JP2783240B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2783240B2
JP2783240B2 JP8025019A JP2501996A JP2783240B2 JP 2783240 B2 JP2783240 B2 JP 2783240B2 JP 8025019 A JP8025019 A JP 8025019A JP 2501996 A JP2501996 A JP 2501996A JP 2783240 B2 JP2783240 B2 JP 2783240B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
passivation
present
semiconductor
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8025019A
Other languages
Japanese (ja)
Other versions
JPH08236861A (en
Inventor
俊 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8025019A priority Critical patent/JP2783240B2/en
Publication of JPH08236861A publication Critical patent/JPH08236861A/en
Application granted granted Critical
Publication of JP2783240B2 publication Critical patent/JP2783240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、量産化や電子回路との
集積化に適した、半導体レーザ素子の反射面パッシベー
ション処理方法に関する。 【0002】 【従来の技術】半導体レーザ素子は小形、高効率、消費
電力が小さい、等、他のレーザにない優れた特徴を有
し、光通信用光源や光ディスク用ピックアップ等に広く
応用されるようになってきた。このように半導体レーザ
の実用化が急速に進んだ理由の1つには、半導体レーザ
共振器反射面に誘電体等のパッシベーション処理を施
し、端面劣化に起因するレーザ素子の劣化現象を著しく
改善したことがあげられる。反射面パッシベーション処
理の実施例は数多くみられる(例えば、ケー・クレッセ
ル他、アール・シー・エー・レビュー第36巻,第2号,第
230頁,1975年(K.Kressel et al., RCA Review Vol.36,
No.2,P.230,1975)やエフ・アール・ナッシュ他、アプ
ライドフィジックスレター第35巻,第12号,第905頁,1979
年(F.R.Nash et al. Appl. Phys. Lett. Vol.35No.12,
P.905,1979))。 【0003】しかしながら、これまでの半導体レーザの
共振器用反射面は、結晶の特定方位を利用したへき開面
によって作製している。従って、レーザの高信頼性化の
ために施される反射面への誘電体膜コーティング等のパ
ッシベーション処理は、へき開を行ったチップ状態、あ
るいはステム等にボンディングした後に行っていた。そ
のため、上記のレーザ反射面パッシベーション処理は非
常に作業性が悪く、量産性に乏しいという大きな問題が
あった。 【0004】 【発明が解決しようとする課題】本発明の目的は、前記
問題を解決し、作業性、量産性の優れた、半導体レーザ
反射面パッシベーション法を提供するものである。 【0005】 【課題を解決するための手段】上記目的を達成するため
に、本発明においては、以下に示すような方法でレーザ
反射面のパッシベーション処理を行う。 【0006】まず、たとえば化学エッチング法あるいは
ドライエッチング法等でレーザダブルへテロ層をほぼ垂
直に加工し、レーザ反射面を形成する。つぎに、このま
まウエーハ状態で表面全体にパッシベーション用誘電体
膜を形成する。パッシベーション用誘電体膜として以下
の実施例ではSiO2の例を示したが、他の周知誘電体膜を
用いても良いことはいうまでもない。この際、反射面を
成す凹部への誘電体膜の回り込みによって、反射面のパ
ッシベーション処理を行う。次にホトリソグラフィ技術
を利用して、表面電極上等の誘電体膜を除去し、電極面
を露出させる。 【0007】 【作用】本発明によれば、ウエーハ状態でレーザ反射面
のパッシベーション処理が可能になるため、従来のチッ
プ状態で行う方法に比べて、作業性、量産性が著しく改
善される。 【0008】 【実施例】以下、本発明を実施例を用いて説明する。 【0009】図1は本発明の実施例を示す、Channeled
Substrate Planar(略してCSP)構造GaAS-GaAlAs系
半導体レーザの、光の進行方向の断面図(a)および、
垂直方向の断面図(b)である。各部を説明すると、1
はn形GaAs基板(Siドープ,〜1×1018cm-3,(100)
面)で、基板表面に巾約5μm、深さ約1.3μmの帯状
凹溝2が形成され、この上にn形Ga0.6Al0.4Asクラッド
層3(Teドープ、n〜1×1018cm-3、厚さ溝の外側で約
0.3μm)4、Ga0.86Al0.14As活性層4(アンドープ、
約0.06μm)、p形Ga0.6Al0.4Asクラッド層5(Znドー
プ、p〜5×1017cm-3、厚さ約2μm)n形GaAsキャッ
プ層6(Teドープ、n〜1×1018cm-3、厚さ約0.5μ
m)が形成されている。7は、Zn拡散によりp形に反転
した領域で、電流はこの部分を通して活性領域に効率よ
く集中して流れる構造となっている。共振器用反射面上
には、本発明のパッシベーション膜10が形成されてい
る。本実施例では、パッシベーション膜10はスパッタコ
ーティング法で形成したSiO2膜、約230nmである。次に
本発明の特徴を図2を用いて説明する。図2は図1に示
した本発明の実施例の素子作製法を示したものである。
半導体レーザ素子作製工程において、半導体基板上に各
半導体層を積層した後、p側電極8を形成し、ホトレジ
スト膜をマスクにして反応性イオンビームエッチング法
により、共振器反射面11を形成した(図2(a))。エ
ッチングガスには塩素Cl2を用い、圧力約1×10-1Pa、
加速電圧400Vでエッチングを行った。エッチング深さは
約7μmである。反射面の角度は、ほぼ垂直に形成する
ことができた。次に、スパッタコーティング法により、
SiO210を全面に形成した(図2(b))。このとき、共
振器反射面上にもSiO2が回り込み、表面平坦部に対して
約60%の速度で、パッシベーション膜が形成された。反
射面上でパッシベーション膜厚は約230nmであった。ス
パッタコーティングの方法としては、ターゲットにSiO2
を用い、Ar雰囲気中で高周波スパッタ法で行った。スパ
ッタコーティングの特長は上記のように溝の内部等にも
誘電体膜の形成が可能である点にある。次に、ホトリソ
グラフィ法によってホトレジストマスクを形成し、p電
極上のSiO2をエッチングで除去した。エッチャントには
フッ酸、フッ化アンモンの混合液を用いた。つづけて、
裏面を研磨、エッチングして、ウエーハ厚約250μmと
した後、n側電極を形成した(図2(c))。 【0010】本半導体レーザはしきい電流値約50mA、発
振波長約780nmで、光出力10mW程度まで横基本モードで
発振した。本実施例で述べたように、半導体レーザ反射
面のパッシベーション処理は、ウエーハ段階で行ってい
るため、従来のチップ状態で行う方法に比較して、作製
工程が著しく簡略化された。 【0011】以上述べたように、本発明によれば半導体
レーザ反射面のパッシベーション処理をチップに分割す
る前に行うことが可能になり、半導体レーザ素子作製工
程が著しく改善された。また、本発明は、GaAlAs系のみ
ならず、その他の材料や光集積素子、光・電子集積素子
等への応用も可能である。 【0012】 【発明の効果】以上述べたように、本発明はウエーハ状
態で半導体レーザの反射面パッシベーションを行い、電
極表面上等の不要な誘電体膜は除去してしまう方法を提
供するもので、従来のチップ状態等でパッシベーション
処理を行う方法に比較して、素子作製工程が著しく改善
され、量産性に適した作製工程が可能になった。また、
本発明は、光集積素子や、レーザと電子回路を集積化し
た、光・電子集積素子への応用も可能で、その実用上の
効果は大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for passivating a reflection surface of a semiconductor laser device, which is suitable for mass production and integration with electronic circuits. 2. Description of the Related Art Semiconductor laser devices have excellent features not found in other lasers, such as small size, high efficiency, and low power consumption, and are widely applied to light sources for optical communication and optical disk pickups. It has become. One of the reasons for the rapid commercialization of semiconductor lasers is that the semiconductor laser cavity reflection surface is subjected to passivation treatment of a dielectric or the like, thereby significantly reducing the deterioration phenomenon of the laser element caused by the end face deterioration. There are things. There are many examples of reflective surface passivation processing (for example, K. Kressel et al., RCA Review Vol. 36, No. 2,
230, 1975 (K. Kressel et al., RCA Review Vol. 36,
No.2, p.230, 1975), F.R.Nash, et al., Applied Physics Letter 35, 12, 905, 1979
(FRNash et al. Appl. Phys. Lett. Vol. 35 No. 12,
P.905,1979)). [0003] However, the reflection surface for a resonator of a conventional semiconductor laser is manufactured by a cleavage surface using a specific orientation of a crystal. Therefore, passivation processing such as coating of a dielectric film on a reflection surface for improving the reliability of laser has been performed after bonding to a cleaved chip state or a stem. Therefore, the laser reflection surface passivation process has a serious problem that its workability is extremely poor and its mass productivity is poor. An object of the present invention is to solve the above problems and to provide a semiconductor laser reflecting surface passivation method which is excellent in workability and mass productivity. [0005] In order to achieve the above object, in the present invention, passivation of a laser reflecting surface is performed by the following method. First, the laser double hetero layer is processed almost vertically by, for example, a chemical etching method or a dry etching method to form a laser reflecting surface. Next, a passivation dielectric film is formed on the entire surface in the wafer state as it is. In the following embodiments, an example of SiO 2 is shown as the passivation dielectric film, but it goes without saying that other well-known dielectric films may be used. At this time, the passivation process of the reflection surface is performed by the dielectric film going into the concave portion forming the reflection surface. Next, using a photolithography technique, the dielectric film on the surface electrode or the like is removed to expose the electrode surface. According to the present invention, the passivation of the laser reflecting surface can be performed in the wafer state, so that the workability and mass productivity are remarkably improved as compared with the conventional method in the chip state. Hereinafter, the present invention will be described with reference to examples. FIG. 1 shows an embodiment of the present invention.
Sectional view (a) in the light traveling direction of a GaAS-GaAlAs-based semiconductor laser having a Substrate Planar (CSP for short) structure, and
It is a sectional view (b) of a perpendicular direction. To explain each part, 1
Is an n-type GaAs substrate (Si doped, ~ 1 × 10 18 cm -3 , (100)
A band-like groove 2 having a width of about 5 μm and a depth of about 1.3 μm is formed on the substrate surface, and an n-type Ga 0.6 Al 0.4 As cladding layer 3 (Te doped, n〜1 × 10 18 cm −) is formed thereon. 3 , About the thickness outside the groove
0.3 μm) 4, Ga 0.86 Al 0.14 As active layer 4 (undoped,
About 0.06 μm), p-type Ga 0.6 Al 0.4 As cladding layer 5 (Zn-doped, p105 × 10 17 cm -3 , about 2 μm thick) n-type GaAs cap layer 6 (Te-doped, nn1 × 10 18) cm -3 , thickness about 0.5μ
m) is formed. Reference numeral 7 denotes a region which is inverted to the p-type by Zn diffusion, and has a structure in which current flows efficiently through this portion to the active region. The passivation film 10 of the present invention is formed on the resonator reflecting surface. In this embodiment, the passivation film 10 is a SiO 2 film formed by a sputter coating method, and is about 230 nm. Next, features of the present invention will be described with reference to FIG. FIG. 2 shows a method of manufacturing the device according to the embodiment of the present invention shown in FIG.
In the semiconductor laser device fabrication process, after laminating each semiconductor layer on a semiconductor substrate, a p-side electrode 8 was formed, and a cavity reflection surface 11 was formed by a reactive ion beam etching method using a photoresist film as a mask ( FIG. 2 (a)). Chlorine Cl 2 is used as the etching gas, and the pressure is about 1 × 10 -1 Pa,
Etching was performed at an acceleration voltage of 400V. The etching depth is about 7 μm. The angle of the reflecting surface could be formed almost perpendicularly. Next, by the sputter coating method,
SiO 2 10 was formed on the entire surface (FIG. 2B). At this time, SiO 2 wrapped around the resonator reflection surface, and a passivation film was formed at a speed of about 60% with respect to the flat surface portion. The passivation film thickness on the reflecting surface was about 230 nm. As a method of sputter coating, target is SiO 2
And in a Ar atmosphere by a high frequency sputtering method. The feature of the sputter coating is that a dielectric film can be formed in the inside of a groove or the like as described above. Next, a photoresist mask was formed by photolithography, and SiO 2 on the p-electrode was removed by etching. A mixture of hydrofluoric acid and ammonium fluoride was used as an etchant. Continued to,
After polishing and etching the back surface to make the wafer thickness about 250 μm, an n-side electrode was formed (FIG. 2C). This semiconductor laser oscillated in the transverse fundamental mode up to an optical output of about 10 mW at a threshold current value of about 50 mA and an oscillation wavelength of about 780 nm. As described in the present embodiment, the passivation process of the semiconductor laser reflecting surface is performed at the wafer stage, so that the manufacturing process is significantly simplified as compared with the conventional method performed in a chip state. As described above, according to the present invention, the passivation processing of the semiconductor laser reflecting surface can be performed before the chip is divided, and the semiconductor laser element manufacturing process is significantly improved. Further, the present invention is applicable not only to GaAlAs-based materials but also to other materials, optical integrated devices, optical / electronic integrated devices, and the like. As described above, the present invention provides a method for passivating the reflection surface of a semiconductor laser in a wafer state and removing unnecessary dielectric films on the electrode surface and the like. Compared with the conventional method of performing a passivation process in a chip state or the like, the element manufacturing process is remarkably improved, and a manufacturing process suitable for mass production has become possible. Also,
The present invention can be applied to an optical integrated device or an optical / electronic integrated device in which a laser and an electronic circuit are integrated, and its practical effect is great.

【図面の簡単な説明】 【図1】図1(a)は本発明の実施例を示す半導体レー
ザの光の進行方向に平行な断面図、図1(b)はその垂
直方向の断面図である。 【図2】本発明の半導体レーザの素子作製工程を示す断
面図である。 【符号の説明】 1…n-GaAs基板、3…n-Ga0.6Al0.4Asクラッド層、4…
Ga0.86Al0.14As活性層、5…p-Ga0.6Al0.4Asクラッド
層、10…反射面SiO2パッシベーション膜、11…レーザ反
射面。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a cross-sectional view parallel to a light traveling direction of a semiconductor laser showing an embodiment of the present invention, and FIG. 1 (b) is a cross-sectional view in a vertical direction thereof. is there. FIG. 2 is a cross-sectional view showing an element manufacturing process of the semiconductor laser of the present invention. [Description of Signs] 1 ... n-GaAs substrate, 3 ... n-Ga 0.6 Al 0.4 As cladding layer, 4 ...
Ga 0.86 Al 0.14 As active layer, 5: p-Ga 0.6 Al 0.4 As clad layer, 10: reflection surface SiO 2 passivation film, 11: laser reflection surface.

Claims (1)

(57)【特許請求の範囲】1. 半導体基板と、該半導体基板上に積層されて共振器
を構成する複数の半導体層と、該半導体層の上面に該上
面の端部より離間して形成された電極と、該半導体層の
上面から該共振器の端面を経て該半導体基板の側面に至
る領域を覆うように形成された誘電体膜を有し、上記誘
電体膜は上記電極の上記共振器端面側の周縁部上面を覆
うように形成され、且つ該半導体基板の側面は該誘電体
膜が形成されない領域を含むことを特徴とする半導体レ
ーザ素子。
(57) [the claims] 1. A semiconductor substrate, a plurality of semiconductor layers stacked on the semiconductor substrate to form a resonator, an electrode formed on an upper surface of the semiconductor layer at a distance from an end of the upper surface, and an upper surface of the semiconductor layer. A dielectric film formed so as to cover a region extending to the side surface of the semiconductor substrate through the end face of the resonator, wherein the dielectric film covers an upper surface of a peripheral portion of the electrode on the resonator end face side; A semiconductor laser device formed, wherein a side surface of the semiconductor substrate includes a region where the dielectric film is not formed.
JP8025019A 1996-02-13 1996-02-13 Semiconductor laser device Expired - Lifetime JP2783240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8025019A JP2783240B2 (en) 1996-02-13 1996-02-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8025019A JP2783240B2 (en) 1996-02-13 1996-02-13 Semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59270876A Division JPH0712099B2 (en) 1984-12-24 1984-12-24 Method for manufacturing semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH08236861A JPH08236861A (en) 1996-09-13
JP2783240B2 true JP2783240B2 (en) 1998-08-06

Family

ID=12154205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8025019A Expired - Lifetime JP2783240B2 (en) 1996-02-13 1996-02-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2783240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116335A1 (en) * 2015-09-28 2017-03-30 Osram Opto Semiconductors Gmbh Semiconductor laser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141773A (en) * 1979-04-20 1980-11-05 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser element
JPS5948977A (en) * 1982-09-14 1984-03-21 Nec Corp Manufacture of laser diode
JPS59115583A (en) * 1982-12-22 1984-07-04 Sanyo Electric Co Ltd Semiconductor laser
JPS6199395A (en) * 1984-10-22 1986-05-17 Toshiba Corp Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JPH08236861A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
US6647047B2 (en) Semiconductor laser device capable of suppressing leakage current in light emitting end surface and method for manufacturing the same
JP2783240B2 (en) Semiconductor laser device
JP2002299761A (en) Semiconductor light-emitting device of surface-emitting type, and method of manufacturing the same
JPH0712099B2 (en) Method for manufacturing semiconductor laser device
JPS61182292A (en) Manufacture of semiconductor laser
JP3670768B2 (en) Method of manufacturing group III nitride semiconductor laser diode
Tarui et al. Monolithic passivated stripe geometry double heterostructure injection lasers by selective chemical etching
JPH07283484A (en) Manufacture of semiconductor laser element
JPH09148666A (en) Semiconductor laser element and its manufacture
US20040264534A1 (en) Semiconductor laser device and method for manufacturing the same
JP3268990B2 (en) Method for manufacturing semiconductor laser device
EP0713275A1 (en) Method for fabricating a semiconductor laser diode
JP2534304B2 (en) Method for forming etched mirror by RIBE
JPH09275239A (en) Semiconductor laser device
JP3908471B2 (en) Manufacturing method of semiconductor laser device
KR100776931B1 (en) Semiconductor laser device and manufacturing method thereof
JP2567066B2 (en) Method for manufacturing semiconductor light emitting device
JPH0918082A (en) Semiconductor laser element
KR100330591B1 (en) Method of making semiconductor laser diode
JP3081363B2 (en) Red semiconductor laser
JPS62115792A (en) Semiconductor laser
JPS59155977A (en) Manufacture of semiconductor laser element
JPH06318760A (en) Surface light emission laser and manufacture thereof
JPH08316219A (en) Manufacture of semiconductor device
JPH07302951A (en) Semiconductor laser device and manufacture thereof