JPH0824571B2 - Preparation of thermostable restriction enzyme - Google Patents

Preparation of thermostable restriction enzyme

Info

Publication number
JPH0824571B2
JPH0824571B2 JP3291848A JP29184891A JPH0824571B2 JP H0824571 B2 JPH0824571 B2 JP H0824571B2 JP 3291848 A JP3291848 A JP 3291848A JP 29184891 A JP29184891 A JP 29184891A JP H0824571 B2 JPH0824571 B2 JP H0824571B2
Authority
JP
Japan
Prior art keywords
restriction enzyme
sel
preparation
present
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3291848A
Other languages
Japanese (ja)
Other versions
JPH0549475A (en
Inventor
正人 三宅
泰男 浅田
勝 白木
栄 加藤
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP3291848A priority Critical patent/JPH0824571B2/en
Publication of JPH0549475A publication Critical patent/JPH0549475A/en
Publication of JPH0824571B2 publication Critical patent/JPH0824571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、耐熱性酵素の調製法に
関する。
TECHNICAL FIELD The present invention relates to a method for preparing a thermostable enzyme.

【従来の技術】制限酵素の調製法は現在までに様々な方
法が報告されているが、それらはいずれもイオン交換カ
ラムクロマトグラフィー等による分離操作を2回以上行
うために複雑な操作を必要とするほか、最終的な酵素の
収量も少ないものであった。このように、生物から微量
にしか分離できない制限酵素は遺伝子工学的に重要なも
のであっても経済的な分離・調製法が存在せず、商業化
できなかった。
2. Description of the Related Art Various methods for preparing a restriction enzyme have been reported to date, but all of them require a complicated operation because the separation operation by ion exchange column chromatography or the like is performed twice or more. In addition, the final yield of enzyme was low. As described above, a restriction enzyme that can be separated only from a living organism in a trace amount, even if it is important in genetic engineering, cannot be commercialized because there is no economical separation / preparation method.

【発明が解決しようとする課題】本発明の課題は、特に
耐熱性の制限酵素の調製法に関し、簡便な操作で、高い
活性純度を有する上記酵素を高収率で得ることのできる
新規な調製法を提供しようとするものである。
An object of the present invention relates to a method for preparing a thermostable restriction enzyme, and a novel preparation capable of obtaining the above enzyme having a high activity purity in a high yield by a simple operation. It is an attempt to provide the law.

【課題を解決するための手段】そこで本発明者等は、鋭
意研究の結果、目的とする耐熱性制限酵素が失活しはじ
める最低温度で、夾雑するエンドヌクレアーゼが実質的
に失活する時間加熱処理することにより、簡便な操作
で、高い活性純度を有する耐熱性制限酵素を高収率で調
製できることを見い出し本発明を完成するに至った。す
なわち、本発明は、耐熱性制限酵素が失活しはじめる最
低温度で、夾雑するエキソヌクレアーゼが実質的に失活
するまで加熱処理することを特徴とする耐熱性制限酵素
の調製法にある。耐熱性制限酵素としては好熱性藍藻シ
ネココッカス・エロンガタス(Synechococc
us elongatus)由来の耐熱性制限酵素Se
l Iが用いられる。また、加熱処理は60℃で10分
間行われる。以下、本発明を詳細に説明する。本発明の
調製法は、Bst I、Spl I等種々の耐熱性制限
酵素の調製に適用できるが、以下においては、好熱性藍
シネココッカスエロンガタス(Synechoco
ccus elongatus)(FERM P−12
393)の菌体中に存在する耐熱性制限酵素Sel I
の調製を例にとり、本発明を具体的に説明する。このS
el Iは、本発明者等が始めて単離に成功した新規な
酵素であり、以下表1に示す酵素学的性質を有する。 本発明により、耐熱性の制限酵素Sel Iを得るに
は、まず、培養した好熱性藍藻を集菌し、超音波破砕
後、30,000G 30分間の遠心分離操作により制
限酵素含有可溶性タンパク質画分を得る。次いで、陰イ
オン交換カラムとしてQ−セファロースファーストフロ
ーゲルカラムを用い、0mM NaCl条件で前述の制
限酵素含有溶性タンパク質画分をカラムに吸着させる。
次に、0mMから100mMまでの濃度勾配をつけたT
E緩衝液(10mM Tris−HCl,1mM ED
TA,pH8.0,0mM−100mM NaCl)で
吸着物質を溶出させると、NaCl濃度85mMのTE
緩衝液で制限酵素Sel Iは溶出される。この溶液中
にはわずかにエキソヌクレアーゼが混入している。そこ
でこのエキソヌクレアーゼ除去の手段として、Sel
Iが失活しはじめる最低温度で、このエキソヌクレアー
ゼが実質的に失活するまで加熱処理する。具体的には6
0℃で10分間加熱処理する。このようにして高い活性
純度を有するSelIを得ることができる。本発明の調
製法の特徴を以下に説明する。カラムによる分離操作は
手間と時間がかかり、従来法のようにこれを繰り返すこ
とは目的物の損失を大きくする。本発明の調製法は、カ
ラムによる分離操作は1回しか用いていない。その結
果、操作が簡素化され、目的物である制限酵素の損失は
きわめて少ない。陰イオン交換カラムによって分離され
た制限酵素試料中には微量のエキソヌクレアーゼが混入
している。これを除去するために用いた熱処理は本発明
を特徴づけている。すなわち本発明は、陰イオン交換カ
ラムによる分離と熱処理を組み合わせることで、精製品
と同等の活性純度のSel I溶液を得るものであり、
上記したSel Iの調製における具体的加熱温度であ
る60℃という温度は、Sel Iが失活しはじめる最
低温度である。エキソヌクレアーゼについても同様であ
る。そこで、この温度による熱処理を適当な時間だけ試
料に施せば、エキソヌクレアーゼを失活させ、しかも、
Sel Iの失活を最小限に抑えることができる。その
時間が10分間である。このことはSel Iとエキソ
ヌクレアーゼの60℃に対する失活速度が等しく、今、
Sel Iとエキソヌクレアーゼが9:1の割合で存在
すると仮定するとSel Iが1減ると、エキソヌクレ
アーゼも1減り、この時、Sel I活性は純化された
ことになる。実際のサンプル(カラムで分画したもの)
中にはSel Iはエキソヌクレアーゼに比べて圧倒的
に優先して存在している。これはSel Iサンプルを
用いて1時間、4時間、over nightでDNA
を消化させたとき、アガロースゲル電気泳動のパターン
に差が認められなかったことで確認できた。実験的に熱
によるSel I活性の純化効果を調べてみると、60
℃、10分以上の熱処理でエキソヌクレアーゼは無視で
きるレベルにまで活性を低下させることができた。この
定性評価法として、Cutting−Ligation
−Recutting法を用いた。定量法としては、反
応液量50μL、反応温度50℃、反応時間1時間なる
条件で、λ−DNAをSel Iで消化したときに生ず
るOD260nmの変化からユニットを算出する方法を
用いた。式は、ΔOD260nm×50μg〔U:ユニ
ット〕(1U:1時間に1μgのλDNAを完全消化す
るにちょうど足りる活性)である。こうして分離された
Sel I試料は、3段階のカラムによって精製された
Sel I試料と同等の活性純度であった。即ち、我々
が発明した方法によって分離されたSel I試料によ
って切断されたDNAはリガーゼによって再び接合で
き、接合されたDNAはまたSel Iによって切断す
ることができた。これは一般的な、制限酵素の活性純度
の定性評価法である。以上、本発明について、耐熱性藍
藻シネココッカス・エロンガタス(Synecho−c
occus elongatus)由来のSel Iを
例に説明したが、加熱に対する酵素の失活条件の差異を
利用する本発明の調製法は、このSel Iのみにとど
まらず、夾雑酵素と加熱に対する失活条件に差異を有す
る種々の耐熱性の制限酵素の調製にも適用できる。
The inventors of the present invention have, as a result of diligent research, conducted a heating for a time at which the contaminating endonuclease is substantially inactivated at the lowest temperature at which the heat-resistant restriction enzyme of interest begins to be inactivated. The present inventors have found that a thermostable restriction enzyme having a high activity purity can be prepared in a high yield by a simple operation by treatment, and have completed the present invention. That is, the present invention resides in a method for preparing a thermostable restriction enzyme, which comprises performing heat treatment at the lowest temperature at which the thermostable restriction enzyme begins to deactivate until the contaminating exonuclease is substantially deactivated. Thermostable cyanobacterium Synechococcus elongatus (Synechococc)
heat-resistant restriction enzyme Se derived from us elongatus)
l I is used. The heat treatment is performed at 60 ° C. for 10 minutes. Hereinafter, the present invention will be described in detail. The preparation method of the present invention can be applied to the preparation of various thermostable restriction enzymes such as Bst I and Spl I. In the following, the thermophilic cyanobacterium Synechococcus elongatus (Synechoco) will be described below.
ccus elongatus) (FERM P-12
393) the thermostable restriction enzyme Sel I present in the bacterial cells
The present invention will be described in detail by taking the preparation of This S
el I is a novel enzyme that the present inventors have succeeded in isolating for the first time, and has the enzymatic properties shown in Table 1 below. According to the present invention, in order to obtain the thermostable restriction enzyme Sel I, first, the cultured thermophilic cyanobacteria are collected, ultrasonically disrupted, and centrifuged at 30,000 G for 30 minutes to perform a restriction enzyme-containing soluble protein fraction. To get Then, a Q-Sepharose fast flow gel column is used as the anion exchange column, and the above-mentioned restriction enzyme-containing soluble protein fraction is adsorbed onto the column under 0 mM NaCl conditions.
Next, T with a concentration gradient from 0 mM to 100 mM was added.
E buffer (10 mM Tris-HCl, 1 mM ED
When the adsorbed substance was eluted with TA, pH 8.0, 0 mM-100 mM NaCl), TE with a NaCl concentration of 85 mM was obtained.
The restriction enzyme Sel I is eluted with the buffer. Exonuclease is slightly mixed in this solution. Therefore, as a means of removing this exonuclease, Sel
Heat treatment is performed at the lowest temperature at which I starts to be inactivated until the exonuclease is substantially inactivated. Specifically 6
Heat treatment at 0 ° C. for 10 minutes. In this way, SelI having high activity purity can be obtained. The features of the preparation method of the present invention are described below. Separation operation using a column takes time and effort, and repeating this as in the conventional method increases the loss of the target substance. In the preparation method of the present invention, the separation operation by the column is used only once. As a result, the operation is simplified and the loss of the target restriction enzyme is extremely small. A small amount of exonuclease is mixed in the restriction enzyme sample separated by the anion exchange column. The heat treatment used to remove this characterizes the present invention. That is, the present invention is to obtain a Sel I solution having an activity purity equivalent to that of a purified product by combining separation with an anion exchange column and heat treatment.
The specific heating temperature of 60 ° C. in the preparation of Sel I described above is the lowest temperature at which Sel I starts deactivating. The same applies to exonucleases. Therefore, if the sample is heat-treated at this temperature for an appropriate time, the exonuclease is inactivated, and
The deactivation of Sel I can be minimized. That time is 10 minutes. This means that the inactivation rates of Sel I and exonuclease at 60 ° C are equal,
Assuming that Sel I and exonuclease are present at a ratio of 9: 1, if Sel I is reduced by 1, exonuclease is also reduced by 1, and at this time, Sel I activity is purified. Actual sample (column fractionated)
Among them, Sel I is predominantly present over exonuclease. This is DNA for 1 hour, 4 hours, over night using Sel I sample.
This was confirmed by the fact that no difference was observed in the agarose gel electrophoresis pattern when digested. Experimentally examining the purification effect of Sel I activity by heat, 60
Exonuclease was able to reduce the activity to a negligible level by heat treatment at 10 ° C. for 10 minutes or more. As this qualitative evaluation method, Cutting-Ligation
-The Recutting method was used. As the quantification method, a method was used in which the unit was calculated from the change in OD260 nm generated when λ-DNA was digested with Sel I under the conditions of a reaction solution volume of 50 μL, a reaction temperature of 50 ° C., and a reaction time of 1 hour. The formula is ΔOD 260 nm × 50 μg [U: unit] (1 U: activity just enough to completely digest 1 μg of λDNA in 1 hour). The Sel I sample thus separated had an activity purity equivalent to that of the Sel I sample purified by the three-step column. That is, the DNA cleaved by the Sel I sample isolated by the method we invented could be religated by ligase, and the ligated DNA could also be cleaved by Sel I. This is a general method for qualitatively evaluating the activity purity of restriction enzymes. As described above, regarding the present invention, the heat-resistant cyanobacteria Synechococcus elongatus ( Synecho-c
Occurrence of Sel I from occus elongatus ) has been described as an example. It can also be applied to the preparation of various thermostable restriction enzymes with differences.

【発明の効果】従来から行われている制限酵素分離法を
用いてSel Iを調製する場合においては、湿菌体2
0gから得られる制限酵素量は100units程度で
あった。この方法はイオン交換カラムによる分離操作を
3回も行うために酵素の損失が大きかったものと考えら
れる。これに対し、本発明の調製によれば、カラムによ
る分離が1回のみのため操作が簡便な上に、従来からの
方法の10倍以上の収量が得られるものである。したが
って、本発明の調製法は遺伝子操作技術において重要な
位置を占める耐熱性の制限酵素を提供する手段として極
めて有用なものである。
INDUSTRIAL APPLICABILITY When Sel I is prepared by the conventional restriction enzyme separation method, wet cell 2
The amount of restriction enzyme obtained from 0 g was about 100 units. It is considered that this method resulted in a large loss of the enzyme because the separation operation using the ion exchange column was repeated three times. On the other hand, according to the preparation of the present invention, since the separation by the column is performed only once, the operation is simple, and the yield is 10 times or more that of the conventional method. Therefore, the preparation method of the present invention is extremely useful as a means for providing a thermostable restriction enzyme that occupies an important position in gene manipulation technology.

【実施例】好熱性藍藻シネココッカス・エロンガタス
(Synechococcus elongatus)
(FERM P−12393)の菌体0.01gを以下
表2の培地に接種し、温度50℃で168時間培養を行
った。 得られたシネココッカス・エロンガタス(Synech
ococcus elongatus)の湿菌体20g
をTE緩衝液40mlに懸濁し、超音波破砕後、30,
000G 30分間遠心分離を行い、その上清を制限酵
素含有可溶タンパク質画分(1)とした。次に、内径2
0mm,高さ60mmのカラムに充填されたQ−セファ
ロースファーストフローゲルに上記画分(1)を吸着さ
せた。非吸着成分をTE緩衝液(0mM NaCl)で
洗い流したのち、流速2.5ml/分、2時間、0mM
から200mMまでのNaCl濃度勾配をつけたTE緩
衝液で吸着成分を流出させた。その結果、60mMから
80mMのNaCl濃度で制限酵素Sel Iは溶出さ
れた。ここで得られた酵素溶液(2)15ml中には微
量のエキソヌクレアーゼが含まれていた。そこで、これ
を失活させるために熱処理を行った。酵素溶液(2)1
5mlを入れた試験管を60℃の湯に10分間浸した。
得られた酵素液(3)中の制限酵素量は1000uni
ts以上であった。ただし、1unitsとは、酵素反
応液50μl中、50℃で1時間に1μgのλDNAを
完全に分解する酵素量を意味する。また、λDNA,p
BR322,φ×174をこの酵素液(3)で消化後電
気泳動し、得られたバンドパターンを検討したところ、
アシネトバクター(Acinetobacter)sp
由来の制限酵素AccII(至適pH7.5,至適温度
37℃/60mM NaCl)と一致した。
[Example] Thermophilic cyanobacteria Synechococcus elongatus
(Synechococcus elongatus)
0.01 g of (FERM P-12393) cells was inoculated into the medium shown in Table 2 below, and cultured at a temperature of 50 ° C. for 168 hours. Obtained Synechococcus elongatus (Synech
ococcus elongatus) wet cells 20 g
Was suspended in 40 ml of TE buffer, ultrasonically disrupted,
Centrifugation was performed at 000 G for 30 minutes, and the supernatant was used as a restriction enzyme-containing soluble protein fraction (1). Next, inner diameter 2
The above fraction (1) was adsorbed on a Q-Sepharose fast flow gel packed in a column of 0 mm and a height of 60 mm. After washing off the non-adsorbed components with TE buffer (0 mM NaCl), the flow rate was 2.5 ml / min for 2 hours, 0 mM.
The adsorbed components were made to flow out with TE buffer having a NaCl concentration gradient from 1 to 200 mM. As a result, the restriction enzyme Sel I was eluted at a NaCl concentration of 60 mM to 80 mM. A small amount of exonuclease was contained in 15 ml of the enzyme solution (2) obtained here. Therefore, heat treatment was performed to inactivate this. Enzyme solution (2) 1
A test tube containing 5 ml was immersed in hot water at 60 ° C. for 10 minutes.
The amount of restriction enzyme in the obtained enzyme solution (3) was 1000 uni.
It was ts or more. However, 1 unit means the amount of enzyme that completely decomposes 1 μg of λDNA in 50 μl of the enzyme reaction solution at 50 ° C. for 1 hour. Also, λDNA, p
BR322, φ × 174 was digested with this enzyme solution (3) and electrophoresed, and the obtained band pattern was examined.
Acinetobacter sp
It coincided with the derived restriction enzyme AccII (optimal pH 7.5, optimal temperature 37 ° C./60 mM NaCl).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 好熱性藍藻シネココッカス・エロンガタ
ス(Synechococcus elongatu
s)を培養し、集菌し、超音波破砕後、遠心分離により
得たタンパク質画分を陰イオン交換カラムに吸着させ、
NaCl濃度85mMのTE緩衝液で溶出した制限酵素
SelIを、60℃で10分間加熱処理することを特徴
とする、下記の酵素学的性質を有する耐熱性制限酵素S
elIの高収量調製法。作用 :DNAの塩基配列CGCGの5’側を切断 基質特異性:CGCG 至適pH :pH6.5 至適温度 :50〜55℃ 金属イオンの要求:Mg 2+ のみ要求 失活温度 :70℃、10分
1. A thermophilic cyanobacterium, Synechococcus elongatu.
s) is cultivated, cells are collected, ultrasonically disrupted, and then centrifuged.
Adsorb the obtained protein fraction to an anion exchange column,
Restriction enzyme eluted with TE buffer with NaCl concentration of 85 mM
SelI is heat-treated at 60 ° C. for 10 minutes , which is a thermostable restriction enzyme S having the following enzymatic properties.
High-yield preparation of elI. Action: Cleavage 5'side of the base sequence CGCG of DNA Substrate specificity: CGCG optimum pH: pH 6.5 optimum temperature: 50-55 ° C Metal ion requirement: Mg 2+ only required deactivation temperature: 70 ° C, 10 Minute
JP3291848A 1991-08-20 1991-08-20 Preparation of thermostable restriction enzyme Expired - Lifetime JPH0824571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3291848A JPH0824571B2 (en) 1991-08-20 1991-08-20 Preparation of thermostable restriction enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3291848A JPH0824571B2 (en) 1991-08-20 1991-08-20 Preparation of thermostable restriction enzyme

Publications (2)

Publication Number Publication Date
JPH0549475A JPH0549475A (en) 1993-03-02
JPH0824571B2 true JPH0824571B2 (en) 1996-03-13

Family

ID=17774204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3291848A Expired - Lifetime JPH0824571B2 (en) 1991-08-20 1991-08-20 Preparation of thermostable restriction enzyme

Country Status (1)

Country Link
JP (1) JPH0824571B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257880A (en) * 1988-12-16 1990-10-18 Biotechnica Internatl Inc Isolation of heat stable enzyme from medium heat resistant host cell treated by means of gene engineering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257880A (en) * 1988-12-16 1990-10-18 Biotechnica Internatl Inc Isolation of heat stable enzyme from medium heat resistant host cell treated by means of gene engineering

Also Published As

Publication number Publication date
JPH0549475A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
US8895250B2 (en) Nucleic acid-free thermostable enzymes and methods of production thereof
JP2729628B2 (en) Method for preparing glucose dehydrogenase from macrobacteria
JP2863738B2 (en) DNA encoding thermostable pyrophosphatase
Dabrowski et al. Cloning, expression, and purification of the His6-tagged thermostable b-galactosidase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme
JP2854902B2 (en) Isolation of thermostable enzymes from genetically engineered mesophilic host cells
NAKAI et al. Studies on the nucleases of a strain of Bacillus subtilis
JPH11243961A (en) New catalase, gene of the same, and composition containing the same, and preparation of catalase by genetic engineering
US6153398A (en) Method to identify specific inhibitors of IMP dehydrogenase
JPH0824571B2 (en) Preparation of thermostable restriction enzyme
JPH0880196A (en) Dna fragment containing tannase gene, novel recombinant plasmid, production of tannase and promotor
JP3012919B2 (en) Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same
JPH0262237B2 (en)
JPH05304964A (en) Dna polymerase gene
JP2961245B2 (en) Thermostable acyl peptide hydrolase and gene encoding the same
JP4415247B2 (en) Novel glycerol kinase, gene and method for producing glycerol kinase using the gene
JP2006055131A (en) New d-aminoacylase and gene thereof
JPS6140789A (en) Novel restriction enzyme and preparation thereof
JP2788070B2 (en) 2-haloacid dehalogenase producing gene
JPH10248574A (en) New lactic acid-oxidizing enzyme
JP3878293B2 (en) Sucrose fatty acid esterase
JPH05236954A (en) Heat-resistant adenosine-5'-phosphosulfate kinase and its production
Turgimbaeva et al. Biochemical characterization of XthA AP-endonuclease from Helicobacter pylori
JPH0116156B2 (en)
JP3491695B2 (en) Method for producing N-acylneuraminic acid aldolase
JPS6326991B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term