JPH07171397A - Solid acid catalyst and production of catalyst thereof - Google Patents

Solid acid catalyst and production of catalyst thereof

Info

Publication number
JPH07171397A
JPH07171397A JP5345197A JP34519793A JPH07171397A JP H07171397 A JPH07171397 A JP H07171397A JP 5345197 A JP5345197 A JP 5345197A JP 34519793 A JP34519793 A JP 34519793A JP H07171397 A JPH07171397 A JP H07171397A
Authority
JP
Japan
Prior art keywords
organic polymer
sulfate
inorganic oxide
catalyst
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5345197A
Other languages
Japanese (ja)
Inventor
Toshiyuki Enomoto
敏行 榎本
Yasuo Nakatsuka
康夫 中塚
Shigeo Kure
成雄 久禮
Tomoaki Adachi
倫明 足立
Takeo Saegusa
武夫 三枝
Tadao Onaka
忠生 大中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP5345197A priority Critical patent/JPH07171397A/en
Publication of JPH07171397A publication Critical patent/JPH07171397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a solid acid catalyst which is highly active for an acid catalytic reaction and has a long catalyst life. CONSTITUTION:An organic polymer-inorganic oxide composite is prepared by hydrolysis and polymerization of a metal alkoxide in the presence of an organic polymer and the organic polymer is removed from the composite to produce a porous inorganic oxide and sulfate radical is introduced into the inorganic oxide and then the resulting inorganic oxide is fired to give a solid acid catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石油精製工業、石油化学
工業で使用される固体酸触媒とその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid acid catalyst used in the petroleum refining industry and petrochemical industry and a method for producing the same.

【0002】[0002]

【従来の技術】石油精製工業や石油化学工業において
は、酸触媒が関与する反応が広く利用されており、接触
分解、接触改質、水素化脱硫、水素化分解、異性化、ア
ルキル化、不飽和炭化水素の重合、水和などの各反応は
その例である。これらの触媒反応のなかにあって、特
に、パラフィンの異性化、アルキル化には、強い酸性を
有する酸触媒を必要とする関係から、従来、この種の反
応には硫酸、フッ化水素、塩化アルミニウム、三塩化ア
ンモチンなどの酸触媒が使用されている。しかし、これ
らの酸触媒には腐食性があるため、使用する反応装置に
は、高価な耐食性材料を使用しなければならなかった
り、防食処理を施さなければならない欠点がある。さら
に、これらの酸触媒は通常液状で用いられるので、反応
物、反応生成物との分離が困難であるという不都合もあ
る。固体酸触媒について言えば、パラフィンの異性化反
応に有効な触媒として、アルミナ又はシリカアルミナ等
に、白金等の貴金属を担持させ、さらにこれをハロゲン
化物で処理した触媒が知られている。しかし、この触媒
は水との接触によって容易にその活性を失うため、触媒
の保管のみならず、反応系への水の侵入防止に配慮しな
ければならない難点がある。
In the petroleum refining industry and petrochemical industry, reactions involving acid catalysts are widely used, and catalytic cracking, catalytic reforming, hydrodesulfurization, hydrocracking, isomerization, alkylation, non-reaction Examples are reactions such as polymerization and hydration of saturated hydrocarbons. Among these catalytic reactions, in particular, for the isomerization and alkylation of paraffin, an acid catalyst having a strong acidity is required. Acid catalysts such as aluminum and ammotin trichloride are used. However, since these acid catalysts are corrosive, there is a drawback in that an expensive corrosion-resistant material must be used in the reactor used or an anticorrosion treatment must be applied. Further, since these acid catalysts are usually used in a liquid state, there is a disadvantage that it is difficult to separate them from the reaction product and the reaction product. As for the solid acid catalyst, as a catalyst effective for the isomerization reaction of paraffin, there is known a catalyst in which a noble metal such as platinum is supported on alumina, silica-alumina or the like, which is further treated with a halide. However, this catalyst easily loses its activity when it comes into contact with water, and therefore, it is difficult to store the catalyst and to prevent water from entering the reaction system.

【0003】特定の金属酸化物に硫酸根を担持して得ら
れる固体酸触媒は、強い酸強度を持つことが知られてお
り、このような触媒の製造法として、特公昭61-6181 号
公報や特公昭61-153140 号公報には、IV族金属および鉄
の水酸化物もしくは酸化物を硫酸根含有液で処理した
後、これを焼成して硫酸根含有固体酸触媒を調製する方
法が開示されている。また、特開昭61-68137号公報や特
開昭61-153140 号公報には、IV族金属及び/又はIII 族
金属の水酸化物もしくは酸化物に対し、VIII族金属成分
を担持させ、さらにこれを硫酸根含有溶液で処理して焼
成することからなる硫酸根含有固体酸触媒の製造法が記
載されており、こうして得られる触媒は、安定性に優
れ、異性化、アルキル化などの反応に有効である旨も紹
介されている。しかしながら、上記のような方法で製造
された硫酸根含有固体酸触媒は、これを工業的規模の反
応措置で使用した場合には活性が低く、触媒寿命も短い
点で改良の余地を残している。
It is known that a solid acid catalyst obtained by supporting a sulfate group on a specific metal oxide has a strong acid strength. As a method for producing such a catalyst, Japanese Patent Publication No. 61-6181. Japanese Patent Publication No. 61-153140 discloses a method for preparing a sulfate group-containing solid acid catalyst by treating a hydroxide or oxide of a group IV metal and iron with a sulfate group-containing liquid and then calcining the solution. Has been done. Further, in JP-A-61-68137 and JP-A-61-153140, a Group VIII metal component is supported on a hydroxide or oxide of a Group IV metal and / or a Group III metal. A method for producing a sulfate-containing solid acid catalyst comprising treating this with a sulfate-containing solution and calcining is described, and the catalyst thus obtained has excellent stability and is suitable for reactions such as isomerization and alkylation. It is also introduced that it is effective. However, the sulfate-containing solid acid catalyst produced by the above method has low activity when used in an industrial-scale reaction procedure and has a short catalyst life, leaving room for improvement. .

【0004】[0004]

【発明が解決しようとする課題】本発明は、腐食性を持
たず、しかも酸触媒反応に高活性で触媒寿命も長い硫酸
根含有固体酸触媒と、その製造法を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sulfuric acid group-containing solid acid catalyst which is not corrosive, has high activity for an acid-catalyzed reaction and has a long catalyst life, and a method for producing the same. .

【0005】[0005]

【課題を解決するための手段】本発明に係る硫酸根含有
固体酸触媒は、有機ポリマーの存在下に金属アルコキシ
ドを加水分解重合させて得られる有機ポリマー−無機酸
化物複合体から、有機ポリマー成分を除去して得られる
多孔質無機酸化物が、硫酸根を含有していることを特徴
とする。そして、このような固体酸触媒は、次の方法で
製造することができる。第1の方法は、有機ポリマーの
存在下に金属アルコキシドを加水分解重合させて有機ポ
リマー−無機酸化物複合体を生成させ、次いで、この複
合体から溶媒抽出、焼成等の任意の手段で有機ポリマー
成分を除去して多孔質の無機酸化物を生成させ、しかる
後、この多孔質無機酸化物に硫酸根を導入させることか
らなる。第2の方法は、後述するような硫酸根供与体と
有機ポリマーの存在下に、金属アルコキシドを加水分解
重合させて硫酸根供与体含有有機ポリマー−無機酸化物
複合体を生成させ、しかる後、(i) 焼成によってこの複
合体から有機ポリマー成分を除去すると共に硫酸根供与
体から硫酸根を生成さるか、あるいは、(ii)溶媒抽出に
よって前記の複合体から有機ポリマー成分を除去した
後、得られた硫酸根供与体含有多孔質無機酸化物を焼成
することからなる。
The sulfate group-containing solid acid catalyst according to the present invention comprises an organic polymer-inorganic oxide composite obtained by hydrolytically polymerizing a metal alkoxide in the presence of an organic polymer, and an organic polymer component. It is characterized in that the porous inorganic oxide obtained by removing is contained a sulfate group. And such a solid acid catalyst can be manufactured by the following method. The first method is to hydrolyze and polymerize a metal alkoxide in the presence of an organic polymer to produce an organic polymer-inorganic oxide complex, and then to extract the organic polymer by any means such as solvent extraction and calcination. It consists of removing the components to form a porous inorganic oxide, and then introducing a sulfate group into this porous inorganic oxide. The second method is to hydrolyze and polymerize a metal alkoxide in the presence of a sulfate radical donor and an organic polymer as described below to produce a sulfate radical donor-containing organic polymer-inorganic oxide complex, and then, (i) removing the organic polymer component from the complex by calcination and producing the sulfate radical from the sulfate donor, or (ii) removing the organic polymer component from the complex by solvent extraction, Calcination of the obtained sulfate group donor-containing porous inorganic oxide.

【0006】本発明の触媒を製造する際に使用可能な有
機ポリマーとしては、種々のものが例示できるが、その
中でも分子内に周期律表のVb族、VIb 族、VIIb族に属す
る元素を含む有機ポリマーを使用するのが好ましく、こ
れにはポリオキサゾリン、ポリビニルピロリドン、ポリ
N,N−ジメチルアクリルアミド、ポリプロピレンオキ
シド、ポリエチレンオキシド、ポリウレタン、ポリウレ
ア、ポリアミドなどが包含される。これらの有機ポリマ
ーは、その一部が変性されていても差し支えなく、また
共重合体であっても差し支えない。本発明の触媒の前駆
体となる金属アルコキシドの金属種は、周期律表I族の
銅、II族のマグネシウム、カルシウム、ストロンチウ
ム、亜鉛、III 族のボロン、アルミニウム、ガリウム、
インジウム、ランタニウム、IV族のケイ素、ゲルマニウ
ム、錫、鉛、チタン、ジルコニウム、ハフニウム、V族
のヒ素、アンチモン、タンタル、VI族のセレン、テル
ル、ポロニウム、タングステン、VII 族のマンガン、VI
II族の鉄、コバルト、ニッケルであることが好ましい。
なかでも、アルミニウム、ジルコニウム、チタン、鉄が
特に好ましい。使用する金属アルコキシドは、2種以上
を混合使用することが可能であって、その場合アルコキ
シドに含まれる金属は、異種であっても同種であっても
差し支えない。また、金属アルコキシドのアルコキシ基
は、メトキシ基、エトキシ基、n−プロポキシ基、イソ
プロポキシ基、n−ブトキシ基、イソブトキシ基、sec
−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、
イソペントキシ基等で例示される炭素数1〜15のアルコ
キシ基であることが好ましい。本発明で使用可能な金属
アルコキシドの具体例を示せば、次の通りである。な
お、金属アルコキシドと同様に加水分解重合によって、
非晶質無機酸化物に転化する化合物、例えばアルミニウ
ムジイソプロポキシドエチルアセテートキレートなど
は、本発明で使用する金属アルコキシドの一部又は全部
に代替させることが可能である。
As the organic polymer which can be used for producing the catalyst of the present invention, various kinds can be exemplified, and among them, the molecule contains an element belonging to Vb group, VIb group or VIIb group of the periodic table. Preference is given to using organic polymers, which include polyoxazolines, polyvinylpyrrolidones, polyN, N-dimethylacrylamides, polypropylene oxides, polyethylene oxides, polyurethanes, polyureas, polyamides and the like. A part of these organic polymers may be modified or may be a copolymer. The metal species of the metal alkoxide which is the precursor of the catalyst of the present invention include copper of Group I, magnesium, calcium, strontium, zinc of Group II, boron of Group III, aluminum, gallium,
Indium, lanthanium, group IV silicon, germanium, tin, lead, titanium, zirconium, hafnium, group V arsenic, antimony, tantalum, group VI selenium, tellurium, polonium, tungsten, group VII manganese, VI.
Group II iron, cobalt and nickel are preferred.
Of these, aluminum, zirconium, titanium and iron are particularly preferable. The metal alkoxides to be used can be used as a mixture of two or more kinds. In this case, the metals contained in the alkoxide may be different or the same. The alkoxy group of the metal alkoxide is a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, sec.
-Butoxy group, tert-butoxy group, n-pentoxy group,
It is preferably an alkoxy group having 1 to 15 carbon atoms, which is exemplified by an isopentoxy group and the like. Specific examples of the metal alkoxide usable in the present invention are as follows. As with the metal alkoxide, hydrolysis polymerization
A compound that is converted into an amorphous inorganic oxide, such as aluminum diisopropoxide ethyl acetate chelate, can be substituted for a part or all of the metal alkoxide used in the present invention.

【0007】B(OCH3 3 、B(OC2 5 3
B(OC3 7 3 、B(OC4 9 3 、B(OC5
113 、Co(OCH3 2 、Co(OC
2 5 2 、Co(OC3 7 2 、Co(OC
4 9 2 、Co(OC5 112 、Cu(OCH3
2 、Cu(OC2 5 2 、Cu(OC3 7 2 、C
u(OC4 9 2 、Cu(OC5 112 、Ca(O
CH3 2 、Ca(OC2 5 2 、Ca(OC
3 7 2 、Ca(OC4 9 2 、Ca(OC
5 112 、Al(OCH3 3 、Al(OC2 5
3 、Al(OC3 7 3 、Al(OC4 9 3 、A
l(OC5 113 、Fe(OCH3 3 、Fe(OC
2 5 3 、Fe(OC3 7 3 、Fe(OC
4 9 3 、Fe(OC5 113 、Sb(OCH3
3 、Sb(OC2 5 3 、Sb(OC3 7 3 、S
b(OC4 9 3 、Sb(OC5 113 、Ga(O
CH3 3 、Ga(OC2 5 3 、Ga(OC
3 7 3 、Ga(OC4 9 3 、Ga(OC
5 113 、Ge(OCH3 4 、Ge(OC2 5
4 、Ge(OC3 7 4 、Ge(OC4 9 4 、G
e(OC5 114 、Sr(OCH3 2 、Sr(OC
2 5 2 、Sr(OC3 7 2 、Sr(OC
4 9 2 、Sr(OC5 112 、As(OCH3
3 、As(OC2 5 3 、As(OC3 7 3 、A
s(OC4 9 3 、As(OC5 113 、Te(O
CH3 4 、Te(OC2 5 4 、Te(OC
3 7 4 、Te(OC4 9 4 、Te(OC
5 114 、La(OCH3 3 、La(OC2 5
3 、La(OC3 7 3 、La(OC4 9 3 、L
a(OC5 113 、Mg(OCH3 2 、Mg(OC
2 5 2 、Mg(OC3 7 2 、Mg(OC
4 9 2 、Mg(OC5 112 、In(OCH3
3 、In(OC2 5 3 、In(OC3 7 3 、I
n(OC4 9 3 、In(OC5 113 、Mn(O
CH3 2 、Mn(OC2 5 2 、Mn(OC
3 7 2 、Mn(OC4 9 2 、Mn(OC
5 112 、Se(OCH3 4 、Se(OC2 5
4 、Se(OC3 7 4 、Se(OC4 9 4 、S
e(OC5 114 、Nb(OCH3 5 、Nb(OC
2 5 5 、Nb(OC3 7 5 、Nb(OC
4 9 5 、Nb(OC5 115 、Ni(OCH3
2 、Ni(OC2 5 2 、Ni(OC3 7 2 、N
i(OC4 9 2 、Ni(OC5 112 、PO(O
CH3 3 、PO(OC2 5 3 、PO(OC
3 7 3 、PO(OC4 9 3 、PO(OC
5 113 、P(OCH3 3 、P(OC2 5 3
P(OC3 7 3 、P(OC4 9 3 、P(OC5
113 、Ta(OCH3 5 、Ta(OC2 5 3
Ta(OC3 7 5 、Ta(OC4 9 5 、Ta
(OC5 115 、Y(OCH3 3 、Y(OC
2 5 3 、Y(OC3 7 3 、Y(OC
4 9 3 、Y(OC5 113 、Si(OC
3 4 、Si(OC2 5 4 、Si(OC3 7
4 、Si(OC4 9 4 、Si(OC5 114 、S
n(OCH3 4 、Sn(OC2 5 4 、Sn(OC
3 7 4 、Sn(OC4 9 4 、Sn(OC
5 114 、Ti(OCH3 4 、Ti(OC2 5
4 、Ti(OC3 7 4 、Ti(OC4 9 4 、T
i(OC5 114 、VO(OCH3 3 、VO(OC
2 5 3 、VO(OC3 7 3 、VO(OC
4 9 3 、VO(OC5 113 、W(OC
3 6 、W(OC2 5 6 、W(OC3 7 6
W(OC4 9 6 、W(OC5 116 、Zn(OC
3 2 、Zn(OC2 5 2 、Zn(OC3 7
2 、Zn(OC4 9 2 、Zn(OC5 112 、Z
r(OCH3 4 、Zr(OC2 5 4 、Zr(OC
3 7 4 、Zr(OC4 9 4 、Zr(OC
5 114
B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 ,
B (OC 3 H 7 ) 3 , B (OC 4 H 9 ) 3 , B (OC 5
H 11 ) 3 , Co (OCH 3 ) 2 , Co (OC
2 H 5 ) 2 , Co (OC 3 H 7 ) 2 , Co (OC
4 H 9) 2, Co ( OC 5 H 11) 2, Cu (OCH 3)
2 , Cu (OC 2 H 5 ) 2 , Cu (OC 3 H 7 ) 2 , C
u (OC 4 H 9 ) 2 , Cu (OC 5 H 11 ) 2 , Ca (O
CH 3 ) 2 , Ca (OC 2 H 5 ) 2 , Ca (OC
3 H 7 ) 2 , Ca (OC 4 H 9 ) 2 , Ca (OC
5 H 11 ) 2 , Al (OCH 3 ) 3 , Al (OC 2 H 5 )
3 , Al (OC 3 H 7 ) 3 , Al (OC 4 H 9 ) 3 , A
l (OC 5 H 11 ) 3 , Fe (OCH 3 ) 3 , Fe (OC
2 H 5 ) 3 , Fe (OC 3 H 7 ) 3 , Fe (OC
4 H 9) 3, Fe ( OC 5 H 11) 3, Sb (OCH 3)
3 , Sb (OC 2 H 5 ) 3 , Sb (OC 3 H 7 ) 3 , S
b (OC 4 H 9 ) 3 , Sb (OC 5 H 11 ) 3 , Ga (O
CH 3 ) 3 , Ga (OC 2 H 5 ) 3 , Ga (OC
3 H 7 ) 3 , Ga (OC 4 H 9 ) 3 , Ga (OC
5 H 11) 3, Ge ( OCH 3) 4, Ge (OC 2 H 5)
4 , Ge (OC 3 H 7 ) 4 , Ge (OC 4 H 9 ) 4 , G
e (OC 5 H 11 ) 4 , Sr (OCH 3 ) 2 , Sr (OC
2 H 5 ) 2 , Sr (OC 3 H 7 ) 2 , Sr (OC
4 H 9 ) 2 , Sr (OC 5 H 11 ) 2 , As (OCH 3 )
3 , As (OC 2 H 5 ) 3 , As (OC 3 H 7 ) 3 , A
s (OC 4 H 9 ) 3 , As (OC 5 H 11 ) 3 , Te (O
CH 3 ) 4 , Te (OC 2 H 5 ) 4 , Te (OC
3 H 7 ) 4 , Te (OC 4 H 9 ) 4 , Te (OC
5 H 11 ) 4 , La (OCH 3 ) 3 , La (OC 2 H 5 )
3 , La (OC 3 H 7 ) 3 , La (OC 4 H 9 ) 3 , L
a (OC 5 H 11 ) 3 , Mg (OCH 3 ) 2 , Mg (OC
2 H 5 ) 2 , Mg (OC 3 H 7 ) 2 , Mg (OC
4 H 9 ) 2 , Mg (OC 5 H 11 ) 2 , In (OCH 3 )
3 , In (OC 2 H 5 ) 3 , In (OC 3 H 7 ) 3 , I
n (OC 4 H 9 ) 3 , In (OC 5 H 11 ) 3 , Mn (O
CH 3 ) 2 , Mn (OC 2 H 5 ) 2 , Mn (OC
3 H 7 ) 2 , Mn (OC 4 H 9 ) 2 , Mn (OC
5 H 11 ) 2 , Se (OCH 3 ) 4 , Se (OC 2 H 5 )
4 , Se (OC 3 H 7 ) 4 , Se (OC 4 H 9 ) 4 , S
e (OC 5 H 11 ) 4 , Nb (OCH 3 ) 5 , Nb (OC
2 H 5 ) 5 , Nb (OC 3 H 7 ) 5 , Nb (OC
4 H 9 ) 5 , Nb (OC 5 H 11 ) 5 , Ni (OCH 3 )
2 , Ni (OC 2 H 5 ) 2 , Ni (OC 3 H 7 ) 2 , N
i (OC 4 H 9 ) 2 , Ni (OC 5 H 11 ) 2 , PO (O
CH 3 ) 3 , PO (OC 2 H 5 ) 3 , PO (OC
3 H 7 ) 3 , PO (OC 4 H 9 ) 3 , PO (OC
5 H 11 ) 3 , P (OCH 3 ) 3 , P (OC 2 H 5 ) 3 ,
P (OC 3 H 7 ) 3 , P (OC 4 H 9 ) 3 , P (OC 5
H 11 ) 3 , Ta (OCH 3 ) 5 , Ta (OC 2 H 5 ) 3
Ta (OC 3 H 7 ) 5 , Ta (OC 4 H 9 ) 5 , Ta
(OC 5 H 11 ) 5 , Y (OCH 3 ) 3 , Y (OC
2 H 5 ) 3 , Y (OC 3 H 7 ) 3 , Y (OC
4 H 9 ) 3 , Y (OC 5 H 11 ) 3 , Si (OC
H 3) 4, Si (OC 2 H 5) 4, Si (OC 3 H 7)
4 , Si (OC 4 H 9 ) 4 , Si (OC 5 H 11 ) 4 , S
n (OCH 3 ) 4 , Sn (OC 2 H 5 ) 4 , Sn (OC
3 H 7 ) 4 , Sn (OC 4 H 9 ) 4 , Sn (OC
5 H 11 ) 4 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 )
4 , Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 , T
i (OC 5 H 11 ) 4 , VO (OCH 3 ) 3 , VO (OC
2 H 5 ) 3 , VO (OC 3 H 7 ) 3 , VO (OC
4 H 9 ) 3 , VO (OC 5 H 11 ) 3 , W (OC
H 3) 6, W (OC 2 H 5) 6, W (OC 3 H 7) 6,
W (OC 4 H 9 ) 6 , W (OC 5 H 11 ) 6 , Zn (OC
H 3) 2, Zn (OC 2 H 5) 2, Zn (OC 3 H 7)
2 , Zn (OC 4 H 9 ) 2 , Zn (OC 5 H 11 ) 2 , Z
r (OCH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC
3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 , Zr (OC
5 H 11 ) 4

【0008】本発明の固体酸触媒に硫酸根を導入させる
には、硫酸根供与体が使用されるが、ここでいう「硫酸
根供与体」とは、なんらかの化学変化によって硫酸根を
生成する物質を意味し、例えば、硫酸、硫酸アンモニウ
ム、アミン硫酸塩、スルホン基をもつ有機化合物、硫
黄、硫化水素、亜硫酸ガス、塩化スルフリル等が含まれ
る。なかでも、硫酸及び硫酸アンモニウムが、特に硫酸
が好ましい。本発明の方法によれば、金属アルコキシド
は有機ポリマーの存在下に、別法では有機ポリマー及び
硫酸根供与体の存在下に、加水分解重合反応に供せられ
る。この際の有機ポリマー/金属アルコキシドの重量比
は、1/1000〜1000/1の範囲で選ぶことができるが、
好ましくは1/100 〜100 /1の範囲で、特に好ましく
は1/10〜10/1の範囲で選ばれる。また、硫酸根供与
体を反応系に存在させる場合、その量は最終的に得られ
る固体酸が硫酸根を、通常0.5 〜20重量%好ましくは2
〜10重量%、特に好ましくは3〜8重量%程度含有する
ように選ばれる。反応溶媒の使用は必ずしも必須でない
が、好ましくは、金属アルコキシドと有機ポリマーの両
者を溶解し得る溶媒が使用され、その溶媒としては、メ
タノール、エタノール、プロパノール、ブタノール、ペ
ンタノール、ヘキサノールなどの炭素数1〜15のアルコ
ール類、ジエチルエーテル、ジプロピルエーテル、テト
ラヒドロフラン、ジオキサンなどのエーテル類、ベンゼ
ン、トルエン、キシレンなどの芳香族化合物、クロロホ
ルム、ジクロロメタンなどのハロゲン化物、ジメチルホ
ルムアミド、ジメチルアセトアミドなどのアミド類、ア
セトニトリルなどのニトリル類で例示される有機溶媒を
挙げることができる。金属アルコキシドの加水分解重合
は、水によって促進されるので、反応系に水を加えるこ
とが好ましい。水の添加量は対金属アルコキシド重量基
準で、1ppm〜90%の範囲で選ぶことができるが、好ま
しくは10ppm 〜10%、特に好ましくは15ppm 〜5%の範
囲で選ばれる。念のため付言すると、有機溶媒には数百
ppm 程度の水を含んでいるのが通例であるので、有機溶
媒を使用した場合には、反応系に水を格別添加しなくて
も、金属アルコキシドの加水分解重合を進行させること
ができる。また、有機溶媒を使用しない場合でも、反応
系を大気に開放し、空気中の水分を利用して反応を進め
ることもできる。金属アルコキシドの加水分解重合は、
常圧下、−40℃〜150 ℃の温度範囲で進行する。従っ
て、反応系を格別加熱したり、冷却したりする必要はな
く、また、反応系を加圧したり、減圧したりする必要は
ない。しかし、加水分解重合の副生成物や有機溶媒を反
応系から除去するうえで、反応系を10〜80℃に加熱及び
/又は減圧することが好ましい。
A sulfate radical donor is used to introduce sulfate radicals into the solid acid catalyst of the present invention. The term "sulfate radical donor" used herein means a substance that produces sulfate radicals by some chemical change. Means, for example, sulfuric acid, ammonium sulfate, amine sulfate, organic compounds having a sulfone group, sulfur, hydrogen sulfide, sulfurous acid gas, sulfuryl chloride and the like. Of these, sulfuric acid and ammonium sulfate are preferable, and sulfuric acid is particularly preferable. According to the method of the present invention, a metal alkoxide is subjected to a hydrolytic polymerization reaction in the presence of an organic polymer, otherwise in the presence of an organic polymer and a sulfate donor. The weight ratio of organic polymer / metal alkoxide at this time can be selected in the range of 1/1000 to 1000/1.
It is preferably selected in the range of 1/100 to 100/1, particularly preferably in the range of 1/10 to 10/1. When a sulfate group donor is present in the reaction system, the amount of the sulfate group in the finally obtained solid acid is usually 0.5 to 20% by weight, preferably 2%.
˜10% by weight, particularly preferably about 3 to 8% by weight. The use of a reaction solvent is not always essential, but preferably a solvent capable of dissolving both the metal alkoxide and the organic polymer is used, and the solvent has a carbon number such as methanol, ethanol, propanol, butanol, pentanol, or hexanol. Alcohols 1 to 15, ethers such as diethyl ether, dipropyl ether, tetrahydrofuran and dioxane, aromatic compounds such as benzene, toluene and xylene, halides such as chloroform and dichloromethane, amides such as dimethylformamide and dimethylacetamide. , Organic solvents exemplified by nitriles such as acetonitrile. Hydrolysis polymerization of the metal alkoxide is promoted by water, so it is preferable to add water to the reaction system. The amount of water added can be selected in the range of 1 ppm to 90% based on the weight of the metal alkoxide, preferably 10 ppm to 10%, particularly preferably 15 ppm to 5%. As a precautionary note, there are hundreds of organic solvents.
Since it usually contains about ppm of water, when an organic solvent is used, the hydrolysis polymerization of the metal alkoxide can proceed without adding water to the reaction system. Further, even when an organic solvent is not used, the reaction system can be opened to the atmosphere and the water in the air can be used to proceed the reaction. Hydrolytic polymerization of metal alkoxide
It proceeds under normal pressure in the temperature range of -40 ° C to 150 ° C. Therefore, it is not necessary to heat or cool the reaction system, and it is not necessary to pressurize or depressurize the reaction system. However, in order to remove the by-products of the hydrolysis polymerization and the organic solvent from the reaction system, it is preferable to heat the reaction system to 10 to 80 ° C. and / or reduce the pressure.

【0009】加水分解重合によって生成する有機ポリマ
ー−無機酸化物複合体又は硫酸根供与体含有有機ポリマ
ー−無機酸化物複合体は、次いで、副生成物や有機溶媒
から分離された後、当該複合体から有機ポリマーを除去
するため、溶媒抽出及び/又は焼成に供せられる。抽出
溶媒としては、反応溶媒として先に挙げたアルコール
類、エーテル類が使用できる外、水が使用可能である。
また、有機ポリマーの除去に焼成を利用する場合、焼成
温度は200 ℃程度で充分その目的を達成することができ
るが、通常は、300 〜400 ℃、好ましくは330 〜370 ℃
程度で行なうことを可とする。尚、前記の複合体が硫酸
根供与体を含有している場合には、400 ℃以上、好まし
くは500 ℃以上の焼成温度を採用することにより、有機
ポリマーの除去と同時に、硫酸根供与体の化学変化によ
って硫酸根を生成させることができる。しかし、説明の
便宜上、上に述べた焼成では、硫酸根供与体はそのまま
焼成物中に保持されているものとする。有機ポリマーの
除去によって、上記の複合体は多孔質無機酸化物又は硫
酸根供与体含有多孔質無機酸化物に転化する。こうして
得られた多孔質無機酸化物は、これが硫酸根供与体を含
有している場合はそのまま、含有していない場合はこれ
に硫酸根供与体を含有させた後、最終的な焼成に供せら
れる。多孔質無機酸化物に硫酸根供与体を導入する手段
としては、供与体が液状である場合にはそのまま又は希
釈して、固体である場合にはこれを水溶液又は有機溶媒
溶液として、多孔質無機酸化物に含浸させる方法が、ま
た供与体がガス状である場合には、これを多孔質無機酸
化物に接触させることに方法が採用できる。多孔質無機
酸化物の最終的な焼成は、無機酸化物の細孔構造が損な
われることがなく、しかも硫酸根由来の酸強度が低下す
ることのない1000℃以下の温度で行なわれ、一般的には
400 〜800 ℃、好ましくは500 〜650 ℃の温度が採用さ
れる。これによって、表面積70〜200 m2 /g 、好まし
くは80〜180 m2 /g の硫酸根含有固体酸触媒を得るこ
とができる。こうして調製される本発明の硫酸根含有固
体酸触媒は、炭化水素の接触分解、接触改質、水素化脱
硫、水素化分解、異性化、アルキル化、不飽和炭化水素
の重合、水和などの反応に使用可能であって、必要に応
じて、金属活性成分をこれに担持させることもできる。
例えば、異性化触媒を得る目的では、本発明の硫酸根含
有固体酸触媒に、白金、パラジウム、ルテニウム、ロジ
ウム、オスミウム、イリジウムなどの貴金属を担持させ
ることが可能である。
The organic polymer-inorganic oxide composite or the sulfate group donor-containing organic polymer-inorganic oxide composite formed by hydrolysis polymerization is then separated from by-products and organic solvents, and then the composite. It is subjected to solvent extraction and / or calcination to remove the organic polymer from. As the extraction solvent, alcohols and ethers listed above as reaction solvents can be used, and water can be used.
Further, when utilizing calcination for removal of the organic polymer, the calcination temperature of about 200 ° C. can sufficiently achieve the purpose, but it is usually 300 to 400 ° C., preferably 330 to 370 ° C.
It is possible to do it in a degree. When the above complex contains a sulfate donor, by adopting a baking temperature of 400 ° C. or higher, preferably 500 ° C. or higher, it is possible to remove the organic polymer and simultaneously remove the sulfate radical donor. Sulfate can be generated by a chemical change. However, for convenience of explanation, in the above-mentioned baking, the sulfate group donor is assumed to be held in the baked product as it is. Upon removal of the organic polymer, the above composite is converted into a porous inorganic oxide or a sulfate group donor-containing porous inorganic oxide. The porous inorganic oxide thus obtained is used as it is when it contains a sulfate donor, and when it does not contain a sulfate donor, and is then subjected to final calcination. To be As a means for introducing a sulfate group donor into the porous inorganic oxide, when the donor is in a liquid state, it may be used as it is or diluted. A method of impregnating with an oxide, and when the donor is in a gaseous state, a method of bringing this into contact with a porous inorganic oxide can be adopted. Final calcination of the porous inorganic oxide is carried out at a temperature of 1000 ° C or lower at which the pore structure of the inorganic oxide is not impaired, and the acid strength derived from the sulfate radical does not decrease, In
Temperatures of 400-800 ° C, preferably 500-650 ° C are employed. As a result, a sulfate group-containing solid acid catalyst having a surface area of 70 to 200 m 2 / g, preferably 80 to 180 m 2 / g can be obtained. The sulfate-containing solid acid catalyst of the present invention thus prepared can be used for catalytic cracking of hydrocarbons, catalytic reforming, hydrodesulfurization, hydrocracking, isomerization, alkylation, polymerization of unsaturated hydrocarbons, hydration, etc. It can be used in the reaction and, if necessary, can be loaded with a metal active component.
For example, for the purpose of obtaining an isomerization catalyst, the sulfate group-containing solid acid catalyst of the present invention can be loaded with a noble metal such as platinum, palladium, ruthenium, rhodium, osmium, or iridium.

【0010】[0010]

【実施例】以下、実施例および比較例に基づいて本発明
を具体的に説明するが、本発明はこの実施例に限定され
るものではない。 実施例1 Zr(OC494 38.3gをイソプロピルアルコール
200ml に溶かし、これを第1液とする。一方、イソプロ
ピルアルコール200ml にポリビニルピロリドン18.6gを
溶解し、これを第2液とする。第1液と第2液を均一に
混合する。この混合液を1000mlビーカーに移し、ビーカ
ーの上にアルミホイルをかぶせて約2mm径の穴を数ケ所
あけ、室温に放置する。ゲル化に1週間、溶媒除去に1
カ月をかけ、均一透明なガラス状の有機ポリマー−無機
酸化物複合体を得た。得られた複合体を粉砕し、これを
350 ℃で4時間、空気中で1次焼成して粉末状の多孔質
無機酸化物を調製した。この粉末を10倍量の1N硫酸中
に入れ、5分間撹拌後、直ちに濾過して乾燥した。次い
で、この乾燥粉末を600 ℃で3時間2次焼成して硫酸根
含有固体酸触媒を得た。得られた触媒の表面積、硫酸根
含量およびハメット指示薬による滴定の結果を表1に示
す。また、これとは別に上と同様な手順を硫酸処理まで
踏襲して硫酸根含有無機酸化物粉末を得た。この粉末に
塩化白金酸水溶液を含浸させ、しかる後これを600℃で
3時間焼成して白金含有量0.5 重量%の異性化触媒Aを
得た。この異性化触媒の表面積および硫酸根含量を表2
の第2〜3欄に示す。 実施例2 実施例1と同様にして調製した粉末状の多孔質無機酸化
物5.4 gに、7.5 N硫酸1.53gを加えて蒸発乾固し、し
かる後、この粉末を実施例1と同じ条件で2次焼成して
硫酸根含有固体酸触媒を得た。得られた触媒の表面積、
硫酸根含量およびハメット指示薬による滴定の結果を表
1に示す。また、これとは別に上と同様な手順を蒸発乾
固まで踏襲して硫酸根含有無機酸化物粉末を得た。この
粉末に塩化白金酸水溶液を含浸させ、しかる後これを60
0℃で3時間焼成して白金含有量0.5 重量%の異性化触
媒Bを得た。この異性化触媒の表面積および硫酸根含量
を表2の第2〜3欄に示す。 実施例3 実施例1で使用した第1液に代えて、38.3gのZr(O
494 と2.1 gのSi(OC254 をイソプ
ロピルアルコール200ml に溶かした溶液を第1液に使用
した以外は実施例1と全く同様にして有機ポリマー−無
機酸化物複合体を調製し、これに実施例1と同様な条件
で1次焼成、硫酸処理および2次焼成を施して硫酸根含
有固体酸触媒を得た。得られた触媒の表面積、硫酸根含
量およびハメット指示薬による滴定の結果を表1に示
す。また、これとは別に上と同様な手順を硫酸処理まで
踏襲して硫酸根含有無機酸化物粉末を得た。この粉末に
塩化白金酸水溶液を含浸させ、しかる後これを600℃で
3時間焼成して白金含有量0.5 重量%の異性化触媒Cを
得た。この異性化触媒の表面積および硫酸根含量を表2
の第2〜3欄に示す。 実施例4 実施例1で使用した第2液に代えて、イソプロピルアル
コール200ml にポリビニルピロリドン18.6gとp−トル
エンスルホン酸エチル5.0 gを溶かした溶液を第2液に
使用した以外は実施例1と全く同様にして有機ポリマー
−無機酸化物複合体を調製し、これに硫酸処理を施すこ
となく、実施例1と同様な条件で1次焼成と2次焼成を
施して硫酸根含有固体酸触媒を得た。得られた触媒の表
面積、硫酸根含量およびハメット指示薬による滴定の結
果を表1に示す。また、これとは別に上と同様な手順を
1次焼成まで踏襲して硫酸根含有無機酸化物粉末を得
た。この粉末に塩化白金酸水溶液を含浸させ、しかる後
これを600℃で3時間焼成して白金含有量0.5 重量%の
異性化触媒Dを得た。この異性化触媒の表面積および硫
酸根含量を表2の第2〜3欄に示す。 比較例1 市販のオキシ塩化ジルコニウム(8水和物)90gを水70
gに溶解し、これに25%アンモニア水の5倍希釈水溶液
を徐々に加え、pH10で沈澱を生成させた。これを1晩放
置して熟成させた後、濾過、洗浄、乾燥して粉末を得
た。この粉末に実施例1と同様な条件で硫酸処理と2次
焼成を施し、硫酸根含有触媒を得た。得られた触媒の表
面積、硫酸根含量およびハメット指示薬による滴定の結
果を表1に示す。また、これとは別に上と同様な手順を
硫酸処理まで踏襲して硫酸根含有無機粉末を得た。この
塩化白金酸水溶液を含浸させ、しかる後これを600 ℃で
3時間焼成して白金含有量0.5 重量%の異性化触媒Xを
得た。この異性化触媒の表面積および硫酸根含量を表2
の第2〜3欄に示す。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 38.3 g of Zr (OC 4 H 9 ) 4 was added to isopropyl alcohol.
Dissolve in 200 ml and use this as the first liquid. On the other hand, 18.6 g of polyvinylpyrrolidone was dissolved in 200 ml of isopropyl alcohol, and this was used as the second liquid. The first liquid and the second liquid are uniformly mixed. This mixed solution is transferred to a 1000 ml beaker, an aluminum foil is put on the beaker, several holes of about 2 mm diameter are opened, and the beaker is left at room temperature. 1 week for gelation, 1 for solvent removal
It took months to obtain a uniformly transparent glassy organic polymer-inorganic oxide composite. Crush the obtained composite and
Primary calcination was performed in the air at 350 ° C. for 4 hours to prepare a powdery porous inorganic oxide. This powder was placed in 10 volumes of 1N sulfuric acid, stirred for 5 minutes, immediately filtered and dried. Then, this dried powder was secondarily calcined at 600 ° C. for 3 hours to obtain a sulfate group-containing solid acid catalyst. Table 1 shows the surface area of the obtained catalyst, the content of sulfate and the result of titration with Hammett indicator. Separately from this, the same procedure as above was followed up to the sulfuric acid treatment to obtain a sulfate group-containing inorganic oxide powder. This powder was impregnated with an aqueous solution of chloroplatinic acid and then calcined at 600 ° C. for 3 hours to obtain an isomerization catalyst A having a platinum content of 0.5% by weight. Table 2 shows the surface area and sulfate content of this isomerization catalyst.
The second to third columns are shown. Example 2 To 5.4 g of a powdery porous inorganic oxide prepared in the same manner as in Example 1, 1.53 g of 7.5 N sulfuric acid was added and evaporated to dryness, and then this powder was treated under the same conditions as in Example 1. Secondary calcination was performed to obtain a sulfate group-containing solid acid catalyst. Surface area of the resulting catalyst,
Table 1 shows the results of titration with sulfate content and Hammett indicator. Separately from this, the same procedure as above was followed until evaporation to dryness to obtain a sulfate group-containing inorganic oxide powder. This powder is impregnated with an aqueous solution of chloroplatinic acid, and then 60
It was calcined at 0 ° C. for 3 hours to obtain an isomerization catalyst B having a platinum content of 0.5% by weight. The surface area and sulfate content of this isomerization catalyst are shown in columns 2 and 3 of Table 2. Example 3 Instead of the first liquid used in Example 1, 38.3 g of Zr (O
An organic polymer-inorganic oxide composite was prepared in the same manner as in Example 1 except that a solution prepared by dissolving C 4 H 9 ) 4 and 2.1 g of Si (OC 2 H 5 ) 4 in 200 ml of isopropyl alcohol was used as the first liquid. A body was prepared and subjected to primary calcination, sulfuric acid treatment and secondary calcination under the same conditions as in Example 1 to obtain a sulfate group-containing solid acid catalyst. Table 1 shows the surface area of the obtained catalyst, the content of sulfate and the result of titration with Hammett indicator. Separately from this, the same procedure as above was followed up to the sulfuric acid treatment to obtain a sulfate group-containing inorganic oxide powder. This powder was impregnated with a chloroplatinic acid aqueous solution, and then calcined at 600 ° C. for 3 hours to obtain an isomerization catalyst C having a platinum content of 0.5% by weight. Table 2 shows the surface area and sulfate content of this isomerization catalyst.
The second to third columns are shown. Example 4 In place of the second liquid used in Example 1, 200 ml of isopropyl alcohol and 18.6 g of polyvinylpyrrolidone and 5.0 g of ethyl p-toluenesulfonate were dissolved in the second liquid, and the solution used in Example 1 was used. An organic polymer-inorganic oxide composite was prepared in exactly the same manner, and was subjected to primary calcination and secondary calcination under the same conditions as in Example 1 without the sulfuric acid treatment to give a sulfate group-containing solid acid catalyst. Obtained. Table 1 shows the surface area of the obtained catalyst, the content of sulfate and the result of titration with Hammett indicator. Separately from this, the procedure similar to the above was followed until the primary firing to obtain a sulfate group-containing inorganic oxide powder. This powder was impregnated with an aqueous solution of chloroplatinic acid and then calcined at 600 ° C. for 3 hours to obtain an isomerization catalyst D having a platinum content of 0.5% by weight. The surface area and sulfate content of this isomerization catalyst are shown in columns 2 and 3 of Table 2. Comparative Example 1 90 g of commercially available zirconium oxychloride (octahydrate) was added to 70 parts of water.
It was dissolved in g, and a 5 times diluted aqueous solution of 25% ammonia water was gradually added thereto to form a precipitate at pH 10. This was left to stand overnight for aging, then filtered, washed and dried to obtain a powder. This powder was treated with sulfuric acid and subjected to secondary firing under the same conditions as in Example 1 to obtain a sulfate group-containing catalyst. Table 1 shows the surface area of the obtained catalyst, the content of sulfate and the result of titration with Hammett indicator. Separately from this, the same procedure as above was followed up to the sulfuric acid treatment to obtain a sulfate group-containing inorganic powder. The aqueous solution of chloroplatinic acid was impregnated and then calcined at 600 ° C. for 3 hours to obtain an isomerization catalyst X having a platinum content of 0.5% by weight. Table 2 shows the surface area and sulfate content of this isomerization catalyst.
The second to third columns are shown.

【0011】[0011]

【表1】 表面積 硫酸根含量 ハメット指示薬のpka 値* m2 /g wt% -12.7 -13.2 -13.8 -14.5 実施例1 99 4.6 + + + + 実施例2 85 6.9 + + + + 実施例3 150 4.9 + + + − 実施例4 93 3.5 + + + − 比較例1 63 6.7 + + ± − *ベンゼン溶媒中での変色判定結果;+:変色、±:や
や変色、−:変色せず
[Table 1] Surface area Sulfate content pka value of Hammett indicator * m 2 / g wt% -12.7 -13.2 -13.8 -14.5 Example 1 99 4.6 + + + + Example 2 85 6.9 ++ + + + Example 3 150 4.9 + + + − Example 4 93 3.5 + + + − Comparative Example 1 63 6.7 + + ± − * Discoloration determination result in benzene solvent; +: discoloration, ±: somewhat Discoloration, −: No discoloration

【0012】異性化活性の評価試験 実施例1〜4及び比較例1で得た異性化触媒A〜D及び
Xを、それぞれ水素気流中300 ℃で1時間前処理し、n
−ペンタンの異性化反応に供した。反応条件には、温度
160 ℃、全圧20kg/cm2 、H2 /ペンタン比3/2、W
HSV4hr-1を採用した。反応開始2時間後および24時
間後の転化率とイソペンタン選択率を、表2の第4〜7
欄に示す。
Evaluation Test of Isomerization Activity The isomerization catalysts A to D and X obtained in Examples 1 to 4 and Comparative Example 1 were pretreated in a hydrogen stream at 300 ° C. for 1 hour, respectively.
-Subjected to an isomerization reaction of pentane. Reaction conditions include temperature
160 ℃, total pressure 20kg / cm 2 , H 2 / pentane ratio 3/2, W
HSV4hr- 1 was adopted. The conversion rates and isopentane selectivities 2 hours and 24 hours after the start of the reaction are shown in Table 2
Shown in the column.

【0013】[0013]

【表2】 異性化触媒 表面積 硫酸根含量 2時間後 24時間後 m2 /g wt% 転化率 選択率 転化率 選択率 A 98 4.5 64 100 64 100 B 84 6.7 68 100 68 100 C 148 4.8 60 98 58 99 D 92 3.4 61 98 60 99 X 62 6.5 50 95 31 97[Table 2] Isomerization catalyst Surface area Sulfate content 2 hours later 24 hours m 2 / g wt% conversion rate selectivity conversion rate selectivity A 98 4.5 64 64 100 64 100 B 84 6.7 68 100 100 68 100 C 148 4.8 60 60 98 58 99 D 92 3.2 61 61 98 60 99 X 62 6.5 50 95 95 31 97

【0014】表2から分かるように、触媒A〜Dは触媒
Xに比較して初期活性が高く、しかも経時による活性低
下が少ない。
As can be seen from Table 2, the catalysts A to D have a higher initial activity than the catalyst X, and the activity decrease with time is small.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 9/16 9280−4H // C07B 61/00 300 (72)発明者 足立 倫明 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央技術研究所内 (72)発明者 三枝 武夫 京都府京都市北区等持院北町8−22 (72)発明者 大中 忠生 京都府京都市南区久世大町557─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area C07C 9/16 9280-4H // C07B 61/00 300 (72) Inventor Noriaki Adachi Yokohama City, Kanagawa Prefecture 8 Chidori-cho, Naka-ku, Nippon Central Oil Research Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機ポリマーの存在下で金属アルコキシ
ドを加水分解重合させて得られる有機ポリマー−無機酸
化物複合体から有機ポリマーを除去した多孔質無機酸化
物が、硫酸根を含有していることを特徴とする固体酸触
媒。
1. A porous inorganic oxide obtained by removing an organic polymer from an organic polymer-inorganic oxide composite obtained by hydrolyzing and polymerizing a metal alkoxide in the presence of an organic polymer contains a sulfate group. A solid acid catalyst characterized by:
【請求項2】 有機ポリマーの存在下で金属アルコキシ
ドを加水分解重合させて有機ポリマー−無機酸化物複合
体を生成させ、この複合体から有機ポリマー成分を除去
して多孔質無機酸化物を生成させ、得られた多孔質無機
酸化物に硫酸根を導入することを特徴とする固体酸触媒
の製造方法。
2. A metal alkoxide is hydrolyzed and polymerized in the presence of an organic polymer to form an organic polymer-inorganic oxide composite, and an organic polymer component is removed from the composite to form a porous inorganic oxide. A method for producing a solid acid catalyst, which comprises introducing a sulfate group into the obtained porous inorganic oxide.
【請求項3】 硫酸根供与体及び有機ポリマーの存在下
で金属アルコキシドを加水分解重合させて硫酸根供与体
含有有機ポリマー−無機酸化物複合体を生成させ、しか
る後、(i) 焼成によってこの複合体から有機ポリマー成
分を除去すると共に硫酸根供与体から硫酸根を生成させ
るか、あるいは、(ii)溶媒抽出によって前記の複合体か
ら有機ポリマー成分を除去した後、得られた硫酸根供与
体含有多孔質無機酸化物を焼成することを特徴とする固
体酸触媒の製造方法。
3. A metal alkoxide is hydrolyzed and polymerized in the presence of a sulfate group donor and an organic polymer to form a sulfate group donor-containing organic polymer-inorganic oxide composite, and then (i) calcination The sulfate radical donor obtained after removing the organic polymer component from the complex and producing the sulfate radical from the sulfate donor, or (ii) removing the organic polymer component from the complex by solvent extraction A method for producing a solid acid catalyst, which comprises calcination of a contained porous inorganic oxide.
JP5345197A 1993-12-21 1993-12-21 Solid acid catalyst and production of catalyst thereof Pending JPH07171397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5345197A JPH07171397A (en) 1993-12-21 1993-12-21 Solid acid catalyst and production of catalyst thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5345197A JPH07171397A (en) 1993-12-21 1993-12-21 Solid acid catalyst and production of catalyst thereof

Publications (1)

Publication Number Publication Date
JPH07171397A true JPH07171397A (en) 1995-07-11

Family

ID=18374958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5345197A Pending JPH07171397A (en) 1993-12-21 1993-12-21 Solid acid catalyst and production of catalyst thereof

Country Status (1)

Country Link
JP (1) JPH07171397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009727A1 (en) * 1996-09-05 1998-03-12 Japan Energy Corporation Solid acid catalyst and process for preparing the same
JP2001070794A (en) * 1999-09-03 2001-03-21 Japan Energy Corp Solid acid catalyst containing platinum group metal component
JP4780764B2 (en) * 2003-02-05 2011-09-28 日本曹達株式会社 Metal alkoxide hydrolysis products
JP2014519964A (en) * 2011-06-24 2014-08-21 ニッポン高度紙工業株式会社 Inorganic / polymer hybrid catalyst material containing metal nanoparticles inside

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009727A1 (en) * 1996-09-05 1998-03-12 Japan Energy Corporation Solid acid catalyst and process for preparing the same
EP0925830A1 (en) * 1996-09-05 1999-06-30 Japan Energy Corporation Solid acid catalyst and process for preparing the same
EP0925830A4 (en) * 1996-09-05 1999-12-22 Japan Energy Corp Solid acid catalyst and process for preparing the same
US6107235A (en) * 1996-09-05 2000-08-22 Japan Energy Corporation Solid acid catalyst and process for preparing the same
KR100327891B1 (en) * 1996-09-05 2002-03-15 노미야마 아키히콰 Solid acid catalyst and process for preparing the same
CN1100613C (en) * 1996-09-05 2003-02-05 株式会社日本能源 Solid acid catalyst and process for preparing the same
JP2001070794A (en) * 1999-09-03 2001-03-21 Japan Energy Corp Solid acid catalyst containing platinum group metal component
JP4780764B2 (en) * 2003-02-05 2011-09-28 日本曹達株式会社 Metal alkoxide hydrolysis products
JP2014519964A (en) * 2011-06-24 2014-08-21 ニッポン高度紙工業株式会社 Inorganic / polymer hybrid catalyst material containing metal nanoparticles inside

Similar Documents

Publication Publication Date Title
US4126580A (en) Stable perovskite catalysts
US5055282A (en) Method of decomposing ammonia using a ruthenium catalyst
US3885020A (en) Method of oxidizing hydrocarbons and oxygenated hydrocarbons to carbon dioxide and water
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
US4186112A (en) Catalyst for reducing carbon monoxide with hydrogen
US5603913A (en) Catalysts and process for selective oxidation of hydrogen sulfide to elemental sulfur
JP2022535561A (en) Supported Oxide NH3-SCR Catalysts with Bisite Surface Species and Methods of Synthesis
US3767595A (en) Process for producing copper chromite catalysts
US5891412A (en) Ceric oxide particulates having improved morphology
RU2180678C2 (en) Method of selective hydrogenation of dienes in reforming flows
Nishamol et al. Selective alkylation of aniline to N-methyl aniline using chromium manganese ferrospinels
JPH07171397A (en) Solid acid catalyst and production of catalyst thereof
Cheng et al. Anion templated synthesis of Ni/Pd containing metalla-macrocycles
JP4524427B2 (en) Composition comprising heteropolyacid salt and inorganic oxide and method for producing the same
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JPS63123445A (en) Manufacture of hydrogenating treating catalyst prepared from hydrogel and manufactured catalyst
JP3897830B2 (en) Process for producing cycloolefin
US5716897A (en) Sulfur tolerant hydrocarbon conversion catalyst
CN112403285B (en) High-performance tubular hybrid membrane, preparation method thereof and application thereof in separation of alkane/aromatic hydrocarbon mixture
JP6531327B2 (en) Silver-cerium oxide composite catalyst supported on alkaline carrier and method for producing the same
DE2341732A1 (en) CATALYST FOR THE PURIFICATION OF EXHAUST GAS AND EMISSIONS, THE METHOD OF MANUFACTURING IT AND USING THIS CATALYST
JPH0529503B2 (en)
JP3855045B2 (en) Method for producing ruthenium perovskite
JPH07100388A (en) Catalyst carrier for oil refinery and catalyst for oil refinery
US4228039A (en) Catalytic composition used in purifying gaseous effluents polluted by nitrogen oxides and process for preparing the composition