JPH08246094A - Building steel for low temperature use - Google Patents

Building steel for low temperature use

Info

Publication number
JPH08246094A
JPH08246094A JP4453095A JP4453095A JPH08246094A JP H08246094 A JPH08246094 A JP H08246094A JP 4453095 A JP4453095 A JP 4453095A JP 4453095 A JP4453095 A JP 4453095A JP H08246094 A JPH08246094 A JP H08246094A
Authority
JP
Japan
Prior art keywords
low
yield ratio
low temperature
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4453095A
Other languages
Japanese (ja)
Other versions
JP3214281B2 (en
Inventor
Norimi Wada
典巳 和田
Ryuji Muraoka
隆二 村岡
Toshinori Matsuo
敏憲 松尾
Saburo Tani
三郎 谷
Hiroshi Ishikawa
博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP04453095A priority Critical patent/JP3214281B2/en
Publication of JPH08246094A publication Critical patent/JPH08246094A/en
Application granted granted Critical
Publication of JP3214281B2 publication Critical patent/JP3214281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce a building steel having stable low temp. toughness and low yield ratio at a low temp. and satisfying low temp. low yield ratio capable of new earthquake-resistant design. CONSTITUTION: This building steel for low temp. use is the one composed of an iron-base alloy having <=30ppm oxygen content, having a two phase structure of coarse-grained ferrite and bainite, having a compsn. contg., by weight, 0.04 to 0.18% C, 0.05 to O.40% Si, 0.6 to 1.7% Mn, 0.001 to 0.06% Al, <=30ppm N and <=30ppm O, furthermore contg. one or >= two kinds among 0.005 to 0.015% Ti, 0.005 to 0.04% Nb, 0.005 to 0.1%, V, 0.05 to 0.6% Cu, 0.05 to 0.6% Ni, 0.05 to 1.0% Cr and <=0.002% S, in which the content of P is regulated to 0.015% and S to <=0.002%, added with either of Ca by 0.5 to 2.0 in terms of Ca/S and 0-005 to 0.02% rare earth metals, and the balance Fe, low in HAZ crack sensitivity in ultrahigh heat input welding, and is excellent in low temp. toughness and satisfyies low yield ratio at a low temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新耐震設計法で設計さ
れる建築分野において、低温倉庫などの使用環境温度が
室温以下の建築物に用いられる低温用建築鋼材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature building steel material used in a building such as a low-temperature warehouse where the environment temperature is not higher than room temperature in the building field designed by the new seismic design method.

【0002】[0002]

【従来の技術】昭和57年に改正施工された建築物の耐
震設計法は、それまでの構造体各部に生ずる応力度を鋼
材の降伏点以内に留めるという弾性設計に変えて、鋼材
が降伏後、最大強さに達するまでの塑性域での変形能力
を活用して、地震入力エネルギーを吸収させ、建物の耐
震安全性を確保しようとするものである。このことか
ら、新耐震設計法が適用される建築物の鋼材は、降伏後
の変形性能を表すパラメーターである降伏比(YR値)
が低いこと、すなわち低降伏比が求められるようになっ
た。
2. Description of the Related Art The seismic design method for buildings, which was revised in 1982, was changed to an elastic design in which the stress level in each part of the structure up to that point was kept within the yield point of the steel material, and after the steel material yielded. By utilizing the deformation capacity in the plastic range until the maximum strength is reached, the earthquake input energy is absorbed and the seismic safety of the building is ensured. From this, the steel materials for buildings to which the new seismic design method is applied are the yield ratio (YR value), which is a parameter expressing the deformation performance after yielding.
Low, that is, a low yield ratio is required.

【0003】TS500MPa級の鋼材は、熱間圧延を
再結晶域で仕上げ、組織の粗粒化を図り低降伏比を確保
している。また、TS600MPa級あるいはそれ以上
の高強度鋼では、フェライト−オーステナイトの2相域
から焼入することで、フェライトとベイナイトあるいは
マルテンサイトの2相組織にすることで低降伏比を確保
している。
A steel material of TS500 MPa class is subjected to hot rolling in a recrystallization region to coarsen the structure and secure a low yield ratio. Further, in the high-strength steel of TS600 MPa class or higher, by quenching from the two-phase region of ferrite-austenite, a low yield ratio is secured by forming a two-phase structure of ferrite and bainite or martensite.

【0004】オフィスや住居用の建築物、いわゆるビル
は常温で使用されるため、上述の新耐震設計も常温を前
提になされている。従って、従来の低降伏比鋼も常温
(0〜30℃)でのYR値が80%以下あるいは75%
以下になるように製造されている。
Since buildings for offices and houses, so-called buildings, are used at room temperature, the above-mentioned new seismic design is also premised on room temperature. Therefore, the conventional low yield ratio steel also has a YR value of 80% or less or 75% at room temperature (0 to 30 ° C).
Manufactured as follows.

【0005】建築物の中には、低温用倉庫のように使用
温度が低温(−20℃〜−60℃)であるような建築物
がある。例えば、まぐろ用の冷凍倉庫は−55℃で使用
される。そのような低温用建築物も新耐設計法を適用し
耐震安全性を確保するためには、低温で低降伏比を示す
鋼材が必要となる。しかし、従来の低降伏比鋼は常温で
の使用を前提としているため常温の降伏比は示されてい
るものの、低温の降伏比は明らかでない。
Among buildings, there is a building whose operating temperature is low (-20 ° C to -60 ° C), such as a low temperature warehouse. For example, a refrigerated warehouse for tuna is used at -55 ° C. In order to apply the new designing method to such buildings for low temperatures and to secure seismic safety, steel materials with low yield ratio at low temperature are required. However, although the conventional low yield ratio steel is premised on use at room temperature, the yield ratio at room temperature is shown, but the yield ratio at low temperature is not clear.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者らは
従来の低降伏比鋼の低温での引張特性並びに靱性につい
て検討した。多くの低降伏比鋼は上述したように低降伏
比を得るために粗粒であり、そのため低温靱性が低く、
たとえば−55℃使用の低温用倉庫には使用できないこ
とがわかった。低温靱性に優れた低降伏比鋼に関する従
来技術として、特開平2−197522号公報や特開平
5−21440号公報が報告されている。両公報に記載
された発明とも靱性に関して−55℃使用の低温用倉庫
には適用可能なデータが示されているが、低温でのYR
値は示されていない。そこで、両公報に記載された発明
に沿って試作した鋼の低温引張特性について調べると、
たとえば−55℃ではYR値が80%以上になってしま
うことが判明した。また、靱性に関しても、必ずしも良
い値ばかりではなく大きくばらつく結果となった。
Therefore, the present inventors have examined the tensile properties and toughness of conventional low yield ratio steels at low temperatures. Many low-yield ratio steels are coarse-grained in order to obtain a low-yield ratio as described above, and therefore have low low-temperature toughness,
For example, it was found that it cannot be used in a low temperature warehouse that uses -55 ° C. Japanese Patent Laid-Open No. 2-197522 and Japanese Patent Laid-Open No. 5-214040 have been reported as conventional techniques relating to a low yield ratio steel having excellent low temperature toughness. Although the inventions described in both publications show data applicable to a low temperature warehouse using −55 ° C. regarding toughness, YR at a low temperature is shown.
Values not shown. Therefore, when examining the low temperature tensile properties of the steel prototyped according to the invention described in both publications,
For example, it was found that the YR value was 80% or more at -55 ° C. Also, regarding toughness, not only a good value but also a large variation.

【0007】以上のことから、本発明が解決しようとす
る課題は、安定した低温靱性を有し、かつ低温(−20
℃〜−60℃)で低YR値(≦80%)を示す新耐震設
計を可能にする低温低降伏比建築鋼材を提供するもので
ある。
From the above, the problem to be solved by the present invention is that it has stable low temperature toughness and has low temperature (-20
The present invention provides a low-temperature low-yield ratio building steel material that enables a new seismic design exhibiting a low YR value (≤80%) at (C to -60C).

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
に、本発明は、酸素含有量30ppm以下の鉄基合金で
粗粒フェライトとベイナイトの2相組織を有し、低温で
低降伏比の低温用建築鋼材である。更に、重量%で、
C:0.04−0.18%,Si:0.05−0.40
%,Mn:0.6−1.7%,Al:0.001−0.
06%,N:≦30ppm,O:≦30ppm、残部が
Feおよび不可避的不純物からなる低温靱性に優れかつ
低温で低降伏比の低温用建築鋼材である。更に、上記の
成分に加えて、Ti:0.005−0.015%,N
b:0.005−0.04%,V:0.005−0.1
%,Cu:0.05−0.6%,Ni:0.05−0.
6%,Cr:0.05−1.0%,Mo:0.02−
0.6%の内1種または2種以上を加えた低温靱性に優
れかつ低温で低降伏比の低温用建築鋼材である。更に、
上記の成分に加えて、P:≦0.015%,S:≦0.
002%に規制し、Ca:Ca/Sで0.5以上2.0
以下、REM(希土類元素):0.005〜0.02%
の少なくともいずれか一方が添加された超大入熱溶接の
HAZ割れ感受性の低い低温靱性に優れかつ低温で低降
伏比の低温用建築鋼材である。
In order to solve this problem, the present invention is an iron-based alloy having an oxygen content of 30 ppm or less, has a two-phase structure of coarse-grained ferrite and bainite, and has a low yield ratio at low temperature. It is a low temperature building steel material. Furthermore, in wt%,
C: 0.04-0.18%, Si: 0.05-0.40
%, Mn: 0.6-1.7%, Al: 0.001-0.
06%, N: ≤ 30 ppm, O: ≤ 30 ppm, the balance being Fe and unavoidable impurities, which is an excellent low temperature toughness and a low yielding ratio low temperature building steel material at low temperature. Furthermore, in addition to the above components, Ti: 0.005-0.015%, N
b: 0.005-0.04%, V: 0.005-0.1
%, Cu: 0.05-0.6%, Ni: 0.05-0.
6%, Cr: 0.05-1.0%, Mo: 0.02-
It is a building steel material for low temperature, which is excellent in low temperature toughness and has a low yield ratio at low temperature by adding one or more of 0.6%. Furthermore,
In addition to the above components, P: ≤ 0.015%, S: ≤ 0.
Restricted to 002%, Ca: Ca / S 0.5 or more 2.0
Below, REM (rare earth element): 0.005-0.02%
It is a building steel material for low temperature use, which is excellent in low temperature toughness with low HAZ crack susceptibility of ultra-high heat input welding and which has low yield ratio at low temperature.

【0009】[0009]

【作用】本発明の低温用建築鋼材は、鉄基合金の金属組
織を、粗粒フェライトとベイナイトの2相組織に限定す
る。この理由は,フェライトとベイナイトの2相組織
は、フェライトとパーライトの2相組織よりも低温での
YR値の上昇程度が少なく、特に粗粒フェライトの方が
細粒フェライトよりもその傾向が著しいためである。こ
こで、粗粒フェライトとはASTM粒度No.11以下
のものをいう。
In the low temperature building steel material of the present invention, the metal structure of the iron-based alloy is limited to the two-phase structure of coarse-grained ferrite and bainite. The reason for this is that the two-phase structure of ferrite and bainite has a smaller increase in the YR value at low temperatures than the two-phase structure of ferrite and pearlite, and in particular coarse-grained ferrite has a greater tendency than fine-grained ferrite. Is. Here, the coarse-grained ferrite is ASTM grain size No. 11 or less.

【0010】また、本発明の低温用建築鋼材は、鉄基合
金の酸素含有量を30ppm以下とする。この理由は、
この範囲に酸素量を限定することにより安定した低温靱
性が得られるためであり、酸素含有量が30ppmを越
えると低温靱性のばらつきが大きい。
In the low temperature building steel material of the present invention, the oxygen content of the iron-based alloy is set to 30 ppm or less. The reason for this is
This is because stable low temperature toughness can be obtained by limiting the oxygen amount within this range, and when the oxygen content exceeds 30 ppm, the low temperature toughness varies widely.

【0011】これらの知見は、ミクロ組織と低温YR値
(降伏比)の関係を鋭意検討した結果、本発明者らが見
いだしたものである。すなわち、本発明者らは、表2に
示すA1鋼板(粗粒フェライト+ベイナイト),A2鋼
板(細粒フェライト+ベイナイト),A3鋼板鋼板(フ
ェライト+パーライト)を用いて、温度によるYR値を
測定した。図1に示すように引張試験温度が低温になる
ほどYR値が上昇するが、フェライト+パーライト組織
よりもフェライト+ベイナイト組織の方が上昇程度が低
い。また、フェライト+ベイナイト組織の中ではフェラ
イトが粗粒なほど、低温で低YR値が得られることがわ
かった。そして、粗粒フェライトとベイナイトの混合組
織にすることで−100℃でもYR値<80%以下が達
成されている。
These findings have been found by the present inventors as a result of extensive studies on the relationship between the microstructure and the low temperature YR value (yield ratio). That is, the present inventors measured the YR value by temperature using the A1 steel plate (coarse grain ferrite + bainite), A2 steel plate (fine grain ferrite + bainite), and A3 steel plate (ferrite + pearlite) shown in Table 2. did. As shown in FIG. 1, the lower the tensile test temperature, the higher the YR value, but the ferrite + bainite structure has a lower increase than the ferrite + pearlite structure. It was also found that in the ferrite + bainite structure, the coarser the ferrite, the lower the YR value obtained at low temperature. The YR value <80% or less is achieved even at −100 ° C. by using a mixed structure of coarse-grained ferrite and bainite.

【0012】また、本発明者らは、A鋼を基本に酸素の
み19〜44ppmの範囲で変化させた鋼を用いて、粗
粒フェライト(ASTM粒度No.=9〜11)とベイ
ナイト混合組織の低温靱性を調べた。その結果、図2に
示すように低温靱性にかなりのバラツキを有している。
その下限値は酸素含有量により支配され、酸素含有量を
30ppm以下にすることでvE-55 (minimum)>10
0Jを満たす安定した靱性が得られることがわかった。
これは、酸素含有量を30ppm以下にすることで、マ
イクロクラックの発生起点となる鋼中酸化物の減少、微
細化したためである。
The inventors of the present invention have also used coarse steel (ASTM grain size No. = 9 to 11) and bainite mixed microstructure by using steel in which only oxygen is changed in the range of 19 to 44 ppm based on A steel. The low temperature toughness was investigated. As a result, as shown in FIG. 2, the low temperature toughness has a considerable variation.
The lower limit is governed by the oxygen content, and vE -55 (minimum)> 10 by setting the oxygen content to 30 ppm or less.
It was found that stable toughness satisfying 0 J was obtained.
This is because by setting the oxygen content to 30 ppm or less, the oxides in the steel, which are the starting points of microcracks, were reduced and refined.

【0013】以上のことから、安定した低温靱性を有
し、かつ低温(−20℃〜−60℃)で低YR値(≦8
0%)を示す新耐震設計を可能にする低温低降伏比建築
鋼材の必要条件は、酸素含有量が30ppm以下で粗粒
フェライトとベイナイトの2相組織の特徴を有するもの
であることがわかった。組織について定量的にいうなら
ば、ASTM粒度No.9〜11のフェライトと面積率
にして40〜70%のベイナイトの2相組織が望まし
い。
From the above, it has stable low temperature toughness and has a low YR value (≤8 at low temperature (-20 ° C to -60 ° C).
It was found that the requirement for a low-temperature low-yield ratio building steel material that enables a new seismic design exhibiting 0%) is that the oxygen content is 30 ppm or less and that it has the characteristics of a coarse-grained ferrite and bainite two-phase structure. . Quantitatively speaking about the organization, ASTM grain size No. A two-phase structure of ferrite of 9 to 11 and bainite of 40 to 70% in area ratio is desirable.

【0014】つぎに、本発明におけるC,Si,Mn,
Alの添加理由および添加量は、溶接構造用鋼が所用の
特性を得るために、以下のごとく限定した。Cは最も安
価な元素で強度化に有効な元素であるが、0.18%を
超えて添加すると溶接性が著しく低下する。0.04%
未満では、厚物で強度が不足し、多量の合金元素の添加
が必要となり、コスト高を招く。従って、Cは0.04
%以上0.18%以下に限定した。
Next, in the present invention, C, Si, Mn,
The reason for adding Al and the amount of Al were limited as follows in order to obtain the required properties of the welded structural steel. C is the cheapest element and is an element effective for strengthening, but if it is added in excess of 0.18%, the weldability will be significantly reduced. 0.04%
If it is less than the above range, the strength is insufficient and the alloy is required to be added in a large amount, resulting in a high cost. Therefore, C is 0.04
% To 0.18% or less.

【0015】Siは鋼材の強度、溶鋼の予備脱酸に必要
な元素である。予備脱酸のためには、0.05%以上の
添加が必要である。0.4%を超える過剰の添加は、鋼
材の靱性、溶接HAZ靱性を劣化させる。従って、Si
量は0.05%以上0.4%以下に限定した。
Si is an element necessary for strength of steel materials and preliminary deoxidation of molten steel. For preliminary deoxidation, addition of 0.05% or more is necessary. Excessive addition exceeding 0.4% deteriorates the toughness of the steel material and the weld HAZ toughness. Therefore, Si
The amount was limited to 0.05% or more and 0.4% or less.

【0016】Mnは、母材の強度を確保するため、必要
な元素である。0.6%未満では、厚物で強度が不足
し、多量の合金元素の添加が必要となり、コスト高を招
く。また、Mnは中央偏析しやすい元素である。1.7
%を超えて添加すると、板厚中央が著しく脆化する。従
って、Mnの範囲を0.6%以上1.7%以下に限定し
た。
Mn is a necessary element for ensuring the strength of the base material. If it is less than 0.6%, the material is thick and the strength is insufficient, so that it is necessary to add a large amount of alloying elements, resulting in high cost. Further, Mn is an element that tends to segregate in the center. 1.7
If added in excess of%, the center of the plate thickness becomes significantly brittle. Therefore, the range of Mn is limited to 0.6% or more and 1.7% or less.

【0017】Alは、脱酸に必要な元素である。Al量
として0.001%未満では、十分な脱酸効果が期待で
きない。また、0.06%を超えて過剰に添加すると、
連続鋳造スラブの表面にキズが発生しやすい。従って、
Al量は0.001%以上0.06%以下に限定した。
Al is an element necessary for deoxidation. If the Al content is less than 0.001%, a sufficient deoxidizing effect cannot be expected. Also, if added in excess of 0.06%,
Scratches are likely to occur on the surface of continuously cast slabs. Therefore,
The amount of Al was limited to 0.001% or more and 0.06% or less.

【0018】Nは固体鋼中に固溶Nや窒化物系介在物と
して存在する。固溶Nや粗大窒化物系介在物は、鋼の低
温靱性を劣化させる。30ppmを超えてNを含有する
と固溶Nが存在する、また、最終凝固部には粗大な窒化
物(例えば、TiNやNbN)が生成しやすくなり、優
れた低温靱性が得られない。従って、N含有量を0.0
03%以下に限定した。
N exists as solid solution N or nitride inclusions in the solid steel. Solid solution N and coarse nitride-based inclusions deteriorate the low temperature toughness of steel. When N is contained in excess of 30 ppm, solid solution N exists, and coarse nitrides (for example, TiN and NbN) are easily generated in the final solidified portion, and excellent low temperature toughness cannot be obtained. Therefore, the N content is 0.0
It was limited to 03% or less.

【0019】Nb,V,Cu,Ni,Cr,Moは、高
強度化に有効な元素である。欠く元素の下限を限定した
理由は、Nb<0.005%,V<0.005%,Cu
<0.05%,Ni<0.05%,Cr<0.05%,
Mo<0.02%では、明瞭な強度上昇効果が見られな
いためである。上限を限定したのは以下の理由による。
NbはNb(CN)、VはVCが析出し高強度化に寄与
するが、0.04%を超えたNbの添加、0.1%を超
えたVの添加は、降伏比を著しく上昇させてしまう。従
って、Nbを0.005%以上0.04%以下に、Vを
0.005%以上0.1%以下に限定した。
Nb, V, Cu, Ni, Cr and Mo are effective elements for increasing the strength. The reason for limiting the lower limit of the number of missing elements is Nb <0.005%, V <0.005%, Cu
<0.05%, Ni <0.05%, Cr <0.05%,
This is because when Mo <0.02%, no clear strength increasing effect is observed. The reason for limiting the upper limit is as follows.
Nb is Nb (CN), V is VC, and VC contributes to strengthening. However, addition of Nb exceeding 0.04% and addition of V exceeding 0.1% significantly increase the yield ratio. Will end up. Therefore, Nb is limited to 0.005% or more and 0.04% or less, and V is limited to 0.005% or more and 0.1% or less.

【0020】Cu,Ni,Cr,Moは、固溶強化や焼
入性向上効果を通して、高強度化に寄与する。0.6%
を超えるCuの添加は著しくCu割れ発生の危険性を増
大させる。Niは高価な元素でありコストの観点から、
上限を0.6%とした。1%を超えるCr、0.6%を
超えるMoの添加は溶接性を著しく劣化させる。従っ
て、Cuを0.05%以上0.6%以下、Niを0.0
5%以上0.6%以下、Crを0.05%以上1%以
下、Moを0.02%以上0.6%以下に限定した。
Cu, Ni, Cr and Mo contribute to higher strength through solid solution strengthening and hardenability improving effects. 0.6%
Addition of Cu in excess of 10 significantly increases the risk of Cu cracking. Ni is an expensive element, and from the viewpoint of cost,
The upper limit was set to 0.6%. Addition of Cr in excess of 1% and Mo in excess of 0.6% significantly deteriorates weldability. Therefore, Cu is 0.05% to 0.6% and Ni is 0.0%.
5% or more and 0.6% or less, Cr was limited to 0.05% or more and 1% or less, and Mo was limited to 0.02% or more and 0.6% or less.

【0021】Tiは、TiNの溶接HAZ部の組織粗大
化を抑制してHAZ靱性の向上に寄与する元素である。
0.005%未満のTi添加ではHAZ靱性向上効果が
発揮されない。0.015%を超えて添加すると溶接の
冷却過程でTiCが析出し、HAZ靱性の劣化を招く。
従って、Tiを0.005%以上、0.015%以下に
限定した。
Ti is an element that suppresses the coarsening of the structure of the welded HAZ portion of TiN and contributes to the improvement of HAZ toughness.
If Ti is added in an amount of less than 0.005%, the HAZ toughness improving effect is not exhibited. If added in excess of 0.015%, TiC precipitates during the cooling process of welding, resulting in deterioration of HAZ toughness.
Therefore, Ti is limited to 0.005% or more and 0.015% or less.

【0022】Sは中央偏析し、その部分でMnSを形成
する。MnSは圧延より伸長するため、鋼板の板厚中央
部には伸長したMnSが他の部分より多く存在する。本
願の用途は建築向けであり、その多くは大入熱のサブマ
ージアーク溶接(SAW)でボックス柱に組み立てら
れ、建築物に使用される。大入熱サブマージアーク溶接
では、鉄粉入りのボンド型フラックスを大量使用するた
め、他の溶接法に比較すると鋼中に侵入する水素量が高
くなり、しばしばその熱影響部に割れが発生する。割れ
の発生起点は板厚中央の伸長化したMnSである。伸長
MnSと地鉄界面に溶接水素が集積し、水素誘起割れを
起こすのである。0.002%を越えるSが含有されて
いると、板厚中央のMnSが大型化し、ボッスク柱角継
手部にHAZ割れが発生しやすくなる。従って、S含有
量は0.002%以下に規制した。
S segregates in the center, and MnS is formed at that portion. Since MnS stretches more than rolling, the stretched MnS is present in the central portion of the thickness of the steel sheet more than other portions. The application of the present application is for buildings, and most of them are used for buildings by assembling into box pillars by high heat input submerged arc welding (SAW). In high heat input submerged arc welding, since a large amount of bond type flux containing iron powder is used, the amount of hydrogen that penetrates into the steel is higher than in other welding methods, and cracks often occur in the heat affected zone. The starting point of cracking is the elongated MnS in the center of the plate thickness. Weld hydrogen accumulates at the interface between the elongated MnS and the base steel, causing hydrogen-induced cracking. When S exceeds 0.002%, MnS in the center of the plate thickness becomes large, and HAZ cracks are likely to occur in the boss-column joint. Therefore, the S content is limited to 0.002% or less.

【0023】Pも非常に中央偏析しやすい元素であり、
0.015%を超えて含有していると、板厚中央部を著
しく硬化させる。上述のMnSを起点としたHAZ割れ
は、周囲が硬化しているほど割れが伝播しやすくなる。
すなわち、大入熱サブマージアーク溶接で施工したボッ
クス柱角継手部に水素割れ抑制のため、Pを0.015
%以下に規制した。
P is also an element that tends to segregate in the center,
If the content exceeds 0.015%, the central portion of the plate thickness is significantly hardened. The above-mentioned HAZ crack starting from MnS is more likely to propagate as the surrounding hardens.
That is, P is 0.015 in order to suppress hydrogen cracking in the box column corner joint portion which is constructed by high heat input submerged arc welding.
Restricted to below%.

【0024】Ca,REMは、ボックス柱角継手部のH
AZ割れ抑制のために添加する。上述したように、HA
Z割れの起点は伸長したMnSであり、伸長化を抑制す
れば割れの防止が図られる。CaとREMは、鋼中硫化
物をそれぞれCaS、REM−Sに変化せしめ、それら
は圧延しても伸長化しない。Ca/S:0.5未満、R
EM:0.005%未満では、十分な硫化物の伸長化抑
制が達成されない。また、Ca/S:2超え、REM:
0.02%超えの添加は、クラスター状の介在物(Ca-A
l-O-S ,REM-O-S )を増やし、上記HAZ割れ抑制に逆
効果である。従って、CaをCa/Sで0.5以上2以
下、REMを0.005%以上0.02%以下に限定し
た。
Ca and REM are H of the box column corner joint
It is added to suppress AZ cracking. As mentioned above, HA
The origin of Z cracking is elongated MnS, and cracking can be prevented by suppressing elongation. Ca and REM change sulfides in steel to CaS and REM-S, respectively, and they do not extend even when rolled. Ca / S: less than 0.5, R
If EM is less than 0.005%, sufficient suppression of sulfide elongation is not achieved. In addition, Ca / S: exceeds 2, REM:
Addition of more than 0.02% will cause clustered inclusions (Ca-A
lOS, REM-OS) is increased, which has the opposite effect of suppressing the above HAZ cracks. Therefore, Ca / S is limited to 0.5 or more and 2 or less and REM is limited to 0.005% or more and 0.02% or less.

【0025】[0025]

【実施例】次に本発明の実施例を説明する。表1に供試
鋼の化学成分を示す。鋼G,H,I,R,SはTS60
キロ級の鋼であり、その他はTS50キロ級の鋼であ
る。すべて、軽圧下プロセスを含む連続鋳造にてスラブ
にされた。
EXAMPLES Examples of the present invention will be described below. Table 1 shows the chemical composition of the test steel. Steel G, H, I, R, S is TS60
It is steel of the kilo class and the other is steel of the TS 50 kilo class. All were slabbed by continuous casting including a light reduction process.

【0026】上記の鋼を表2に示す製造条件にて鋼板と
した。表3には得られた鋼板のミクロ組織が併記されて
いる。本発明の特徴である粗粒フェライトとベイナイト
の混合組織は、TS50級の鋼では、[低温加熱]+
[高温仕上圧延]+[低温域ほど強冷却となる制御冷
却]を施すことで得られる。また、TS60キロ級で
は、[高温加熱]+[高温仕上圧延]+[直接焼入]+
[2相域焼入]+[焼戻し]あるいは[高温加熱焼入]
+[2相域焼入]+[焼戻し]により得られる。
The above steel was used as a steel plate under the manufacturing conditions shown in Table 2. Table 3 also shows the microstructure of the obtained steel sheet. The mixed structure of coarse-grained ferrite and bainite, which is a feature of the present invention, is [low temperature heating] + in TS50 grade steel.
It can be obtained by performing [high-temperature finish rolling] + [controlled cooling in which stronger cooling is performed in a lower temperature range]. In the TS60 kg class, [high temperature heating] + [high temperature finish rolling] + [direct quenching] +
[Two-phase region quenching] + [tempering] or [high temperature heating and quenching]
It is obtained by + [two-phase region quenching] + [tempering].

【0027】表4に各鋼板の強度、靱性、大入熱SAW
角継手耐HAZ割れ性について示している。引張試験片
は1/4tよりC方向に採取されたJIS4号である。
YS値はすべて上降伏点の値であり、YR値はすべて上
降伏点/TSの値である。シャルピー衝撃試験片は1/
4tよりL方向に採取された。また、vE-55 (av
e)、vE-55 (min)は、N数9の平均値と最小値
である。
Table 4 shows the strength, toughness, and large heat input SAW of each steel sheet.
It shows the corner joint HAZ crack resistance. The tensile test piece is JIS No. 4 sampled in the C direction from 1 / 4t.
All the YS values are the values of the upper yield point, and the YR values are all the values of the upper yield point / TS. Charpy impact test piece is 1 /
It was collected in the L direction from 4t. In addition, vE-55 (av
e) and vE-55 (min) are the average value and the minimum value of N number 9.

【0028】大入熱SAW角継手耐HAZ割れ性は、図
3に示す寸法・形状の試験体で半ボックス施工試験を行
い、溶接部の超音波探傷を実施し、割れの発生状況を測
定することにより評価した。同図において、1はサブマ
ージドアーク溶接(SAW溶接)による角溶接部、2は
ウェブ鋼板、3はフランジ鋼板、4はダイヤフラム、5
はエレクトロスラグ溶接部、そして6は溶接漏れがない
ようにするための当て金であり、tは板厚を示す。半ボ
ックス施工試験によるSAW角溶接は、2電極の1層溶
接であり、溶接入熱は、鋼板板厚に応じて150kJ
(板厚16mmの時)〜500kJ(板厚60mmの
時)で実施した。その際、溶接フラックスには、鉄粉入
りボンド型フラックスを温度30℃、湿度80%の環境
で3時間放置し、故意に吸湿させたものを用いた。吸湿
フラックスを用いたのは、溶接時に侵入する水素量を上
昇させ、鋼板の溶接水素による割れ感受性を明瞭に評価
するためである。溶接後、3日間放置し、図3中の矢印
でU,S,Tで示した溶接フランジ角部をJIS G
0901に準じて超音波探傷を行い、割れプロフィール
を、図4のように描いた。同図において、斜線部は超音
波探傷により検出されたΔ欠陥およびX欠陥のエコー発
生部分7であり、C1 、C2 、C3 はその長さ、即ち、
割れ発生部分の溶接長方向の長さを示す。溶接長Lに対
する、各割れ長さC1 、C2 、C3 …の和の割合(長さ
%)をHAZ割れ率=(C1 +C2 +C3+…)/Lと
定義した。なお、この試験においては、L=700mm
である。
For high heat input SAW square joint HAZ crack resistance, a half-box construction test is conducted on a specimen having the dimensions and shape shown in FIG. 3, ultrasonic flaw detection is carried out on the welded portion, and the crack occurrence state is measured. It was evaluated by In the figure, 1 is a corner welded portion by submerged arc welding (SAW welding), 2 is a web steel plate, 3 is a flange steel plate, 4 is a diaphragm,
Is an electroslag weld, and 6 is a metal plate for preventing welding leakage, and t is a plate thickness. The SAW angle welding by the half-box construction test is a one-layer welding of two electrodes, and the welding heat input is 150 kJ depending on the steel plate thickness.
(When the plate thickness is 16 mm) to 500 kJ (when the plate thickness is 60 mm). At that time, as the welding flux, a bond type flux containing iron powder was left for 3 hours in an environment of a temperature of 30 ° C. and a humidity of 80% to intentionally absorb moisture. The reason why the hygroscopic flux is used is to increase the amount of hydrogen invading during welding and to clearly evaluate the cracking susceptibility of the steel sheet due to welding hydrogen. After welding, leave it for 3 days, and make the weld flange corners indicated by U, S, and T by arrows in FIG. 3 JIS G
Ultrasonic flaw detection was performed according to 0901, and a crack profile was drawn as shown in FIG. In the figure, the shaded area is the echo generation portion 7 of the Δ defect and the X defect detected by ultrasonic flaw detection, and C 1 , C 2 and C 3 are their lengths, that is,
The length in the weld length direction of the cracked portion is shown. The ratio (length%) of the sum of the crack lengths C 1 , C 2 , C 3 to the weld length L was defined as HAZ crack ratio = (C 1 + C 2 + C 3 + ...) / L. In this test, L = 700 mm
Is.

【0029】表4をみると、酸素含有量30ppm以下
で粗粒フェライト(ASTM No.9−11)とベイ
ナイトの混合組織(ベイナイト率40−70%)を有し
た本発明鋼板(A1,B1,C1,D1,E1,F1,
G1,H1,I1,J1,K1,L1,M1,N1)
は、−55℃でもYR値が80%で、VE−55(mi
n)が150J以上の靱性を有している。フェライト+
パーライト組織であるA2,B2,F2鋼板は、vTs
が−50℃以下と低靱性である。細粒フェライト(AS
TM No.11超え)+ベイナイトの混合組織である
A3,C2,E2,G2,H2鋼板は、−55℃のYR
値が80%を超えている。ベイナイト単相組織であるE
3も、−55℃のYR値が80%を超えている。また、
組織は粗粒フェライトとベイナイトの混合組織であって
も酸素含有量が30ppmを超えるO1,P1,Q1,
R1,S1,T1鋼板はvE−55(min)が47J
を下回っている。さらに、S≦20ppm,P≦0.0
15%以下でCa/Sで0.5以上2.0以下のCaが
添加されたI1,J1,L1鋼板および0.005以上
0.02%以下のREMが添加されたK1鋼板は、HA
Z割れが発生していない。Caが添加されていてもCa
/Sが0.5未満のNや2.0超えのNならびに過剰の
REMが添加されたT1鋼板では、HAZ割れが発生し
ている。
As shown in Table 4, the steel sheets of the present invention (A1, B1, B1) having a mixed structure of coarse-grained ferrite (ASTM No. 9-11) and bainite (bainite ratio 40-70%) with an oxygen content of 30 ppm or less. C1, D1, E1, F1,
G1, H1, I1, J1, K1, L1, M1, N1)
Has a YR value of 80% even at −55 ° C., and VE-55 (mi
n) has a toughness of 150 J or more. Ferrite +
The A2, B2 and F2 steel sheets, which have a pearlite structure, have vTs
Has a low toughness of -50 ° C or less. Fine-grained ferrite (AS
TM No. A3, C2, E2, G2, H2 steel sheet which is a mixed structure of +11) + bainite has a YR of -55 ° C.
The value exceeds 80%. Bainite single-phase structure E
Also in No. 3, the YR value at −55 ° C. exceeds 80%. Also,
Even if the structure is a mixed structure of coarse-grained ferrite and bainite, O1, P1, Q1, whose oxygen content exceeds 30 ppm
VE-55 (min) of R1, S1, T1 steel plate is 47J
Is below. Furthermore, S ≦ 20 ppm, P ≦ 0.0
The I1, J1, L1 steel plate added with Ca of 0.5% or more and 2.0% or less in 15% or less and the K1 steel plate added with REM of 0.005% or more and 0.02% or less are HA.
No Z cracking has occurred. Ca even if Ca is added
HAZ cracking has occurred in the T1 steel sheet to which N having an A / S of less than 0.5, N having an A / S of more than 2.0, and excessive REM is added.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】以上の結果から明らかなように、本発明
に係る鋼材は、安定した低温靱性を有し、かつ低温(−
20℃〜−60℃)で低YR値(≦80%)を示すの
で、低温で使用される建築構造物の新耐震設計を可能に
する。従って、建物の安全性が増す。また、鋼材の大量
生産が可能で、しかも価格も安く、溶接施工が容易で、
建設工期も短縮でき、全体として建設費が低廉で済む。
As is clear from the above results, the steel material according to the present invention has stable low temperature toughness and low temperature (-
Since it shows a low YR value (≤80%) at 20 ° C to -60 ° C), it enables new seismic design of building structures used at low temperatures. Therefore, the safety of the building is increased. In addition, the mass production of steel is possible, the price is low, the welding work is easy,
The construction period can be shortened and the construction cost can be reduced as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】引張試験温度と降伏比(=上降伏点/引張強
度)の関係を示した図。
FIG. 1 is a diagram showing a relationship between a tensile test temperature and a yield ratio (= upper yield point / tensile strength).

【図2】酸素含有量と−55℃で試験したシャルピー衝
撃吸収エネルギー(vE−55)の関係を示した図。
FIG. 2 is a graph showing the relationship between oxygen content and Charpy impact absorbed energy (vE-55) tested at −55 ° C.

【図3】大入熱SAW溶接による半ボックス試験体の形
状、および超音波探傷試験位置の説明図。
FIG. 3 is an explanatory view of a shape of a half-box test body by large heat input SAW welding and an ultrasonic flaw detection test position.

【図4】半ボックス施工試験におけるHAZ割れ率の定
義を説明する図。
FIG. 4 is a diagram for explaining the definition of HAZ crack ratio in a half-box construction test.

【符号の説明】[Explanation of symbols]

1…SAW角溶接部、2…ウェブ鋼板、3…フランジ鋼
板、4…ダイヤフラム、5…エレクトロスラグダイヤフ
ラム溶接部、6…当て金、7…超音波探傷によるΔ欠陥
およびX欠陥エコー発生部分。
DESCRIPTION OF SYMBOLS 1 ... SAW angle welding part, 2 ... Web steel plate, 3 ... Flange steel plate, 4 ... Diaphragm, 5 ... Electroslag diaphragm weld part, 6 ... Pad, 7 ... Delta defect and X defect echo generation part by ultrasonic flaw detection.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 三郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 石川 博 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Saburo Tani, 1-2 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Hiroshi Ishikawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素含有量が30ppm以下の鉄基合金
で、粗粒フェライトとベイナイトの2相組織を有し、低
温で低降伏比を満足する低温用建築鋼材。
1. A low-temperature building steel material which is an iron-based alloy having an oxygen content of 30 ppm or less, has a two-phase structure of coarse-grained ferrite and bainite, and satisfies a low yield ratio at low temperatures.
【請求項2】 重量%で、C:0.04〜0.18%,
Si:0.05〜0.40%,Mn:0.6〜1.7
%,Al:0.001〜0.06%,N:≦30pp
m,O:≦30ppm,残部がFeおよび不可避的不純
物からなる低温靱性に優れかつ低温で低降伏比の低温用
建築鋼材。
2. C: 0.04 to 0.18% by weight,
Si: 0.05 to 0.40%, Mn: 0.6 to 1.7
%, Al: 0.001 to 0.06%, N: ≦ 30 pp
m, O: ≤ 30 ppm, the balance being Fe and unavoidable impurities, which is excellent in low temperature toughness, has a low yield ratio at low temperatures, and is a low temperature building steel material.
【請求項3】 重量%で、C:0.04〜0.18%,
Si:0.05〜0.40%,Mn:0.6〜1.7
%,Al:≦0.07%,N≦30ppm,O:≦30
ppmに加えて、Ti:0.005〜0.015%,N
b:0.005〜0.04%,V:0.005〜0.1
%,Cu:0.05〜0.6%,Ni:0.05〜0.
6%,Cr:0.05〜1.0%,Mo:0.02〜
0.6%の内、1種または2種以上、残部がFeおよび
不可避的不純物からなる低温靱性に優れかつ低温で低降
伏比の低温用建築鋼材。
3. C: 0.04 to 0.18% by weight,
Si: 0.05 to 0.40%, Mn: 0.6 to 1.7
%, Al: ≤ 0.07%, N ≤ 30 ppm, O: ≤ 30
In addition to ppm, Ti: 0.005 to 0.015%, N
b: 0.005-0.04%, V: 0.005-0.1
%, Cu: 0.05-0.6%, Ni: 0.05-0.
6%, Cr: 0.05 to 1.0%, Mo: 0.02
Of 0.6%, one or two or more, the balance being Fe and unavoidable impurities, which is excellent in low temperature toughness and has a low yield ratio at low temperature, and is a low temperature building steel material.
【請求項4】 請求項2または3の鋼材において、更に
P:≦0.015%,S:≦0.002%に規制し、C
a:Ca/Sで0.5以上2.0以下、REM:0.0
05〜0.02%の少なくとも一方が添加された超大入
熱溶接のHAZ割れ感受性の低い低温靱性に優れかつ低
温で低降伏比の低温用建築鋼材。ただし、REMは希土
類元素の1種又は2種以上を示す。
4. The steel material according to claim 2 or 3, further restricted to P: ≤ 0.015% and S: ≤ 0.002%, and C
a: 0.5 or more and 2.0 or less in Ca / S, REM: 0.0
A low-temperature building steel material to which at least one of 0.05 to 0.02% is added, which has excellent low-temperature toughness with low HAZ crack susceptibility in ultra-high heat input welding and has a low yield ratio at low temperatures. However, REM represents one or more rare earth elements.
【請求項5】 請求項1ないし4のいずれか1の鋼材に
おいて、−20℃〜−60℃の低温で降伏比が80%以
下である低温用建築鋼材。
5. The steel material according to any one of claims 1 to 4, wherein a yield ratio is 80% or less at a low temperature of -20 ° C to -60 ° C.
JP04453095A 1995-03-03 1995-03-03 Low-temperature building steel Expired - Fee Related JP3214281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04453095A JP3214281B2 (en) 1995-03-03 1995-03-03 Low-temperature building steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04453095A JP3214281B2 (en) 1995-03-03 1995-03-03 Low-temperature building steel

Publications (2)

Publication Number Publication Date
JPH08246094A true JPH08246094A (en) 1996-09-24
JP3214281B2 JP3214281B2 (en) 2001-10-02

Family

ID=12694075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04453095A Expired - Fee Related JP3214281B2 (en) 1995-03-03 1995-03-03 Low-temperature building steel

Country Status (1)

Country Link
JP (1) JP3214281B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470052B1 (en) * 2000-11-17 2005-02-04 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
KR100481363B1 (en) * 2000-12-15 2005-04-07 주식회사 포스코 Method of manufacturing high strength steel plate to be precipitating TiN and TiO for welded structures
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR100568360B1 (en) * 2001-12-24 2006-04-05 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
JP2010053453A (en) * 2009-12-01 2010-03-11 Sumitomo Metal Ind Ltd Steel sheet having excellent fatigue crack propagation resistance and production method thereof
JP2016011439A (en) * 2014-06-27 2016-01-21 新日鐵住金株式会社 Thick steel plate for cold press molding rectangular steel tube, cold press molding rectangular steel tube and weld joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241506B2 (en) 2018-10-30 2023-03-17 ウイングアーク1st株式会社 Correction support device and correction support program for optical character recognition results

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470052B1 (en) * 2000-11-17 2005-02-04 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR100481363B1 (en) * 2000-12-15 2005-04-07 주식회사 포스코 Method of manufacturing high strength steel plate to be precipitating TiN and TiO for welded structures
KR100568360B1 (en) * 2001-12-24 2006-04-05 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
JP2010053453A (en) * 2009-12-01 2010-03-11 Sumitomo Metal Ind Ltd Steel sheet having excellent fatigue crack propagation resistance and production method thereof
JP2016011439A (en) * 2014-06-27 2016-01-21 新日鐵住金株式会社 Thick steel plate for cold press molding rectangular steel tube, cold press molding rectangular steel tube and weld joint

Also Published As

Publication number Publication date
JP3214281B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
US6007644A (en) Heavy-wall H-shaped steel having high toughness and yield strength and process for making steel
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP4276480B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance
JP3214281B2 (en) Low-temperature building steel
JPH0995731A (en) Production of building steel for low temperature use
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP2770718B2 (en) High strength hot rolled steel strip excellent in HIC resistance and method for producing the same
JP2011208213A (en) Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness
JP3743033B2 (en) Manufacturing method of steel materials for low-temperature buildings
JP3440710B2 (en) H-section steel excellent in toughness of fillet portion and method for producing the same
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
RU2136775C1 (en) High-strength weldable steel and its versions
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JPH0995732A (en) Production of building steel for low temperature use and building steel for low temperature use
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JP7473770B2 (en) High ductility steel plate for steel pipes having excellent toughness in welded heat affected zone and manufacturing method thereof, and structural steel pipes having excellent toughness in welded heat affected zone and manufacturing method thereof
JPH05245658A (en) Production of austenitic stainless clad steel sheet excellent in brittleness propagation stoppage property of base metal
JPH09165644A (en) Building steel having low yield ratio at low temperature

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees