JPH08236861A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH08236861A
JPH08236861A JP2501996A JP2501996A JPH08236861A JP H08236861 A JPH08236861 A JP H08236861A JP 2501996 A JP2501996 A JP 2501996A JP 2501996 A JP2501996 A JP 2501996A JP H08236861 A JPH08236861 A JP H08236861A
Authority
JP
Japan
Prior art keywords
reflecting surface
semiconductor laser
passivation
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2501996A
Other languages
Japanese (ja)
Other versions
JP2783240B2 (en
Inventor
Takashi Kajimura
俊 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8025019A priority Critical patent/JP2783240B2/en
Publication of JPH08236861A publication Critical patent/JPH08236861A/en
Application granted granted Critical
Publication of JP2783240B2 publication Critical patent/JP2783240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the passivation method of a reflecting surface of semiconductor laser which is excellent in workability and mass-productivity, by forming a dielectric film from the side surfaces of a plurality of semiconductor layers containing an active layer laminated on a semiconductor substrate to the side surface of the semiconductor substrate, and forming a region in which the dielectric film is not formed, on the semiconductor substrate side surface. CONSTITUTION: On the surface of an N-type GaAs substrate 1, a belt type recessed trench is formed, on which an N-type GaAlAs clad layer 3, a GaAlAs active layer 4, a P-type GaAlAs clad layer 5 and an N-type GaAs cap layer 6 are formed. After that, a P side electrode 8 is formed. A photoresist film is used as a mask, and a resonator reflecting surface 11 is formed by a reactive ion beam etching method. The reflecting surface can be formed almost vertically. By using a sputter coating method, SiO2 10 is formed on the whole surface. In this case, SiO2 creeps over the resonator reflecting surface, and a passivation film is formed. A photoresist mask is formed, SiO2 on the P side electrode is eliminated, and an N side electrode is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、量産化や電子回路との
集積化に適した、半導体レーザ素子の反射面パッシベー
ション処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection surface passivation treatment method for semiconductor laser devices, which is suitable for mass production and integration with electronic circuits.

【0002】[0002]

【従来の技術】半導体レーザ素子は小形、高効率、消費
電力が小さい、等、他のレーザにない優れた特徴を有
し、光通信用光源や光ディスク用ピックアップ等に広く
応用されるようになってきた。このように半導体レーザ
の実用化が急速に進んだ理由の1つには、半導体レーザ
共振器反射面に誘電体等のパッシベーション処理を施
し、端面劣化に起因するレーザ素子の劣化現象を著しく
改善したことがあげられる。反射面パッシベーション処
理の実施例は数多くみられる(例えば、ケー・クレッセ
ル他、アール・シー・エー・レビュー第36巻,第2号,第
230頁,1975年(K.Kressel et al., RCA Review Vol.36,
No.2,P.230,1975)やエフ・アール・ナッシュ他、アプ
ライドフィジックスレター第35巻,第12号,第905頁,1979
年(F.R.Nash et al. Appl. Phys. Lett. Vol.35No.12,
P.905,1979))。
2. Description of the Related Art A semiconductor laser device has advantages such as a small size, high efficiency, and low power consumption which are not found in other lasers, and has been widely applied to optical communication light sources, optical disk pickups, and the like. Came. One of the reasons why the semiconductor laser has been rapidly put into practical use is that the reflection surface of the semiconductor laser resonator is passivated with a dielectric material or the like to remarkably improve the deterioration phenomenon of the laser element due to the end surface deterioration. Can be mentioned. There are numerous examples of reflective surface passivation treatments (see, for example, K. Kressel et al., AR C. Review, Vol. 36, No. 2, No.
230 pages, 1975 (K.Kressel et al., RCA Review Vol.36,
No.2, P.230,1975) and F.R.Nash et al., Applied Physics Letters Vol. 35, No. 12, 905, 1979.
Year (FRNash et al. Appl. Phys. Lett. Vol.35No.12,
P.905,1979)).

【0003】しかしながら、これまでの半導体レーザの
共振器用反射面は、結晶の特定方位を利用したへき開面
によって作製している。従って、レーザの高信頼性化の
ために施される反射面への誘電体膜コーティング等のパ
ッシベーション処理は、へき開を行ったチップ状態、あ
るいはステム等にボンディングした後に行っていた。そ
のため、上記のレーザ反射面パッシベーション処理は非
常に作業性が悪く、量産性に乏しいという大きな問題が
あった。
However, the conventional reflecting surface for a resonator of a semiconductor laser is formed by a cleavage plane utilizing a specific crystal orientation. Therefore, the passivation process such as coating of the dielectric film on the reflecting surface for improving the reliability of the laser has been performed after the cleaved chip state or after bonding to the stem or the like. Therefore, the above-mentioned laser reflection surface passivation treatment has a very poor workability and a large problem of poor mass productivity.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前記
問題を解決し、作業性、量産性の優れた、半導体レーザ
反射面パッシベーション法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser reflecting surface passivation method which solves the above problems and is excellent in workability and mass productivity.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、以下に示すような方法でレーザ
反射面のパッシベーション処理を行う。
In order to achieve the above object, in the present invention, passivation treatment of a laser reflecting surface is performed by the following method.

【0006】まず、たとえば化学エッチング法あるいは
ドライエッチング法等でレーザダブルへテロ層をほぼ垂
直に加工し、レーザ反射面を形成する。つぎに、このま
まウエーハ状態で表面全体にパッシベーション用誘電体
膜を形成する。パッシベーション用誘電体膜として以下
の実施例ではSiO2の例を示したが、他の周知誘電体膜を
用いても良いことはいうまでもない。この際、反射面を
成す凹部への誘電体膜の回り込みによって、反射面のパ
ッシベーション処理を行う。次にホトリソグラフィ技術
を利用して、表面電極上等の誘電体膜を除去し、電極面
を露出させる。
First, the laser double hetero layer is processed almost vertically by, for example, a chemical etching method or a dry etching method to form a laser reflecting surface. Next, a dielectric film for passivation is formed on the entire surface in the wafer state as it is. As the dielectric film for passivation, an example of SiO 2 is shown in the following embodiments, but it goes without saying that another known dielectric film may be used. At this time, passivation of the reflection surface is performed by wrapping the dielectric film around the concave portion forming the reflection surface. Next, using photolithography, the dielectric film on the surface electrode and the like is removed to expose the electrode surface.

【0007】[0007]

【作用】本発明によれば、ウエーハ状態でレーザ反射面
のパッシベーション処理が可能になるため、従来のチッ
プ状態で行う方法に比べて、作業性、量産性が著しく改
善される。
According to the present invention, the laser reflection surface can be passivated in a wafer state, so that workability and mass productivity are remarkably improved as compared with the conventional method in a chip state.

【0008】[0008]

【実施例】以下、本発明を実施例を用いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0009】図1は本発明の実施例を示す、Channeled
Substrate Planar(略してCSP)構造GaAS-GaAlAs系
半導体レーザの、光の進行方向の断面図(a)および、
垂直方向の断面図(b)である。各部を説明すると、1
はn形GaAs基板(Siドープ,〜1×1018cm-3,(100)
面)で、基板表面に巾約5μm、深さ約1.3μmの帯状
凹溝2が形成され、この上にn形Ga0.6Al0.4Asクラッド
層3(Teドープ、n〜1×1018cm-3、厚さ溝の外側で約
0.3μm)4、Ga0.86Al0.14As活性層4(アンドープ、
約0.06μm)、p形Ga0.6Al0.4Asクラッド層5(Znドー
プ、p〜5×1017cm-3、厚さ約2μm)n形GaAsキャッ
プ層6(Teドープ、n〜1×1018cm-3、厚さ約0.5μ
m)が形成されている。7は、Zn拡散によりp形に反転
した領域で、電流はこの部分を通して活性領域に効率よ
く集中して流れる構造となっている。共振器用反射面上
には、本発明のパッシベーション膜10が形成されてい
る。本実施例では、パッシベーション膜10はスパッタコ
ーティング法で形成したSiO2膜、約230nmである。次に
本発明の特徴を図2を用いて説明する。図2は図1に示
した本発明の実施例の素子作製法を示したものである。
半導体レーザ素子作製工程において、半導体基板上に各
半導体層を積層した後、p側電極8を形成し、ホトレジ
スト膜をマスクにして反応性イオンビームエッチング法
により、共振器反射面11を形成した(図2(a))。エ
ッチングガスには塩素Cl2を用い、圧力約1×10-1Pa、
加速電圧400Vでエッチングを行った。エッチング深さは
約7μmである。反射面の角度は、ほぼ垂直に形成する
ことができた。次に、スパッタコーティング法により、
SiO210を全面に形成した(図2(b))。このとき、共
振器反射面上にもSiO2が回り込み、表面平坦部に対して
約60%の速度で、パッシベーション膜が形成された。反
射面上でパッシベーション膜厚は約230nmであった。ス
パッタコーティングの方法としては、ターゲットにSiO2
を用い、Ar雰囲気中で高周波スパッタ法で行った。スパ
ッタコーティングの特長は上記のように溝の内部等にも
誘電体膜の形成が可能である点にある。次に、ホトリソ
グラフィ法によってホトレジストマスクを形成し、p電
極上のSiO2をエッチングで除去した。エッチャントには
フッ酸、フッ化アンモンの混合液を用いた。つづけて、
裏面を研磨、エッチングして、ウエーハ厚約250μmと
した後、n側電極を形成した(図2(c))。
FIG. 1 shows a channeled embodiment of the present invention.
Substrate Planar (CSP for short) structure GaAS-GaAlAs semiconductor laser cross-sectional view (a) in the light traveling direction, and
It is a vertical cross-sectional view (b). Explaining each part, 1
Is an n-type GaAs substrate (Si-doped, ~ 1 x 10 18 cm -3 , (100)
Surface), a band-shaped groove 2 having a width of about 5 μm and a depth of about 1.3 μm is formed on the surface of the substrate, and an n-type Ga 0.6 Al 0.4 As clad layer 3 (Te-doped, n-1 × 10 18 cm − 3 , thickness outside the groove about
0.3 μm) 4, Ga 0.86 Al 0.14 As active layer 4 (undoped,
0.06 μm), p-type Ga 0.6 Al 0.4 As cladding layer 5 (Zn-doped, p-5 × 10 17 cm −3 , thickness about 2 μm) n-type GaAs cap layer 6 (Te-doped, n-1 × 10 18) cm -3 , thickness about 0.5μ
m) is formed. Reference numeral 7 is a region inverted to p-type by Zn diffusion, and has a structure in which a current efficiently concentrates in the active region through this portion. The passivation film 10 of the present invention is formed on the resonator reflection surface. In this embodiment, the passivation film 10 is a SiO 2 film formed by a sputter coating method and has a thickness of about 230 nm. Next, the features of the present invention will be described with reference to FIG. FIG. 2 shows a method for manufacturing the device of the embodiment of the present invention shown in FIG.
In a semiconductor laser device manufacturing process, after stacking each semiconductor layer on a semiconductor substrate, a p-side electrode 8 is formed, and a resonator reflection surface 11 is formed by a reactive ion beam etching method using a photoresist film as a mask ( FIG. 2A). Chlorine Cl 2 is used as an etching gas, the pressure is about 1 × 10 -1 Pa,
Etching was performed at an acceleration voltage of 400V. The etching depth is about 7 μm. The angle of the reflecting surface could be made almost vertical. Next, by the sputter coating method,
SiO 2 10 was formed on the entire surface (FIG. 2B). At this time, SiO 2 also wraps around on the resonator reflection surface, and a passivation film is formed at a rate of about 60% with respect to the flat surface portion. The passivation film thickness on the reflecting surface was about 230 nm. As a method of sputter coating, the target is SiO 2
Was performed by a high frequency sputtering method in an Ar atmosphere. The feature of sputter coating is that a dielectric film can be formed inside the groove as described above. Next, a photoresist mask was formed by photolithography, and SiO 2 on the p electrode was removed by etching. A mixed solution of hydrofluoric acid and ammonium fluoride was used as the etchant. Continued to,
The back surface was polished and etched to have a wafer thickness of about 250 μm, and then an n-side electrode was formed (FIG. 2C).

【0010】本半導体レーザはしきい電流値約50mA、発
振波長約780nmで、光出力10mW程度まで横基本モードで
発振した。本実施例で述べたように、半導体レーザ反射
面のパッシベーション処理は、ウエーハ段階で行ってい
るため、従来のチップ状態で行う方法に比較して、作製
工程が著しく簡略化された。
This semiconductor laser oscillated in a transverse fundamental mode with a threshold current value of about 50 mA and an oscillation wavelength of about 780 nm and an optical output of about 10 mW. As described in the present embodiment, since the passivation treatment of the semiconductor laser reflecting surface is performed at the wafer stage, the manufacturing process is remarkably simplified as compared with the conventional method in the chip state.

【0011】以上述べたように、本発明によれば半導体
レーザ反射面のパッシベーション処理をチップに分割す
る前に行うことが可能になり、半導体レーザ素子作製工
程が著しく改善された。また、本発明は、GaAlAs系のみ
ならず、その他の材料や光集積素子、光・電子集積素子
等への応用も可能である。
As described above, according to the present invention, the passivation process of the semiconductor laser reflecting surface can be performed before dividing into chips, and the manufacturing process of the semiconductor laser device is remarkably improved. The present invention can be applied not only to the GaAlAs system, but also to other materials, optical integrated devices, optical / electronic integrated devices, and the like.

【0012】[0012]

【発明の効果】以上述べたように、本発明はウエーハ状
態で半導体レーザの反射面パッシベーションを行い、電
極表面上等の不要な誘電体膜は除去してしまう方法を提
供するもので、従来のチップ状態等でパッシベーション
処理を行う方法に比較して、素子作製工程が著しく改善
され、量産性に適した作製工程が可能になった。また、
本発明は、光集積素子や、レーザと電子回路を集積化し
た、光・電子集積素子への応用も可能で、その実用上の
効果は大である。
As described above, the present invention provides a method of performing passivation on the reflecting surface of a semiconductor laser in a wafer state and removing an unnecessary dielectric film on the electrode surface or the like. Compared to the method of performing passivation treatment in a chip state or the like, the device manufacturing process has been significantly improved, and a manufacturing process suitable for mass productivity has become possible. Also,
The present invention can be applied to an optical integrated device or an optical / electronic integrated device in which a laser and an electronic circuit are integrated, and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明の実施例を示す半導体レー
ザの光の進行方向に平行な断面図、図1(b)はその垂
直方向の断面図である。
FIG. 1A is a sectional view parallel to a light traveling direction of a semiconductor laser showing an embodiment of the present invention, and FIG. 1B is a sectional view in a vertical direction thereof.

【図2】本発明の半導体レーザの素子作製工程を示す断
面図である。
FIG. 2 is a cross-sectional view showing a process of manufacturing a semiconductor laser device according to the present invention.

【符号の説明】[Explanation of symbols]

1…n-GaAs基板、3…n-Ga0.6Al0.4Asクラッド層、4…
Ga0.86Al0.14As活性層、5…p-Ga0.6Al0.4Asクラッド
層、10…反射面SiO2パッシベーション膜、11…レーザ反
射面。
1 ... n-GaAs substrate, 3 ... n-Ga 0.6 Al 0.4 As clad layer, 4 ...
Ga 0.86 Al 0.14 As active layer, 5 ... p-Ga 0.6 Al 0.4 As clad layer, 10 ... Reflective surface SiO 2 passivation film, 11 ... Laser reflective surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、該半導体基板上に積層され
た活性層を含む複数の半導体層と、該半導体層の上面に
形成された電極からなる半導体レーザ素子において、上
記半導体層の側面から上記半導体基板の側面にかけて誘
電体からなる膜が形成され、且つ該半導体基板の側面は
該誘電体が形成されない領域を有することを特徴とする
半導体レーザ素子。
1. A semiconductor laser device comprising a semiconductor substrate, a plurality of semiconductor layers including an active layer laminated on the semiconductor substrate, and an electrode formed on an upper surface of the semiconductor layer, wherein a side surface of the semiconductor layer is provided. A semiconductor laser device, wherein a film made of a dielectric is formed on a side surface of the semiconductor substrate, and a side surface of the semiconductor substrate has a region where the dielectric is not formed.
JP8025019A 1996-02-13 1996-02-13 Semiconductor laser device Expired - Lifetime JP2783240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8025019A JP2783240B2 (en) 1996-02-13 1996-02-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8025019A JP2783240B2 (en) 1996-02-13 1996-02-13 Semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59270876A Division JPH0712099B2 (en) 1984-12-24 1984-12-24 Method for manufacturing semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH08236861A true JPH08236861A (en) 1996-09-13
JP2783240B2 JP2783240B2 (en) 1998-08-06

Family

ID=12154205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8025019A Expired - Lifetime JP2783240B2 (en) 1996-02-13 1996-02-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2783240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527756A (en) * 2015-09-28 2018-09-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141773A (en) * 1979-04-20 1980-11-05 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser element
JPS5948977A (en) * 1982-09-14 1984-03-21 Nec Corp Manufacture of laser diode
JPS59115583A (en) * 1982-12-22 1984-07-04 Sanyo Electric Co Ltd Semiconductor laser
JPS6199395A (en) * 1984-10-22 1986-05-17 Toshiba Corp Manufacture of semiconductor laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141773A (en) * 1979-04-20 1980-11-05 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser element
JPS5948977A (en) * 1982-09-14 1984-03-21 Nec Corp Manufacture of laser diode
JPS59115583A (en) * 1982-12-22 1984-07-04 Sanyo Electric Co Ltd Semiconductor laser
JPS6199395A (en) * 1984-10-22 1986-05-17 Toshiba Corp Manufacture of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527756A (en) * 2015-09-28 2018-09-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor laser

Also Published As

Publication number Publication date
JP2783240B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JP2783240B2 (en) Semiconductor laser device
JPH0712099B2 (en) Method for manufacturing semiconductor laser device
US7173273B2 (en) Semiconductor laser device
JPS63178574A (en) Manufacture of semiconductor laser device
JPH0638536B2 (en) Method for manufacturing semiconductor laser
JP3670768B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JPH07283484A (en) Manufacture of semiconductor laser element
JPH06112592A (en) Fabrication of semiconductor laser element
JPS59108386A (en) Semiconductor light emtting device
JP3908471B2 (en) Manufacturing method of semiconductor laser device
JPS59155977A (en) Manufacture of semiconductor laser element
KR20050001605A (en) Semiconductor Laser device and Producing Method Thereof
KR100776931B1 (en) Semiconductor laser device and manufacturing method thereof
KR100330591B1 (en) Method of making semiconductor laser diode
JPH0918082A (en) Semiconductor laser element
JP2567066B2 (en) Method for manufacturing semiconductor light emitting device
JPH10303511A (en) Manufacture of semiconductor laser device
JPS62115792A (en) Semiconductor laser
JPH06140716A (en) Manufacture of semiconductor laser element
JPH07302951A (en) Semiconductor laser device and manufacture thereof
JPS62256490A (en) Manufacture of semiconductor laser
JPH01238085A (en) Semiconductor laser element
JPH08316219A (en) Manufacture of semiconductor device
JPH03106090A (en) Semiconductor laser element
JPS59184582A (en) Semiconductor laser