同様に
反応させた。その結果を表1に示す。
Example 5 The procedure of Example 1 was repeated, except that the amount of ruthenium supported was 1% and the amount of catalyst used in the reaction was 5.0 g. Table 1 shows the results.

【0040】実施例6、7 ZrO2 のかわりに市販のSiO2 もしくはTiO2
使用した他は、実施例1と同様に調製し、同様に反応さ
せた。これらの結果を表1に示す。
Examples 6 and 7 Preparation and reaction were carried out in the same manner as in Example 1 except that commercially available SiO 2 or TiO 2 was used instead of ZrO 2 . Table 1 shows the results.

【0041】比較例1 RuCl3 ・3H2 0(1.4g)を300mlの水に
溶解し、塩化ルテニウムの均一溶液とした。これに実施
例1で使用したものと同じZrO2 粉末(10g)を入
れ、60℃にて1時間含浸後、これをロ−タリ−エバポ
レ−タ−に仕込み、減圧下に80℃に保ちながら水を留
去した。このようにして得られた蒸発乾固物をパイレツ
クス製ガラス反応管に仕込み、100ml/minの流
量で水素を流しながら、300℃まで昇温し、3時間保
持することによつて還元、活性化を行い、塩化ルテニウ
ムを前駆体とした5%Ru/ZrO2 を調製した。この
ようにして得られた触媒(2.0g)を使用する他は、
実施例1と同様にして反応を行つた。その結果を表2に
示す。
Comparative Example 1 RuCl 3 .3H 2 0 (1.4 g) was dissolved in 300 ml of water to obtain a uniform solution of ruthenium chloride. The same ZrO 2 powder (10 g) as that used in Example 1 was put into this, impregnated at 60 ° C. for 1 hour, charged into a rotary evaporator, and kept at 80 ° C. under reduced pressure. The water was distilled off. The evaporated dry solid thus obtained was charged into a glass reaction tube made of Pyrex, and the temperature was raised to 300 ° C. while flowing hydrogen at a flow rate of 100 ml / min, followed by reduction and activation by holding for 3 hours. Then, 5% Ru / ZrO 2 using ruthenium chloride as a precursor was prepared. Other than using the catalyst thus obtained (2.0 g),
The reaction was carried out in the same manner as in Example 1. The results are shown in Table 2.

【0042】比較例2 ルテニウムの担持量を1%とし、反応に用いた触媒量を
5.0gとした他は、比較例1と同様に調製し、同様に
反応させた。その結果を表2に示す。
Comparative Example 2 The procedure of Comparative Example 1 was repeated except that the amount of ruthenium supported was 1% and the amount of catalyst used in the reaction was 5.0 g. The results are shown in Table 2.

【0043】比較例3 ZrO2 のかわりに実施例7で用いたTiO2 を使用し
た他は、比較例1と同様に調製し、同様に反応させた。
その結果を表2に示す。これらより、本発明によるルテ
ニウム錯体を前駆体として調製する触媒系は、通常行わ
れる塩化ルテニウムを用いる系と比較して、ルテニウム
の分散度ならびにシクロヘキセンの選択率および収率が
全く異なるものであることが明白である。
COMPARATIVE EXAMPLE 3 The procedure of Comparative Example 1 was repeated except that the TiO 2 used in Example 7 was used instead of ZrO 2 .
The results are shown in Table 2. From these, the catalyst system prepared by using the ruthenium complex according to the present invention as a precursor has a completely different ruthenium dispersity and cyclohexene selectivity and yield as compared with a system using ruthenium chloride which is usually performed. Is clear.

【0044】実施例8 ZnSO4 ・7H2 OのかわりにZnCl2 (23g)
を用いた他は、実施例1と同様に反応を行なつた。その
結果を表3に示す。
[0044] Example 8 ZnSO 4 · 7H 2 O ZnCl 2 in place of (23 g)
The reaction was performed in the same manner as in Example 1 except that Table 3 shows the results.

【0045】実施例9 助触媒として、ZnSO4 ・4Zn(OH)2 (0.2
g)をさらに添加した他は、実施例1と同様にして反応
を行つた。その結果を表3に示す。
Example 9 As a cocatalyst, ZnSO 4 .4Zn (OH) 2 (0.2
The reaction was performed in the same manner as in Example 1 except that g) was further added. Table 3 shows the results.

【0046】実施例10 Zn(NO3 2 ・6H2 O(1.5g)を300ml
の水に溶解し、硝酸亜鉛の均一溶液とした。これに実施
例1で使用したものと同じZrO2 粉末(10g)を入
れ、60℃にて1時間含浸後、これをロ−タリ−エバポ
レ−タ−に仕込み、減圧下に80℃に保ちながら水を留
去した。このようにして得られた蒸発乾固物をパイレッ
クス製ガラス反応管に仕込み、100ml/minの流
量で水素を流しながら、400℃まで昇温し、3時間保
持することによって還元処理を行なつた。このようにし
て得られたZn/ZrO2 をZrO2 のかわりに触媒担
体として用いる他は、実施例1と同様に調製し、同様に
して反応を行つた。その結果を表3に示す。
[0046] Example 10 Zn (NO 3) 2 · 6H 2 O and (1.5 g) 300 ml
Was dissolved in water to obtain a uniform solution of zinc nitrate. The same ZrO 2 powder (10 g) as that used in Example 1 was put into this, impregnated at 60 ° C. for 1 hour, charged into a rotary evaporator, and kept at 80 ° C. under reduced pressure. The water was distilled off. The evaporated dry matter thus obtained was charged into a Pyrex glass reaction tube, heated to 400 ° C. and kept for 3 hours while flowing hydrogen at a flow rate of 100 ml / min to carry out a reduction treatment. . The Zn / ZrO 2 thus obtained was prepared in the same manner as in Example 1 except that ZrO 2 was used as a catalyst carrier instead of ZrO 2 , and the reaction was carried out in the same manner. Table 3 shows the results.

【0047】実施例11、12 Zn(NO3 2 ・6H2 OのかわりにMn(NO3
2 ・6H2 O(1.5g)もしくはFe(NO3 2
6H2 O(2.0g)を用いる他は、実施例9と同様に
して反応を行つた。その結果を表3に示す。
Examples 11 and 12 Mn (NO 3 ) instead of Zn (NO 3 ) 2 .6H 2 O
2 · 6H 2 O (1.5g) or Fe (NO 3) 2 ·
The reaction was carried out in the same manner as in Example 9 except that 6H 2 O (2.0 g) was used. Table 3 shows the results.

【0048】実施例13 実施例1で調製した5%Ru/ZrO2 触媒(5.0
g)、ZnSO4 ・7H2 O(180g)、水(100
0ml)を、油水分離槽を付属槽として有し、内面にテ
フロンコ−テイングを施した槽型流通反応装置に仕込
み、150℃、水素圧50kg/cm2 Gにおいて、硫
黄などの触媒被毒物質を含まないベンゼンを1000m
l/Hrで供給し、連続的にベンゼンの部分水素化反応
を行い、油水分離槽から連続的に反応生成物を取り出し
た。流通反応開始100時間後、300時間後および5
00時間後の反応成績を表4に示す。
Example 13 5% Ru / ZrO 2 catalyst prepared in Example 1 (5.0
g), ZnSO 4 · 7H 2 O (180g), water (100
0 ml) was charged into a tank-type flow reactor having an oil-water separation tank as an auxiliary tank and whose inner surface was subjected to Teflon coating, and at 150 ° C. and hydrogen pressure of 50 kg / cm 2 G, catalyst poisoning substances such as sulfur were added. 1000m of benzene not containing
The reaction product was continuously taken out from the oil / water separation tank by supplying 1 / Hr and continuously performing a partial hydrogenation reaction of benzene. 100 hours after the start of the flow reaction, 300 hours after, and 5
The reaction results after 00 hours are shown in Table 4.

【0049】実施例14、15 実施例7、3で調製した5%Ru/TiO2 触媒(20
g)もしくは5%Ru/ZrO2 触媒(5.0g)を使
用した他は、実施例13と同様にして連続反応を行つ
た。それらの結果を表4に示す。
Examples 14 and 15 5% Ru / TiO 2 catalyst prepared in Examples 7 and 3 (20%
g) or 5% Ru / ZrO 2 catalyst (5.0 g) was used, and a continuous reaction was carried out in the same manner as in Example 13. The results are shown in Table 4.

【0050】比較例4、5 比較例1、2で調製した5%Ru/ZrO2 触媒(15
g)もしくは1%Ru/ZrO2 触媒(30g)を使用
した他は、実施例13と同様にして連続反応を行つた。
それらの結果を表4に示す。実施例13、14、15お
よび比較例4、5により、本発明法における触媒系はシ
クロヘキセンの選択率、収率において優れた効果を示す
だけでなく、長期的な流通反応において極めて安定なも
のであることが明白である。
Comparative Examples 4 and 5 5% Ru / ZrO 2 catalyst prepared in Comparative Examples 1 and 2 (15
g) or 1% Ru / ZrO 2 catalyst (30 g) was used, and a continuous reaction was carried out in the same manner as in Example 13.
The results are shown in Table 4. According to Examples 13, 14, 15 and Comparative Examples 4 and 5, the catalyst system in the method of the present invention not only exhibits an excellent effect on the selectivity and yield of cyclohexene, but also is extremely stable in a long-term flow reaction. Clearly there is.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主にルテニウムからなる水素化触媒およ
び水の共存下、水素により単環芳香族炭化水素を部分還
元するに際し、該水素化触媒として、水素の化学吸着能
が吸着された水素原子数と触媒中の全金属ルテニウム原
子数との間の比(H/Ru)で表して、少なくとも0.
6/1となる状態で担持された担体担持触媒を用いるこ
とを特徴とするシクロオレフインの製造方法。
1. A hydrogen atom having a chemisorption capability of hydrogen as a hydrogenation catalyst when partially reducing a monocyclic aromatic hydrocarbon with hydrogen in the coexistence of a hydrogenation catalyst mainly composed of ruthenium and water. Number and the number of all-metal ruthenium atoms in the catalyst (H / Ru), at least 0.
A method for producing cycloolefin, which comprises using a carrier-supported catalyst supported in a state of 6/1.
【請求項2】 水素化触媒が前駆体として、カルボニル
およびオレフインより選ばれた少なくとも1種以上の反
応性配位子からなるルテニウム錯体を用いて調製された
ものであることを特徴とする請求項1記載のシクロオレ
フインの製造方法。
2. The hydrogenation catalyst is prepared using a ruthenium complex composed of at least one reactive ligand selected from carbonyl and olefin as a precursor. 1. The method for producing cycloolefin as described in 1.
【請求項3】 部分還元するに際し、少なくとも一種の
亜鉛化合物を共存させて、中性もしくは酸性条件下にお
いて反応を行うことを特徴とする請求項1または2記載
のシクロオレフインの製造方法。
3. The method for producing cycloolephine according to claim 1, wherein at the time of partial reduction, at least one zinc compound is allowed to coexist and the reaction is carried out under neutral or acidic conditions.
JP08462895A 1995-03-17 1995-03-17 Process for producing cycloolefin Expired - Lifetime JP3897830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08462895A JP3897830B2 (en) 1995-03-17 1995-03-17 Process for producing cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08462895A JP3897830B2 (en) 1995-03-17 1995-03-17 Process for producing cycloolefin

Publications (2)

Publication Number Publication Date
JPH08253433A true JPH08253433A (en) 1996-10-01
JP3897830B2 JP3897830B2 (en) 2007-03-28

Family

ID=13835953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08462895A Expired - Lifetime JP3897830B2 (en) 1995-03-17 1995-03-17 Process for producing cycloolefin

Country Status (1)

Country Link
JP (1) JP3897830B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212112A (en) * 2001-01-22 2002-07-31 Tanaka Kikinzoku Kogyo Kk Ruthenium compound for chemical vapor deposition and method for chemical vapor deposition of ruthenium thin film and ruthenium compound thin film
JP2002275166A (en) * 2001-03-15 2002-09-25 Kohjin Co Ltd Method for cyclic imino ether production
JP2006520458A (en) * 2003-03-13 2006-09-07 トラスティーズ オブ プリンストン ユニバーシティ Apparatus and method for measuring impurity concentration level in input gas stream, apparatus and method for measuring oxygen concentration level in input gas stream
WO2007023739A1 (en) * 2005-08-26 2007-03-01 Asahi Kasei Chemicals Corporation Process for production of cycloolefin
ITMI20101988A1 (en) * 2010-10-27 2012-04-28 Polimeri Europa Spa RUTENIUM-BASED CATALYST AND ITS USE IN THE SELECTIVE HYDROGENATION OF AROMATIC OR POLYINSATURAL COMPOUNDS
ITMI20121724A1 (en) * 2012-10-12 2014-04-13 Versalis Spa RUTENIUM-BASED CATALYST AND ITS USE IN THE SELECTIVE HYDROGENATION OF AROMATIC OR POLYINSATURAL COMPOUNDS
JP2017137285A (en) * 2016-02-05 2017-08-10 遠東新世紀股▲分▼有限公司 Method for preparing cyclohexanedicarboxylic acid by polyester

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212112A (en) * 2001-01-22 2002-07-31 Tanaka Kikinzoku Kogyo Kk Ruthenium compound for chemical vapor deposition and method for chemical vapor deposition of ruthenium thin film and ruthenium compound thin film
JP2002275166A (en) * 2001-03-15 2002-09-25 Kohjin Co Ltd Method for cyclic imino ether production
JP4535632B2 (en) * 2001-03-15 2010-09-01 株式会社興人 Method for producing cyclic imino ether
JP2011149954A (en) * 2003-03-13 2011-08-04 Trustees Of Princeton Univ Apparatus and method for measuring concentration level of impurity in input gas stream, and apparatus and method for measuring concentration level of oxygen in input gas stream
JP2006520458A (en) * 2003-03-13 2006-09-07 トラスティーズ オブ プリンストン ユニバーシティ Apparatus and method for measuring impurity concentration level in input gas stream, apparatus and method for measuring oxygen concentration level in input gas stream
JP4744152B2 (en) * 2003-03-13 2011-08-10 トラスティーズ オブ プリンストン ユニバーシティ Apparatus and method for measuring impurity concentration level in input gas stream, apparatus and method for measuring oxygen concentration level in input gas stream
KR100966947B1 (en) * 2005-08-26 2010-06-30 아사히 가세이 케미칼즈 가부시키가이샤 Process for production of cycloolefin
US7947859B2 (en) 2005-08-26 2011-05-24 Asahi Kasei Chemicals Corporation Process for production of cycloolefin
WO2007023739A1 (en) * 2005-08-26 2007-03-01 Asahi Kasei Chemicals Corporation Process for production of cycloolefin
JP5147053B2 (en) * 2005-08-26 2013-02-20 旭化成ケミカルズ株式会社 Method for producing cycloolefin
ITMI20101988A1 (en) * 2010-10-27 2012-04-28 Polimeri Europa Spa RUTENIUM-BASED CATALYST AND ITS USE IN THE SELECTIVE HYDROGENATION OF AROMATIC OR POLYINSATURAL COMPOUNDS
EP2446963A1 (en) * 2010-10-27 2012-05-02 Polimeri Europa S.p.A. Ruthenium-based catalyst and use thereof in the selective hydrogenation of aromatic or polyunsaturated compounds
ITMI20121724A1 (en) * 2012-10-12 2014-04-13 Versalis Spa RUTENIUM-BASED CATALYST AND ITS USE IN THE SELECTIVE HYDROGENATION OF AROMATIC OR POLYINSATURAL COMPOUNDS
WO2014057417A1 (en) * 2012-10-12 2014-04-17 Versalis S.P.A. Ruthenium-based catalyst and use thereof in the selective hydrogenation of aromatic or polyunsaturated compounds
KR20150068431A (en) * 2012-10-12 2015-06-19 베르살리스 에스.피.에이. Ruthenium-based catalyst and use thereof in the selective hydrogenation of aromatic or polyunsaturated compounds
CN104812487A (en) * 2012-10-12 2015-07-29 维尔萨利斯股份公司 Ruthenium-based catalyst and use thereof in the selective hydrogenation of aromatic or polyunsaturated compounds
JP2017137285A (en) * 2016-02-05 2017-08-10 遠東新世紀股▲分▼有限公司 Method for preparing cyclohexanedicarboxylic acid by polyester
CN107043325A (en) * 2016-02-05 2017-08-15 远东新世纪股份有限公司 Process for preparing cyclohexanedicarboxylic acid from polyesters

Also Published As

Publication number Publication date
JP3897830B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
EP0091165B1 (en) A silver catalyst and a method for the preparation thereof
EP0191373B1 (en) Co hydrogenation with molybdenum on wide-pore carbon catalysts
US3907705A (en) Catalyst for hydrogenation of organic compounds
EP0214530B1 (en) A method for producing cycloolefins
EP0659718B1 (en) Method for producing a cycloolefin
JP3897830B2 (en) Process for producing cycloolefin
JP4641615B2 (en) Method for producing cycloolefin
EP0029675B1 (en) Non-ferrous group viii aluminium coprecipitated hydrogenation catalysts, process for preparing these catalysts and their use in hydrogenation processes
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
GB2269116A (en) A process for the production of aromatic alcohol by selective hydrogenation of aromatic ketone
US6214890B1 (en) Fischer-Tropsch synthesis process in the presence of a catalyst the metallic particles of which have a controlled size
JPH1129503A (en) Production of cycloolefin
JPH1147597A (en) Catalyst for hydrogenation reaction and hydrogenation method
JPS63243038A (en) Production of cycloolefin
JPS63152333A (en) Partially hydrogenating method
CN112657492A (en) Ir-GaOx-based propane dehydrogenation catalyst and preparation method and application thereof
JP2932173B2 (en) Method for producing cycloolefin
JPH0790171B2 (en) Zeolite catalyst
JPH07285892A (en) Production of cycloolefin
JPH0259809B2 (en)
JPH0816073B2 (en) Method for producing cycloolefin
JPH07171397A (en) Solid acid catalyst and production of catalyst thereof
JPS6150930A (en) Production of cycloolefin
JPH0370692B2 (en)
JPH09208499A (en) Production of cycloolefin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

EXPY Cancellation because of completion of term